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Abstract In this paper, we present a new method for seg-
menting closed contours and surfaces. Our work builds on a
variant of the minimal path approach. First, an initial point
on the desired contour is chosen by the user. Next, new key-
points are detected automatically using a front propagation
approach. We assume that the desired object has a closed
boundary. This a-priori knowledge on the topology is used
to devise a relevant criterion for stopping the keypoint de-
tection and front propagation. The final domain visited by
the front will yield a band surrounding the object of interest.
Linking pairs of neighboring keypoints with minimal paths
allows us to extract a closed contour from a 2D image. This
approach can also be used for finding an open curve giving
extra information as stopping criteria. Detection of a variety
of objects on real images is demonstrated. Using a similar
idea, we can extract networks of minimal paths from a 3D
image called Geodesic Meshing. The proposed method is
applied to 3D data with promising results.
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1 Introduction

Energy minimization techniques have been applied to a
broad variety of problems in image processing and com-
puter vision. Since the original work on snakes [12], they
have notably been used for boundary detection. An active
contour model, or snake, is a curve that deforms its shape
in order to minimize an energy combining an internal part
which smoothes the curve and an external part which guides
the curve toward particular image features. For instance, the
geodesic active contour model [5, 22] relies on the mini-
mization of a geometric energy functional that deforms an
initial curve toward local geodesics in a Riemannian metric
derived from the image. Whereas the geodesic active con-
tour model presents significant improvements compared to
the original snake model, the energy minimization process
is still prone to local minima. Consequently, results strongly
depend on the model initialization.

To overcome this issue, Cohen and Kimmel [8] intro-
duced an approach to globally minimize the geodesic active
contour energy, provided that two endpoints of the curve are
initially supplied by the user. This energy is of the form

∫
γ

P̃
where the incremental cost P̃ is chosen to take lower values
on the interesting features of the image, and γ is a path join-
ing the two points. The solution of this minimization prob-
lem is obtained through the computation of the minimal ac-
tion map associated to a source point. The minimal action
map can be regarded as the arrival times of a front propagat-
ing from the source point with velocity (1/P̃). It satisfies the
Eikonal equation and can be numerically solved efficiently
using the Fast Marching Method. Moreover, as introduced
in [9] we can compute simultaneously the Euclidean path
length of the minimal path for each endpoint with the Fast
Marching Method. This technic will be detailed in Sect. 2.2.

mailto:benmansour@ceremade.dauphine.fr
mailto:cohen@ceremade.dauphine.fr


210 J Math Imaging Vis (2009) 33: 209–221

Fig. 1 (a) Original image.
(b) Build potential based on the
Laplacian. (c) Short cut.
(d) Minimal path with keypoints
detection can avoid short cut

Still, the minimal path technique may fail if the potential
is too noisy, or not enough contrasted or if the objects of in-
terest are long thin curvy curves. In this case a portion of the
minimal path can be a short cut to the starting point, leading
to wrong results, like in Fig. 1. We propose in this paper a
new approach to avoid this drawback. A first version of this
method was described in [2, 3]. The idea is to detect recur-
sively new source points (called keypoints) along the curve
of interest between the two given points. These points are
automatically detected using a criterion based on the Euclid-
ean length of minimal paths and are almost equi-distributed
along the curve of interest. In [9] it was proposed to use the
length of the minimal path in order to find the second ex-
tremity of the path. Here we iterate this idea many times in
order to obtain intermediate points along the contour. Since
the front propagates faster on the features, i.e. potential is
smaller, the first point for which the length λ is reached, is
located in this area (of small values of P̃ ) and is a valuable
choice as a keypoint. A good choice of parameter λ enables
the front to propagates further in the direction of the thin
curve without propagating in all directions and thus to re-
duce considerably the visited domain on the image.

In Sect. 2, we give some background on minimal path,
Fast Marching, and finding the Euclidean length of the min-
imal path. In Sect. 3, we introduce a novel front propagation
approach, based on the Fast Marching Method, to distrib-
ute a set of points on a codimension-1 manifold that is not
known a priori, all starting from a single point (or more if de-
sired) initialized on the desired object boundary. Each newly
detected keypoint is immediately defined as a new source

of propagation, and keypoints are detected as described be-
fore. By using the a-priori knowledge on the topology of
the closed manifold, we devise a relevant criterion for stop-
ping the keypoint detection and front propagation. For open
curves, we propose in Sect. 3.2 two different stopping cri-
teria. The first one needs more interaction by specifying an
endpoint to reach and the second one is based on an approxi-
mation of the total contour length. These criteria are general
for any dimension for closed manifolds or elongated struc-
tures. In Sect. 3.4, we explain how to extract a codimension-
1 closed manifold within the image using the previous re-
sults. The main idea is to link pairs of neighboring keypoints
with minimal paths via gradient descent on the minimal ac-
tion map. In Sect. 3.5, we explain briefly the influence of the
path length parameter λ. In Sect. 4, we explain how we can
extend the previous ideas to 3D by using the right connec-
tivity associated to the dimension. Segmentation results on a
set of 2D and 3D images are presented. Finally, conclusions
and perspectives follow in Sect. 5.

2 Background on Minimal Paths

2.1 Definitions

Given a 2D image I : � → R
+ and two points p1 and p2,

the underlying idea introduced by Cohen and Kimmel [8] is
to build a potential P : � → R

∗+ which takes lower values
near desired features of the image I . The choice of the po-
tential P depends on the application. For example, one can
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Fig. 2 Extraction of an open contour from an electron microscopy im-
age. (a) Original image I . (b) Potential P = (‖∇I‖ + ε)−3, where ε is
a small positive constant, and user-supplied points p1 and p2. (c) Min-

imal action map U1 and minimal path Cp1,p2 between p1 and p2.
(d) Image I and minimal path Cp1,p2

define P as a decreasing function of ‖∇I‖ to extract image
edges by finding a curve that globally minimizes the energy
functional E : Ap1,p2 → R

+

E(γ ) =
∫

γ

{
P (γ (s)) + w

}
ds =

∫

γ

P̃(γ (s))ds, (1)

where Ap1,p2 is the set of all paths connecting p1 to p2, s

is the arc-length parameter, w is a positive constant regular-
ization term and P̃ = (P + w). A curve connecting p1 to
p2 that globally minimizes the energy (1) is a minimal path
between p1 and p2, noted Cp1,p2 . The solution of this min-
imization problem is obtained through the computation of
the minimal action map U1 : � → R

+ associated to p1. The
minimal action is the minimal energy integrated along a path
between p1 and any point x of the domain �:

∀x ∈ �, U1(x) = min
γ∈Ap1,x

{∫

γ

P̃ (γ (s))ds

}

. (2)

The values of U1 may be regarded as the arrival times of a
front propagating from the source p1 with velocity (1/P̃ ).
U1 satisfies the Eikonal equation
{‖∇U1(x)‖ = P̃(x) for x ∈ �,

U1(p1) = 0.
(3)

The map U1 has only one local minimum, the point p1, and
its flow lines satisfy the Euler-Lagrange equation of func-
tional (1) (see [1]). Thus, the minimal path Cp1,p2 can be
retrieved with a simple gradient descent on U1 from p2 to
p1 (see Fig. 2), solving the following ordinary differential
equation with standard numerical methods like Heun’s or
Runge-Kutta’s:
{

dCp1,p2
ds

(s) = −∇U1(Cp1,p2(s)),

Cp1,p2(0) = p2.
(4)

Let us extend the definitions given so far to the case of mul-
tiple sources and introduce other definitions which will be
useful hereinafter. These definitions hold in dimension 2 and
higher. The minimal action map associated to the potential

P̃ : � → R
∗+ and the set of n sources S = {p1, . . . ,pn} is

the function U : � → R
+ defined by

∀x ∈ �, U (x) = min
1≤j≤n

{Uj (x)},

where Uj (x) = min
γ∈Apj ,x

{∫

γ

P̃ (γ (s))ds

}

. (5)

The map U is a weighted distance map to the set of
sources S , and it satisfies the Eikonal equation
{‖∇U (x)‖ = P̃ (x) for x ∈ �,

U (pj ) = 0 for pj ∈ S .
(6)

The Voronoi region associated to the source pj ∈ S , noted
Rj , is the locus of points of the domain � which are closer
(in the sense of the weighted distance) to pj than to any
other source of S :

Rj = {
x ∈ �; Uj (x) ≤ Ui (x), ∀i ∈ {1, . . . , n}, i 	= j

}
. (7)

The region Rj is a connected subset of the domain �, and
its boundary is noted ∂Rj . The union of Voronoi regions
and its complementary set, the Voronoi diagram, leads to a
tessellation of the domain �, called the Voronoi partition.

The Voronoi index map is the function V : � → {1, . . . , n}
that assigns to any point of the domain � the index of its
Voronoi region:

∀x ∈ Rj , V (x) = j. (8)

If two Voronoi regions Ri and Rj are adjacent (i.e. if ∂Ri ∩
∂Rj is a non-empty set), then the minimal path Cpi ,pj

passes
through the point of ∂Ri ∩ ∂Rj which has the smallest U
value. This point, noted mi|j , is the midpoint of the minimal
path Cpi ,pj

since it is equidistant to pi and pj in the sense of
the weighted distance.

The Euclidean path length map is the function L : � →
R

+ that assigns to any point x of the domain � the Euclid-
ean length of the minimal path between x and the source
which is the closest in the sense of the weighted distance:

∀x ∈ Rj , L(x) =
∫

Cpj ,x

ds. (9)
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Table 1 Fast Marching Method for solving (6)

• Notation

NM(x) is the set of M neighbors of a grid point x, where M = 4

in 2D and M = 6 in 3D.

• Initialization

For each grid point x, do

Set U (x) := +∞, V(x) := 0 and L(x) := +∞.

Tag x as Far.

For each source pj ∈ S , do

Set U (pj ) := 0, V(pj ) := j and L(pj ) := 0.

Tag pj as Trial.

• Marching loop

While the set of Trial points is non-empty, do

Find xmin, the Trial point with the smallest U value.

Tag xmin as Alive.

For each grid point xn ∈ NM(xmin) which is not Alive, do

{u,v, �} := UpdateSchemeFMM (xn, NM(xn)) (see text).

Set U (xn) := u, V(xn) := v and L(xn) := �.

If xn is Far, tag xn as Trial.

Note that if P̃ (x) = 1 for all x ∈ �, then the maps U and
L are equal and both correspond to the Euclidean distance
map to the set of sources S .

Introduced first as a boundary detection method, min-
imal path techniques have been successfully applied to
sundry problems (see [7] for a review), such as path plan-
ning [14], contour completion [6], tubular surface extrac-
tion [9], motion tracking [4], or remeshing of triangulated
manifolds [15].

2.2 Fast Marching Method

The Fast Marching Method (FMM) is a numerical method
introduced by Sethian in [17–19] and Tsitsiklis in [20] for
efficiently solving the isotropic Eikonal equation on a Carte-
sian grid. In (6), the values of U may be regarded as the ar-
rival times of wavefronts propagating from each point of S
with velocity (1/P̃). The central idea behind the FMM is to
visit grid points in an order consistent with the way wave-
fronts propagate, i.e. with the Huygens principle. It leads to
a single-pass algorithm for solving (6) and computing the
maps U , V and L in a common computational framework
(see Table 1).

2.2.1 Ordered Sweeping of Grid Points

The FMM is a front propagation approach that computes the
values of U in increasing order, and the structure of the al-
gorithm is almost identical to Dijkstra’s algorithm for com-
puting shortest paths on graphs [10]. In the course of the
algorithm, each grid point is tagged as either Alive (point
for which U has been computed and frozen), Trial (point for

which U has been estimated but not frozen) or Far (point for
which U is unknown). The set of Trial points forms an in-
terface between the set of grid points for which U has been
frozen (the Alive points) and the set of other grid points (the
Far points). This interface may be regarded as a set of fronts
expanding from each source until every grid point has been
reached.

Let us denote by NM(x) the set of M neighbors of a grid
point x, where M = 4 if � is a 2D domain and M = 6 if
� is a 3D domain. Initially, all grid points are tagged as
Far, except the points of S that are tagged as Trial. At each
iteration of the FMM one chooses the Trial point with the
smallest U value, denoted by xmin in Table 1. Then, xmin is
tagged as Alive and the values of U , V and L are updated
for each point of the set NM(xmin) which is either Trial or
Far. In order to satisfy a causality condition, the way U , V
and L are updated in the vicinity of xmin requires special
care. The iteration ends by tagging every Far point of the
set NM(xmin) as Trial. The algorithm automatically stops
when all grid points are Alive.

The key to the speed of the FMM is the use of a pri-
ority queue to quickly find the Trial point with the small-
est U value. If Trial points are ordered in a min-heap data
structure, the computational complexity of the FMM is
O(N logN), where N is the total number of grid points.
Some authors [11, 13, 21] have proposed various versions of
the fast marching in order to get an O(N) complexity. These
approaches are less accurate on the result or assuming some
hypotheses that are not met in our method.

2.2.2 Update Scheme for the Fast Marching Method

Here, we present a way to estimate U , V and L for a grid
point xn, i.e. a way to compute the output of routine Up-
dateSchemeFMM in Table 1. We limit ourselves to the 2D
case, though extending the scheme to higher dimensions is
straightforward. Adopting standard notation, we denote by
Ui,j the value of U at the grid vertex (i, j) associated to the
point xn with coordinates (i hx, j hy), where hx and hy are
grid spacings in the x and y directions.

A discretized version of (6) is solved in order to com-
pute Ui,j . For the Eikonal equation, classic finite difference
schemes tend to overshoot and are unstable. Although with
a different approach, Rouy and Tourin [16] showed that the
correct viscosity solution for Ui,j is given by the following
first order accurate scheme:

(
max{(Ui,j − Ui−1,j ), (Ui,j − Ui+1,j ),0}

hx

)2

+
(

max{(Ui,j − Ui,j−1), (Ui,j − Ui,j+1),0}
hy

)2

= (P̃i,j )
2. (10)
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Fig. 3 Connecting a grid point
xn and the points of NM(xn)

with virtual edges forms four
triangles on a 2D grid and eight
tetrahedrons on a 3D grid

This is an upwind scheme: the forward and backward differ-
ences are chosen to follow the direction of the flow of infor-
mation. Since the action can only grow due to the quadratic
nature of (10), information is propagating upwards (from
smaller to larger values of U ).

Connecting with virtual edges xn and the points of
NM(xn), i.e. xn and the four nearby grid points, forms
four triangles (see Fig. 3). For each triangle, we attempt
to solve two quadratic equations to get estimations of Ui,j ,
Vi,j and Li,j . These estimations are respectively noted u,
v and �. As an example, consider the triangle with vertices
{(i − 1, j), (i, j), (i, j − 1)}. Four cases may occur:

• If neither (i − 1, j) nor (i, j − 1) are Alive, information
is not propagating through this triangle. Then, u = +∞,
v = 0 and � = +∞.

• If (i − 1, j) is Alive but (i, j − 1) is not, then v = Vi−1,j .
Furthermore, u and � are the largest solutions of quadratic
equations

(
u − Ui−1,j

hx

)2

= (P̃i,j )
2 and

(
� − Li−1,j

hx

)2

= 1.

• If (i, j − 1) is Alive but (i − 1, j) is not, then v = Vi,j−1.
Furthermore, u and � are the largest solutions of quadratic
equations

(
u − Ui,j−1

hy

)2

= (P̃i,j )
2 and

(
� − Li,j−1

hy

)2

= 1.

• If both (i − 1, j) and (i, j − 1) are Alive, then u is the
largest real solution of quadratic equation

(
u − Ui−1,j

hx

)2

+
(

u − Ui,j−1

hy

)2

= (P̃i,j )
2,

� is the largest real solution of quadratic equation

(
� − Li−1,j

hx

)2

+
(

� − Li,j−1

hy

)2

= 1,

and v is chosen according to the smallest value of U :

v =
{

Vi−1,j if Ui−1,j ≤ Ui,j−1,
Vi,j−1 otherwise.

For each of four triangles, we get a triplet {u,v, �}. Finally,
we choose the one with the smallest u (this is the triplet re-
turned by the routine UpdateSchemeFMM). Note that if
one needs to approximate ∇U , computing the derivatives of
U in the triangle used to estimate Ui,j gives a consistent ap-
proximation of ∇U (xn). On a 3D grid, the neighborhood of
a grid point is divided into eight tetrahedra (see Fig. 3), but
the 3D update scheme is very similar to the 2D one.

3 Distribution of a Set of Keypoints on a 2D Curve

3.1 Keypoints Detection and Local Update

First, we consider the case where the domain � is a 2D
domain. We assume that we are given an initial set S =
{p1, . . . ,pn} of points on a curve along which a potential
P̃ : � → R

∗+ takes lower values. Note that the set S may
contain only one point and this will be the case in our exam-
ples below.

We propose in this paper a new approach. The idea is
to detect recursively new source points (called keypoints)
along the curve of interest. These points are automatically
detected using a criterion based on the Euclidean length of
minimal paths and are almost equi-distributed along fea-
tures of interest. The method is called Minimal Path method
With Keypoint Detection (MPWKD, see Table 2). A front
is propagated from each source point of S with velocity
(1/P̃ ). Keypoints are sequentially detected, on the curve
of interest, during the front propagation and stored in a set
S ∗ = {p∗

n+1, . . . ,p∗
n+m}. Each newly detected keypoint is

immediately defined as a new source of propagation, and
keypoints are detected with a criterion based on the Euclid-
ean length of minimal paths. This criterion depends on only
one parameter, denoted λ. Initially, fronts are propagated
from each point of S with velocity (1/P̃), until a grid point
x such that L(x) ≥ λ is tagged as Alive. This point is then de-
fined as the first keypoint, denoted p∗

n+1 (see Fig. 6). Such a
criterion has already been used in [9] to find a minimal path
given only one endpoint. Assuming that the point p∗

n+1 be-
longs to the Voronoi region Rj when it is detected, this cri-
terion ensures that the minimal path Cpj ,p∗

n+1
minimizes the
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Table 2 Minimal path method with keypoint detection

• Notation

NM(x) is the set of M neighbors of a grid point x, where M = 4

in 2D and M = 6 in 3D. NM+ (x) is the set of M+ neighbors of a

grid point x, where M+ = 8 in 2D and M+ = 26 in 3D.

• Initialization

For each grid point x, do

Set U (x) := +∞, V(x) := 0 and L(x) := +∞.

Tag x as Far.

For each source pj ∈ S , do

Set U (pj ) := 0, V(pj ) := j and L(pj ) := 0.

Tag pj as Trial and as Boundary.

m := 1, StopDetection := FALSE.

• Marching loop

While the set of Trial points is non-empty, do

Find xmin, the Trial point with the smallest U value.

If (StopDetection = FALSE) and (L(xmin) ≥ λ), do

Here, xmin is defined as the keypoint p∗
n+m.

Set U (xmin) := 0, V(xmin) := n + m and L(xmin) := 0.

m := m + 1.

Else, do

Tag xmin as Alive.

For each grid point xn ∈ NM(xmin), do

If xn is not Alive, do

{u,v, �} := UpdateSchemeFMM (xn, NM(xn)).

Set U (xn) := u, V(xn) := v and L(xn) := �.

If (StopDetection = FALSE) and (xn is Far), do

Tag xn as Trial and as Boundary.

Else if V(xn) 	= V(xmin), do (local correction of the maps

if needed)

{u,v, �} := UpdateSchemeFMM(xn, NM(xn)).

If u < U (xn), do

Set U (xn) := u, V(xn) := v and L(xn) := �.

Tag xn as Trial.

If xmin is Boundary, do

Tag xmin as Interior.

If StopDetection = FALSE, do

StopDetection := StoppingCriterion (xmin).

integral of P̃ (along itself) over all open curves with Euclid-
ean lengths greater than or equal to λ and with endpoints
in S . Therefore, p∗

n+1 is likely to belong to the curve along

which the values of P̃ are low.
Once the first keypoint has been detected, it is defined as

a new source of propagation. Next, the process in iterated
and assuming � keypoints p∗

n+1, . . . ,p∗
n+� have been added,

front propagation from this set and S is made with veloc-
ity 1/P̃ . Front propagation is continued until a grid point x
such that L(x) ≥ λ is tagged as Alive. This point is defined
as the � + 1 keypoint, denoted p∗

n+�+1, and is added to the

set of sources. Afterward, front propagation is continued,
and so on. Thus, during the front propagation, keypoints are
sequentially detected on the curve along which P̃ takes low
values (see Figs. 4, 5 and 6). At each iteration of the process,
it is not necessary to start again the whole computation from
scratch since values of U , V and L which have already been
estimated would not differ in the vicinity of initial sources
(i.e. in the vicinity of points of S ). In order to limit the com-
putational cost, one just needs to update the value U and go
on computation till criterion is reached. For this update, we
reinitialize U , V and L in the following manner:

U (p∗
n+�) := 0, V (p∗

n+�) := n + �, L(p∗
n+�) := 0,

tag p∗
n+� as Trial and continue front propagation. However,

without any additional modification of the original FMM,
final values of U , V and L would be incorrect for grid points
which are tagged as Alive when p∗

n+� is detected and closer
(in the sense of a weighted distance) to p∗

n+� than to the
initial sources. These points cannot be updated solely due to
the fact that, in the original FMM, values of U , V and L are
frozen for Alive points. An easy way to avoid this problem is
just to let an Alive point be tagged as Trial again if it is closer
to the new source of propagation than to initial sources. This
algorithmic trick enables the local update of U , V and L in
the neighborhood of p∗

n+�. Notice that in [6], in a different
context, there was also an algorithmic trick to update the
minimal action map in order to save computation time.

3.2 Stopping Criterion on an Open Curve

In this section we propose two different stopping criteria for
keypoint detection and front propagation on an open curve.
The first simple case is when the user could provide more
than a single source point, for example a source point and a
destination. One can stop the algorithm as soon as the desti-
nation is reached (as was shown in Fig. 1). The user has to
provide at least two points, a starting point and a destination
(two simple clicks), and the path length parameter λ to avoid
short cut. This approach needs minimal user interaction and
might be used for many different applications on 2D images.

We also propose another stopping criterion based on the
total path length. Here we suppose that only one single point
is provided by the user, i.e. S = {p1} and the idea is to detect
automatically the keypoints until a total minimal path length
is reached. Such a criterion has already been used in [9] to
find a minimal path given only one endpoint. In Sect. 3.1,
we explained how one can compute, on a common frame-
work, the minimal action map U and the minimal path length
map L with respect to the set S ∪ S ∗. A good way to com-
pute an approximation of the total minimal path length LT

consists on solving the same Euclidean Eikonal equation:
‖∇LT ‖ = 1 but without the local update as done is section
3.1, since this local update gives the minimal path length
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Fig. 4 Approximation of the total minimal path length. (a) A line po-
tential with contrast equal to 2: the velocity on the line is twice the
velocity on the background. (b) The minimal action map U associated
to some distributed keypoints. (c) The Voronoi map V . (d) The minimal

path length map L. (e) The real total minimal path length map to the
top source point. (f) The approximated total minimal path length map
to the top source point as explained on Sect. 3.2. (g) Approximation
error of the total minimal path length

Fig. 5 Stopping criteria based
on the total length. (a) An image
potential build from the image
of Fig. 1. (b) The minimal
action map U associated to
some distributed keypoints with
λ = 30. (c) The Voronoi map V .
(d) The minimal path length
map L. (e) The approximated
total minimal path length map to
the red source. (f) Detected
keypoints and minimal paths

map to the set of points S ∪ S ∗, and one wants the minimal
path length with respect to the source point p1. This compu-
tation gives us a good approximation of the total path length
on elongated structures (see Fig. 4). The error is maximal on
the perpendicular direction of the elongated structure and al-
most nil along the structure. On Fig. 5, the user provides a
single source point, the path length parameter λ and a total
length parameter to reach. Thus one can find features of in-
terest by a minimal interaction consisting in a single click
and two parameters.

3.3 Stopping Criterion for a Closed Curve

In order to prevent the algorithm from distributing keypoints
over the whole domain �, one needs to stop the keypoint de-
tection as soon as the domain visited by the fronts contains
the curve of interest. Note that even if this curve is unknown,
we assume that it is closed. This topological assumption is

used to devise a relevant criterion for stopping keypoint de-
tection and front propagation.

A first strategy is to take into account the Voronoi parti-
tion, and to stop keypoint detection as soon as each Voronoi
region is adjacent to at least two other Voronoi regions (i.e.
as soon as there exists a cycle of Voronoi regions). This strat-
egy, although correct, is limited to the 2D case. To get a
scheme which may be extended to higher dimensions, a sec-
ond strategy is proposed. Let us denote by �F the domain
visited by the propagating fronts, defined as the set of grid
points which are not Far (i.e. the set of grid points which
are either Alive or Trial). In the MPWKP, keypoint detec-
tion is stopped as soon as the border of �F is delimited by
exactly two connected subsets. The set �F may be divided
into two subsets: the set of interior points, denoted int(�F),
and the set of boundary points, denoted ∂�F. In the original
FMM, int(�F) and ∂�F respectively correspond to the set
of Alive points and the set of Trial points. This is no longer
true in the MPWKP because of the local correction of U ,
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Fig. 6 Intermediate and final
results for the MPWKP applied
to the 2D potential of the
Fig. 2(b) with S = {p1} and
λ = 200. The first, second and
third rows show intermediate
results obtained when are
detected, respectively, p∗

2 (the
first keypoint), p∗

3 (the second
keypoint) and p∗

7 (the last
keypoint). The last row shows
final results with 7 keypoints

V and L in the neighborhood of a keypoint. That is why
a second labelling is introduced in the MPWKP: each grid
point which is not Far, in addition to being tagged as Alive
or Trial, is also tagged as Interior or Boundary depending
on whether it belongs to int(�F) or ∂�F. In the case of one
source point, it is clear that the visited domain �F surrounds
the object of interest when its boundary ∂�F splits into ex-
actly two connected subsets. In the case of multiple sources,
the number of connected boundaries of ∂�F first decreases
then increases when the band surrounding the object of in-
terest is obtained. Thus, we just need to monitor the topo-
logical changes of ∂�F.

In the algorithm detailed in Table 2, the stopping crite-
rion for keypoint detection is satisfied as soon as the rou-
tine StoppingCriterion returns TRUE. This routine is
called after the grid point xmin is moved from the set of Trial
points to the set of Alive points, once some of the M = 4
neighbors of xmin have been tagged as Boundary. The rou-

tine IsBoundarySplit returns TRUE if both of the fol-
lowing tests are satisfied:

• Local test for detecting a front collision
First, we check if some fronts collide in the vicinity

of xmin. Let us denote by NM+(xmin) the set of M+ = 8
neighbors of xmin, and by ∂�F ∩ NM+(xmin) the set of
points of NM+(xmin) which are tagged as Boundary. The
local test simply relies on the computation of the num-
ber of 8-connected components of ∂�F ∩ NM+(xmin), de-
noted #C(∂�F ∩ NM+(xmin)). Most of the time, xmin is a
simple point of int(�F), and #C(∂�F ∩ NM+(xmin)) = 1
(see Fig. 7(a)). The local test is satisfied if #C(∂�F ∩
NM+(xmin)) > 1, i.e. when there is a shock between some
propagating fronts (see Fig. 7(b)).

• Global test for detecting a topological change of ∂�F

When the local test is satisfied, we need to check if
the different components of ∂�F ∩ NM+(xmin) are also
disconnected at a global scale. The global test is satisfied



J Math Imaging Vis (2009) 33: 209–221 217

Fig. 7 Local test applied in the vicinity of a grid point xmin (the point marked with an arrow) to detect a front collision. (a) xmin is a simple point
of int(�F) and #C(∂�F ∩ NM+ (xmin)) = 1. (b) Two fronts have collided in the neighborhood of xmin and #C(∂�F ∩ NM+ (xmin)) = 2

if the front collision has split an 8-connected component
of ∂�F into several 8-connected components.

Such a test is easy to implement. For instance, con-
sider the case where #C(∂�F ∩ NM+(xmin)) = 2. Let x1

and x2 be two grid points such that x1 belongs to the first
component of ∂�F ∩ NM+(xmin) and x2 to the second.
We just have to visit all grid points which belong to the
same 8-connected component of ∂�F as x1, and assign to
each visited point a temporary label. Then, the global test
is satisfied if x2 has not been labeled.

Since the scheme used to detect the iteration at which the
keypoint detection has to be stopped mainly requires tests at
a local scale, it is considerably less computationally expen-
sive than globally counting the number of connected com-
ponents of int(�F) and ∂�F at each iteration of the march-
ing loop. Moreover, note that special care is required to deal
with the fact that a propagating front may reach the border
of the domain �. We suggest adding virtual points along
each border of the discrete grid and tagging as Boundary
every virtual point in the neighborhood of an Interior point
lying on the border of the grid. This ensures that any con-
nected component of int(�F) is completely delimited by a
connected set of Boundary points.

Once the keypoint stopping criterion is satisfied, no more
grid points are moved from the set of Far points to the set
�F, and computations are continued until correct values of
U , V and L have been assigned to each point of �F. The
front propagation is thus limited to a band surrounding the
curve of interest.

3.4 Extraction of a Contour from a 2D Image

In the previous sections we gave a way to obtain a set of
keypoints that describe a contour curve, given an initial set
of points. Our initial goal is to obtain a contour as a set of
minimal paths that link pairs of points. We explain in this
section how this process takes place. The MPWKD may be
used to extract a closed or an open contour from a 2D image
I given a single contour point p1 in an easy and fast man-
ner. Once a potential P̃ has been derived from the image I

such that P̃ takes low values along the contour of interest,
applying the MPWKD with S = {p1} gives a set of points

S ∪ S ∗, but also the maps U and V associated to S ∪ S ∗ and
defined on a domain �F ⊂ �. Linking pairs of points in the
set S ∪ S ∗ by minimal paths finally enables the extraction of
the desired contour.

Here, we explain first how to exploit the maps U and V
to link two neighboring sources of S ∪ S ∗ with a minimal
path. Then, we describe how to correctly choose the pairs
of points of the set S ∪ S ∗ that should be linked, in order
to build a cyclic sequence of minimal paths that follows the
contour of interest.

3.4.1 Linking a Pair of Neighboring Sources
with a Minimal Path

Consider a source pi ∈ S ∪ S ∗. The Voronoi region Ri

associated to pi may be deduced from the map V : Ri =
{x ∈ �F; V (x) = i}. If there exists a Voronoi region Rj and
a couple of grid points (xi ,xj ) ∈ Ri × Rj such that (xi ,xj )

are 8-connected neighbors, then the Voronoi regions Ri and
Rj are adjacent and the sources pi and pj are neighboring.
In this case, the midpoint of the minimal path Cpi ,pj

may be
approximated by a couple of grid points (x̃i , x̃j ) ∈ Ri × Rj .
Among all pairs of grid points (xi ,xj ) ∈ Ri × Rj which are
8-connected neighbors, (x̃i , x̃j ) is the one that minimizes the
accumulated energy �U defined by

�U (xi ,xj ) = U (xi ) + U (xj ) + h(xi ,xj )

2

(
P̃(xi ) + P̃ (xj )

)
,

where h(xi ,xj ) denotes the spacing between the grid points
xi and xj . Note that �U (x̃i , x̃j ) is the energy integrated
along Cpi ,pj

, i.e. the minimal weighted distance between
the sources pi and pj . Once the grid points x̃i and x̃j have
been found, the minimal paths Cx̃i ,pi

and Cx̃j ,pj
may be re-

trieved by performing two gradient descents on U , respec-
tively from x̃i to pi and from x̃j to pj . Since the two paths
Cx̃j ,pi

and Cx̃j ,pj
are the two halves of Cpi ,pj

, connecting
them to each other finally gives the minimal path Cpi ,pj

that
links the neighboring sources pi and pj .

3.4.2 Building a Cyclic Sequence of Minimal Paths
to Extract a Closed Contour

Assuming that the set S ∪ S ∗ contains at least three points,
linking each source of S ∪ S ∗ to the two closest neighbor-
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Fig. 8 (Color online)
Extraction of a closed contour
from a 2D microscopy image.
Potential P , set of sources
S ∪ S ∗. Initial source point is in
red. Minimal action map and
cyclic sequence of minimal
paths. Image size
(a) 101×521, λ = 180.
(b) 385×532, λ = 80.
(c) 153×380, λ = 60.
(d) 1032×435, λ = 160

ing sources (in the sense of a weighted distance) via minimal
paths gives a cyclic sequence of minimal paths that follow
the desired closed contour (see Fig. 8). Note that finding the
two closest neighboring sources of a given source only relies
on the minimal weighted distance between a pair of neigh-
boring sources (pi ,pj ), which is given by the accumulated
energy �U (x̃i , x̃j ) defined above.

3.4.3 Results on 2D Data

In Fig. 8, we show the segmentation results on microscopy
images, found on the ANSP Algae Image Database from the
Phycology Section, Patrick Center for Environmental Re-
search, The Academy of Natural Sciences. For these images,
we used a 1.6 Ghz PC with 512 MB of RAM to obtain this
segmentation in under a second.

3.5 Influence of the Parameter λ on the Results
of the MPWKD

The influence of the parameter λ on the final results of the
MPWKD is twofold (see Fig. 9). On the one hand, tuning

λ is a direct way to control the density of keypoints. Since

λ corresponds to the spacing between two successive key-

points along the curve of interest, the final number of key-

points is inversely proportional to the value given to λ. On

the other hand, tuning λ is an indirect way to control the

width of the band in which the front propagation is limited,

i.e. an indirect way to control the area of the domain �F.

The way the MPWKD is built ensures that λ is an upper

bound of the Euclidean path length map L whenever a new

keypoint is detected. Nevertheless, if λ is too large, short

cuts may occur, and if λ is smaller than the width of the

structure one wants to extract, many keypoints will be de-

tected on it. Thus, the smaller the value given to λ is, the

smaller the number of grid points visited during the front

propagation is and the faster the algorithm is. In a sense,

the MPWKD may be regarded as a way to limit the front

propagation to a small neighborhood around the manifold

of interest.
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Fig. 9 Influence of the
parameter λ on the results of the
MPWKD applied to the 2D
potential of the Fig. 2(b) with
S = {p1}. The value given to λ

influences the number of
detected keypoints and the area
of the domain �F

Fig. 10 Distribution of a set of
points on a sphere, by applying
the MPWKD to a 3D synthetic
potential with S = {p1}. (a) Cut
view of � showing the initial
point p1 and values of the
potential P . (b) Cut view
showing values of the minimal
action map U inside �F. (c) Set
of points S ∪ S ∗

4 Distribution of a Set of Point on a Surface or on a 3D
Elongated Structure

4.1 Distribution of a Set of Points on a Closed Surface

Now, we consider the case where the domain � is a 3D
domain, and we assume that we are given a few initial
points S = {p1, . . . ,pn} distributed on a closed surface
along which a potential P̃ : � → R

∗+ takes lower values.
The MPWKD, as it has been introduced in Sect. 3.1, may

be straightforwardly extended from a 2D to a 3D framework,
in order to distribute a set of points on a closed surface. The
overall algorithm (see Table 2) is similar in 2D and 3D, with
the difference that 4-connectivity and 8-connectivity on a
2D grid, becomes 6-connectivity and 26-connectivity on a
3D grid.

Therefore, fronts are propagated from each point of
S with velocity (1/P̃ ) and, during the front propagation,
keypoints are sequentially detected on the closed surface
along which P̃ takes low values. Keypoint detection and
front propagation are led until a front collision splits a
26-connected component of ∂�F into several 26-connected
components. When the algorithm ends, we finally get a set of
points S ∪ S ∗ distributed on the closed surface (see Fig. 10),
but also the maps U , V and L associated to the set of sources
S ∪ S ∗. These maps are defined on a domain �F, such that
�F is a connected subset of � delimited by two connected
surfaces (an inner boundary and an outer boundary). We will
see in Sect. 4.3 how to use these points.

4.2 Distribution of a Set of Keypoints on a 3D Elongated
Structure

Ideas presented on Sect. 3.2 can be extended to 3D straight-
forwardly. Then, one can use this algorithm to detect 3D
elongated structure by using the proposed criteria. The first
criterion needs more interaction, so the user must provide a
source point a destination point and path length parameter λ.
For the second criterion, the user provides at least one source
point, the parameter λ and a total path length to reach, which
corresponds to the maximum length of arteries for example
(see Fig. 11). We conclude that using this method, with min-
imal interaction, one can have a first good segmentation on
elongated structures like arteries.

4.3 Geodesic Meshing of a Closed Surface from a 3D
Image

Once we obtain a set of keypoints that describe the desired
surface, using minimal paths that link pairs of points as in
Sect. 3.4 does not lead to a surface but to a mesh of surface.
Consider a potential P̃ , derived from the image I which
takes lower values along a closed surface, and a single sur-
face point p1. Applying the MPWKD with S = {p1} gener-
ates a cloud of points S ∪ S ∗ distributed on the whole surface
of interest. Moreover, the MPWKD enables the computation
of the maps U and V associated to the set S ∪ S ∗ and defined
in a domain �F that surrounds the underlying surface.

Then, it is quite straightforward to devise an algorithm
for meshing the surface of interest, interpreting the cloud of
points S ∪ S ∗ as a set of mesh vertices and the Voronoi par-
tition of �F as a way to derive the mesh connectivity. As in
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Fig. 11 (Color online)
Distribution of a set of points on
a tubular structure. (a) Original
image used as potential.
(b) Values of the minimal action
map U on the visited domain.
(c) The front of the visited
domain, with detected keypoints
(yellow) and the source point
(red)

Fig. 12 Geodesic meshing of a
sphere from a 3D synthetic
potential and a single surface
point p1. (a) Cut view of �

showing the initial point p1 and
values of the potential P .
(b) Cut view showing values of
the Voronoi index map V
inside �F. (c) Set of points
S ∪ S ∗ and geodesic mesh

Fig. 13 Geodesic meshing of a
torus from a 3D synthetic
potential and a single surface
point p1. (a) Cut view of �

showing the initial point p1 and
values of the potential P .
(b) Cut view showing values of
the minimal action map U
inside �F. (c) Cut view showing
values of the Voronoi index map
V inside �F. (d) Set of points
S ∪ S ∗ and geodesic mesh

the 2D case, two points of the set S ∪ S ∗ may be considered
as neighboring sources if their respective Voronoi regions
are adjacent, and two neighboring sources may be linked
with a minimal path by performing two gradient descents on
U from the path midpoint. Linking each pair of neighboring
sources with a minimal path finally gives a geodesic mesh
that describes the underlying surface (see Figs. 12 and 13).

As seen in Sect. 3.4, it is straightforward to extract a
closed contour from a 2D image. One may only get a mesh
of minimal paths on a closed surface. Future work includes
a new step based on a recent implicit method by Ardon et al.
[1], to obtain a complete closed surface.

5 Conclusion

In this paper we have proposed a new method to segment 2D
object boundaries or to segment partially 3D object bound-
aries. Our method needs minimal interaction: a single source
point and one or two real parameters are required, depend-
ing on the object topology. From a set of provided source
points, which might be reduced to a single source point,
a front is propagated and new keypoints are iteratively de-
tected on the boundary. The detection of these keypoints is
based on the Euclidean length of minimal path to the set of
source points with respect to a given metric depending on
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the image. A tricky algorithm has been introduced allowing
local correction of the maps. Thus, computation time is con-
siderably reduced. We proposed different stopping criteria.
The first one is based on the total Euclidean path length from
the sources. This criterion might be applied for 2D open ob-
ject boundaries or 3D elongated structures and requires a to-
tal path length parameter to reach provided by the user. The
second criterion is very simple. An endpoint is required, and
the front propagation stops when this endpoint is reached.
Finally, a specific stopping criterion for 2D or 3D closed ob-
ject boundaries is proposed. This criterion is based on the
front topology. The keypoints detection and front propaga-
tion is stopped when the visited domain surrounds the object
of interest. Then, a few parameters as a source point and one
or two real values can be enough to generate a coherent ob-
ject boundary segmentation.
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