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Abstract

In this paper, we present a new method for segmenting
closed contours and surfaces. Our work builds on a vari-
ant of the Fast Marching algorithm. First, an initial point
on the desired contour is chosen by the user. Next, new
keypoints are detected automatically using a front propa-
gation approach. We assume that the desired object has
a closed boundary. This a-priori knowledge on the topol-
ogy is used to devise a relevant criterion for stopping the
keypoint detection and front propagation. The final domain
visited by the front will yield a band surrounding the ob-
ject of interest. Linking pairs of neighboring keypoints with
minimal paths allows us to extract a closed contour from
a 2D image. Detection of a variety of objects on real im-
ages is demonstrated. Using a similar same idea, we can
extract networks of minimal paths from a 3D image called
Geodesic Meshing. The proposed method is applied to 3D
data with promising results.

1. Introduction

Energy minimization techniques have been applied to a
broad variety of problems in image processing and com-
puter vision. Since the original work on snakes [9], they
have notably been used for boundary detection. An active
contour model, or snake, is a curve that deforms its shape
in order to minimize an energy combining an internal part
which smooths the curve and an external part which guides
the curve toward particular image features. For instance,
the geodesic active contour model [3, 17] relies on the min-
imization of a geometric energy functional that deforms an
initial curve toward local geodesics in a Riemannian metric
derived from the image. Whereas the geodesic active con-
tour model presents significant improvements compared to
the original snake model, the energy minimization process
is still prone to local minima. Consequently, results strongly
depend on the model initialization.

To overcome this issue, Cohen and Kimmel [6] intro-
duced an approach to globally minimize the geodesic active
contour energy, provided that two endpoints of the curve
are initially supplied by the user. This energy is of the formR
γ P̃ where the incremental cost P̃ is chosen to take lower
values on the contour of the image, and γ is a path joining
the two points. The solution of this minimization problem
is obtained through the computation of the minimal action
map associated to a source point. The minimal action map
can be regarded as the arrival times of a front propagating
from the source point with velocity (1/P̃), and it satisfies
the Eikonal equation. Therefore, we can compute simul-
taneously, and efficiently, the minimal action map and its
Euclidean path length with the Fast Marching Method as
will be detailed in section 2.2.

In section 3, we introduce a novel front propagation ap-
proach, based on the Fast Marching Method, to distribute
a set of points on a codimension-1 closed manifold that is
not known a priori, all starting from a single point (or more
if desired) initialized on the desired object boundary. Each
newly detected keypoint is immediately defined as a new
source of propagation, and keypoints are detected with a cri-
terion based on the Euclidean length of the minimal paths.
Since the front propagates faster on the object boundary, the
first point for which the length λ is reached, is located in this
area (of small values of P̃) and is a valuable choice as a key-
point. By using the a-priori knowledge on the topology of
the manifold, we devise a relevant criterion for stopping the
keypoint detection and front propagation. The criterion is
general for any dimension. In section 4, we explain how to
extract a codimension-1 closed manifold within the image
using the previous results. The main idea is to link pairs of
neighboring keypoints with minimal paths via gradient de-
scent on the minimal action map. Segmentation results on a
set of 2D and 3D images are presented. Finally conclusions
and perspectives follow in section 5.
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2. Background on minimal paths
2.1. Definitions
Given a 2D image I : Ω → R+ and two points p1 and

p2, the underlying idea introduced by Cohen and Kimmel
[6] is to build a potential P : Ω → R∗+ which takes lower
values near desired features of the image I. The choice of
the potential P depends on the application. For example,
one can defineP as a decreasing function of k∇Ik to extract
image edges by finding a curve that globally minimizes the
energy functional E : Ap1,p2 → R+

E(γ) =

Z
γ

n
P¡γ(s) +w

¢o
ds =

Z
γ

P̃¡γ(s)¢ds, (1)

where Ap1,p2 is the set of all paths connecting p1 to p2, s
is the arc-length parameter, w > 0 is a regularization term
and P̃ = (P + w). A curve connecting p1 to p2 that glob-
ally minimizes the energy (1) is a minimal path between
p1 and p2, noted Cp1,p2 . The solution of this minimization
problem is obtained through the computation of the mini-
mal action map U1 : Ω → R+ associated to p1. The min-
imal action is the minimal energy integrated along a path
between p1 and any point x of the domain Ω :

∀ x ∈ Ω, U1(x) = min
γ∈Ap1,x

(Z
γ

P̃¡γ(s)¢ds) . (2)

The values of U1 may be regarded as the arrival times of a
front propagating from the source p1 with velocity (1/P̃).
U1 satisfies the Eikonal equation(

k∇U1(x)k = P̃(x) for x ∈ Ω,
U1(p1) = 0.

(3)

The map U1 has only one local minimum, the point p1,
and its flow lines satisfy the Euler-Lagrange equation of
functional (1). Thus, the minimal path Cp1,p2 can be re-
trieved with a simple gradient descent on U1 from p2 to
p1 (see Fig. 1), solving the following ordinary differential
equation with standard numerical methods like Heun’s or
Runge-Kutta’s :⎧⎨⎩

dCp1,p2(s)
ds

= −∇U1
¡Cp1,p2(s)¢,

Cp1,p2(0) = p2.
(4)

Let us extend the definitions given so far to the case of
multiple sources and introduce other definitions which will
be useful hereinafter. These definitions hold in dimension
2 and higher. The minimal action map associated to the
potential P̃ : Ω → R∗+ and the set of n sources S =
{p1, . . . ,pn} is the function U : Ω→ R+ defined by

∀ x ∈ Ω, U(x) = min
1≤j≤n

©Uj(x)ª,
where Uj(x) = min

γ∈Apj,x

½Z
γ

P̃¡γ(s)¢ds¾. (5)
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Figure 1. Extraction of an open contour from an electron mi-
croscopy image. (a) Original image I. (b) PotentialP = (k∇Ik+
ε)−3, where ε is a small positive constant, and user-supplied points
p1 and p2. (c) Minimal action map U1 and minimal path Cp1,p2
between p1 and p2. (d) Image I and minimal path Cp1,p2 .

The map U is a weighted distance map to the set of sources
S, and it satisfies the Eikonal equation(

k∇U(x)k = P̃(x) for x ∈ Ω,
U(pj) = 0 for pj ∈ S.

(6)

The Voronoi region associated to the source pj ∈ S,
noted Rj , is the locus of points of the domain Ω which are
closer (in the sense of a weighted distance) to pj than to
any other source of S. The regionRj is a connected subset
of the domain Ω, and its boundary is noted ∂Rj . The union
of Voronoi regions and its complementary set, the Voronoi
diagram, leads to a tessellation of the domain Ω, called the
Voronoi partition.
The Voronoi index map is the function V : Ω →

{1, . . . , n} that assigns to any point of the domain Ω the
index of its Voronoi region :

∀ x ∈ Rj , V(x) = j. (7)

If two Voronoi regions Ri and Rj are adjacent (i.e. if
∂Ri∩∂Rj is a non-empty set), then the minimal path Cpi,pj
passes through the point of ∂Ri∩∂Rj which has the small-
est U value. This point, notedmi|j , is the midpoint of the
minimal path Cpi,pj since it is equidistant to pi and pj in
the sense of a weighted distance.
The Euclidean path length map is the function L : Ω→

R+ that assigns to any point x of the domain Ω the Eu-
clidean length of the minimal path between x and the source
which is the closest in the sense of a weighted distance :

∀ x ∈ Rj , L(x) =
Z
Cpj,x

ds. (8)

Note that if P̃(x) = 1 for all x ∈ Ω, then the maps U and
L are equal and both correspond to the Euclidean distance
map to the set of sources S.
Introduced first as a boundary detection method, min-

imal path techniques have been successfully applied to
sundry problems (see [5] for a review), such as path plan-
ning [10], contour completion [4], tubular surface extrac-
tion [7], motion tracking [2], or remeshing of triangulated
manifolds [11].
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Table 1 : Fast Marching Method for solving equation (6).

• Notation.
NM(x) is the set of M neighbors of a grid point x, where M = 4
in 2D and M = 6 in 3D.

• Initialization.
For each grid point x, do

Set U(x) := +∞, V(x) := 0 and L(x) := +∞.
Tag x as Far.

For each source pj ∈ S, do
Set U(pj) := 0, V(pj) := j and L(pj) := 0.
Tag pj as Trial.

• Marching loop.
While the set of Trial points is non-empty, do

Find xmin, the Trial point with the smallest U value.
Tag xmin as Alive.
For each grid point xn ∈ NM(xmin) which is not Alive, do

{u, v, c} :=UpdateSchemeFMM ¡xn,NM(xn)
¢
.

Set U(xn) := u, V(xn) := v and L(xn) := c.
If xn is Far, tag xn as Trial.

2.2. Fast Marching Method

The Fast Marching Method (FMM) is a numerical
method introduced by Sethian in [13, 14, 15] and Tsitsik-
lis in [16] for efficiently solving the isotropic Eikonal equa-
tion on a cartesian grid. In equation (6), the values of U
may be regarded as the arrival times of wavefronts propa-
gating from each point of S with velocity (1/P̃). The cen-
tral idea behind the FMM is to visit grid points in an order
consistent with the way wavefronts propagate, i.e. with the
Huygens principle. It leads to a single-pass algorithm for
solving equation (6) and computing the maps U , V and L in
a common computational framework (see Table 1).

Ordered sweeping of grid points.
The FMM is a front propagation approach that computes

the values of U in increasing order, and the structure of
the algorithm is almost identical to Dijkstra’s algorithm for
computing shortest paths on graphs [8]. In the course of the
algorithm, each grid point is tagged as either Alive (point
for which U has been computed and frozen), Trial (point for
which U has been estimated but not frozen) or Far (point for
which U is unknown). The set of Trial points forms an in-
terface between the set of grid points for which U has been
frozen (the Alive points) and the set of other grid points (the
Far points). This interface may be regarded as a set of fronts
expanding from each source until every grid point has been
reached.
Let us denote by NM(x) the set of M neighbors of a grid

point x, where M = 4 if Ω is a 2D domain and M = 6 if
Ω is a 3D domain. Initially, all grid points are tagged as
Far, except the points of S that are tagged as Trial. At each
iteration of the FMM one chooses the Trial point with the
smallest U value, denoted by xmin in Table 1. Then, xmin is
tagged as Alive and the values of U , V and L are updated
for each point of the set NM(xmin) which is either Trial or

(i,j)

(i-1,j)

(i+1,j)

(i,j-1) (i,j+1)
(i,j,k)

(i-1,j,k)

(i+1,j,k)

(i,j-1,k)

(i,j+1,k)

(i,j,k+1)

(i,j,k-1)

Figure 2. Connecting a grid point xn and the points of NM(xn)
with virtual edges forms four triangles on a 2D grid and eight tetra-
hedrons on a 3D grid.

Far. In order to satisfy a causality condition, the way U ,
V and L are updated in the vicinity of xmin requires special
care. The iteration ends by tagging every Far point of the
set NM(xmin) as Trial. The algorithm automatically stops
when all grid points are Alive.
The key to the speed of the FMM is the use of a pri-

ority queue to quickly find the Trial point with the small-
est U value. If Trial points are ordered in a min-heap
data structure, the computational complexity of the FMM
isO(N log2N), whereN is the total number of grid points.

Update scheme for the Fast Marching Method.
Here, we present a way to estimate U , V and L for a

grid point xn, i.e. a way to compute the outputs of routine
UpdateSchemeFMM in Table 1. We limit ourselves to the
2D case, though extending the scheme to higher dimensions
is straightforward. Adopting standard notation, we denote
by Ui,j the value of U at the grid vertex (i, j) associated to
the point xn with coordinates (i hx, j hy), where hx and hy
are grid spacings in the x and y directions.
A discretized version of (6) is solved in order to com-

pute Ui,j . For the Eikonal equation, classic finite differ-
ence schemes tend to overshoot and are unstable. Rouy and
Tourin [12] showed that the correct viscosity solution for
Ui,j is given by the following first order accurate scheme :µ

max{(Ui,j−Ui−1,j),(Ui,j−Ui+1,j),0}
hx

¶2
+

µ
max{(Ui,j−Ui,j−1),(Ui,j−Ui,j+1),0}

hy

¶2
= (P̃i,j)2 .(9)

This is an upwind scheme : the forward and backward dif-
ferences are chosen to follow the direction of the flow of
information. Since the action can only grow due to the
quadratic nature of equation (9), information is propagat-
ingupwards (from smaller to larger values of U).
Connecting with virtual edges xn and the points of

NM(xn), i.e. xn and the four nearby grid points, forms four
triangles (see Fig. 2). For each triangle, we attempt to solve
two quadratic equations to get estimates of Ui,j , Vi,j and
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Li,j . These estimates are respectively denoted by u, v and
c. The Euclidean length c is computed in the same manner
as u by solving the equation kLk = 1 in the same triangle.
For each of four triangles, we get a triplet {u, v, c}. Finally,
we choose the one with the smallest u (this is the triplet re-
turned by the routine UpdateSchemeFMM). Note that if
one needs to approximate∇U , computing the derivatives of
U in the triangle used to estimate Ui,j gives a consistent ap-
proximation of ∇U(xn). On a 3D grid, the neighborhood
of a grid point is divided into eight tetrahedra (see Fig. 2),
but the 3D update scheme is very similar to the 2D one.

3. Distribution of a set of points on a closed
manifold

3.1. 2D case : distribution of a set of points on a
closed curve

First, we consider the case where the domain Ω is a
2D domain. We assume that we are given an initial set
S = {p1, . . . ,pn} of points on a closed curve along which
a potential P̃ : Ω→ R∗+ takes lower values. Note that the
set S may contain only one point.
We propose here a variant of the FMM, called the Fast

Marching Method With keypoint Detection (FMMWKD,
see Table 2), to propagate fronts from each point of S with
velocity (1/P̃) and sequentially detect, during the front
propagation, a set of keypoints S∗ = {p∗n+1, . . . ,p∗n+m}
on the closed curve along which P̃ takes low values. Each
newly detected keypoint is immediately defined as a new
source of propagation, and keypoints are detected with a
criterion based on the Euclidean length of minimal paths.
This criterion depends on only one parameter, denoted λ.
Front propagation and keypoint detection ceases as soon as
the domain visited by the fronts contains the whole curve of
interest.
The final domain visited by the fronts, denoted ΩF, cor-

respond to a band surrounding the curve of interest. Fur-
thermore, the FMMWKD also enables the computation of
the minimal action map U : ΩF → R+, the Voronoi index
map V : ΩF → {1, . . . , n + m} and the Euclidean path
length map L : ΩF → R+ associated to the potential P̃ and
the set of sources S ∪ S∗.

Keypoint detection and local correction of maps U , V
and L.
Initially, fronts are propagated from each point of S with

velocity (1/P̃), until a grid point x such that L(x) ≥ λ
is tagged as Alive. This point is then defined as the first
keypoint, denoted p∗n+1 (see Fig. 3).
Such a criterion has already been used in [7] to find a

minimal path given only one endpoint. Assuming that the
point p∗n+1 belongs to the Voronoi regionRj when it is de-
tected, this criterion ensures that the minimal path Cpj ,p∗n+1

minimizes the integral of P̃ (along itself) over all open
curves with Euclidean lengths greater than or equal to λ and
with endpoints in S. Therefore, p∗n+1 is likely to belong to
the curve along which the values of P̃ are low.
Once the first keypoint has been detected, it is defined as

a new source of propagation. It is unnecessary to restart the
overall algorithm since values of U , V and L which have
already been estimated would not differ in the vicinity of
initial sources (i.e. in the vicinity of points of S). In order
to limit the computational cost, one just needs to reinitialize
U , V and L in the following manner :
U(p∗n+1) := 0, V(p∗n+1) := n+ 1, L(p∗n+1) := 0,

tag p∗n+1 as Trial and continue front propagation. However,
without any additional modification of the original FMM,
final values of U , V andLwould be incorrect for grid points
which are tagged as Alive when p∗n+1 is detected and closer
(in the sense of a weighted distance) to p∗n+1 than to the
initial sources. These errors would be solely due to the fact
that, in the original FMM, values of U , V and L are frozen
for Alive points. An easy way to avoid this problem is just
to let an Alive point be tagged as Trial again if it is closer to
the new source of propagation than to initial sources. This
algorithmic trick enables the local correction of U , V and L
in the neighborhood of p∗n+1.
Next, front propagation is continued until a grid point x

such that L(x) ≥ λ is tagged as Alive. This point is defined
as the second keypoint, denoted p∗n+2, and is added to the
set of sources. Afterward, front propagation is continued,
and so on. Thus, during the front propagation, keypoints
are sequentially detected on the curve along which P̃ takes
low values (see Fig. 3).

Stopping criterion for keypoint detection and front
propagation.
In order to prevent the algorithm from distributing key-

points over the whole domain Ω, one needs to stop the key-
point detection as soon as the domain visited by the fronts
contains the curve of interest. Note that even if this curve is
unknown, we assume that it is closed. This topological as-
sumption is used to devise a relevant criterion for stopping
keypoint detection and front propagation.
One possible strategy is to take into account the Voronoi

partition, and to stop keypoint detection as soon as each
Voronoi region is adjacent to at least two other Voronoi re-
gions (i.e. as soon as there exists a cycle of Voronoi re-
gions). This strategy, although correct, is limited to the 2D
case. To get a scheme which may be extended to higher di-
mensions, another strategy is employed in the FMMWKD.
Let us denote by ΩF the domain visited by the propagating
fronts, defined as the set of grid points which are not Far
(i.e. the set of grid points which are either Alive or Trial).
In the FMMWKD, keypoint detection is stopped as soon as

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 4, 2008 at 05:24 from IEEE Xplore.  Restrictions apply.



p1

p2*

p3*

p4*

p5*

p6*

p7*

p1

p2*

p3*

p4*

p5*

p6*

p7*

p1

p2*

p3*

p1

p2*

p7* p7* p7*

p3* p3* p3*

p2* p2* p2*

Figure 3. Intermediate and final results for the FMMWKD applied
to the 2D potential of the Figure 3.b, with S = {p1} and λ = 200.
The first, second and third rows show intermediate results obtained
when are detected, respectively, p∗2 (the first keypoint), p∗3 (the
second keypoint) and p∗7 (the last keypoint). The last row shows
final results.

ΩF becomes a simply connected subset of Ω delimited by
exactly two simply connected boundaries.
The set ΩF may be divided into two subsets : the set

of interior points, denoted int(ΩF), and the set of boundary
points, denoted ∂ΩF. In the original FMM, int(ΩF) and ∂ΩF
respectively correspond to the set of Alive points and the set
of Trial points. This is no longer true in the FMMWKD be-
cause of the local correction of U , V and L in the neighbor-
hood of a keypoint. That is why a second labelling is intro-
duced in the FMMWKD : each grid point which is not Far,
in addition to being tagged as Alive or Trial, is also tagged
as Interior or Boundary depending on whether it belongs to
int(ΩF) or ∂ΩF. Noting that the iteration of the marching
loop at which int(ΩF) becomes a simply connected subset
ofΩ is also the iteration at which the number of simply con-
nected components of ∂ΩF increases for the first time, we
just need to monitor the topological changes of ∂ΩF.
In the algorithm detailed in Table 2, the stopping crite-

rion for keypoint detection is satisfied as soon as the routine
IsBoundarySplit returns TRUE. This routine is called
after the grid point xmin is moved from the set of Trial points
to the set of Alive points, once some of the M = 4 neigh-

Table 2 : Fast Marching Method With keypoint Detection.

• Notation.
NM(x) is the set of M neighbors of a grid point x, where M = 4
in 2D and M = 6 in 3D.NM+(x) is the set of M+ neighbors of a
grid point x, where M+ = 8 in 2D and M+ = 26 in 3D.

• Initialization.
For each grid point x, do
Set U(x) := +∞, V(x) := 0 and L(x) := +∞.
Tag x as Far.

For each source pj ∈ S, do
Set U(pj) := 0, V(pj) := j and L(pj) := 0.
Tag pj as Trial and as Boundary.

m := 1, StopDetection:=FALSE.
• Marching loop.

While the set of Trial points is non-empty, do
Find xmin, the Trial point with the smallest U value.
If
¡
StopDetection=FALSE

¢
and

¡L(xmin) ≥ λ
¢
, do

Here, xmin is defined as the keypoint p∗n+m.
Set U(xmin) := 0, V(xmin) := n+m , L(xmin) := 0.
m := m+ 1.

Else, do
Tag xmin as Alive.
For each grid point xn ∈ NM(xmin), do
If xn is not Alive, do

{u, v, c} :=UpdateSchemeFMM ¡xn,NM(xn)
¢
.

Set U(xn) := u, V(xn) := v and L(xn) := c.
If
¡
StopDetection=FALSE

¢
and

¡
xn is Far

¢
, do

Tag xn as Trial and as Boundary.
Else if V(xn) 6= V(xmin), do

{u, v, c} :=UpdateSchemeFMM ¡xn,NM(xn)
¢
.

If u < U(xn), do
Set U(xn) := u, V(xn) := v and L(xn) := c.
Tag xn as Trial.

If xmin is Boundary, do
Tag xmin as Interior.
If StopDetection=FALSE, do

StopDetection:=
IsBoundarySplit

¡
xmin,NM+(xmin)

¢
.

(a)

nteriorIn

oundaryBo

Legend :

(b)

Figure 4. Local test applied in the vicinity of a grid point xmin
(the point marked with an arrow) to detect a front collision. (a)
xmin is a simple point of int(ΩF) and #C

¡
∂ΩF ∩ NM+(xmin)

¢
=

1. (b) Two fronts have collided in the neighborhood of xmin and
#C

¡
∂ΩF ∩NM+(xmin)

¢
= 2.

bors of xmin have been tagged as Boundary. The routine
IsBoundarySplit returns TRUE if both of the follow-
ing tests are satisfied :

• Local test for detecting a front collision.
First, we check if some fronts collide in the vicin-
ity of xmin. Let us denote by NM+(xmin) the set of
M+ = 8 neighbors of xmin, and by ∂ΩF ∩NM+(xmin)
the set of points of NM+(xmin) which are tagged as
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Boundary. The local test simply relies on the com-
putation of the number of 8-connected components of
∂ΩF ∩ NM+(xmin), denoted #C

¡
∂ΩF ∩ NM+(xmin)

¢
.

Most of the time, xmin is a simple point of int(ΩF),
and #C

¡
∂ΩF ∩ NM+(xmin)

¢
= 1 (see Fig. 4.a). The

local test is satisfied if #C
¡
∂ΩF ∩ NM+(xmin)

¢
> 1,

i.e. when there is a shock between some propagating
fronts (see Fig. 4.b).

• Global test for detecting a topological change of
∂ΩF.
When the local test is satisfied, we need to check if the
different components of ∂ΩF∩NM+(xmin) are also dis-
connected at a global scale. The global test is satisfied
if the front collision has split an 8-connected compo-
nent of ∂ΩF into several 8-connected components.
Such a test is easy to implement. For instance, consider
the case where #C

¡
∂ΩF ∩ NM+(xmin)

¢
= 2. Let x1

and x2 be two grid points such that x1 belongs to the
first component of ∂ΩF∩NM+(xmin) and x2 to the sec-
ond. We just have to visit all grid points which belong
to the same 8-connected component of ∂ΩF as x1, and
assign to each visited point a temporary label. Then,
the global test is satisfied if x2 has not been labeled.

Since the scheme used to detect the iteration at which the
keypoint detection has to be stopped mainly requires tests at
a local scale, it is considerably less computationally expen-
sive than globally counting the number of connected com-
ponents of int(ΩF) and ∂ΩF at each iteration of the march-
ing loop. Moreover, note that special care is required to deal
with the fact that a propagating front may reach the border
of the domain Ω. We suggest adding virtual points along
each border of the discrete grid and tagging as Boundary
every virtual point in the neighborhood of an Interior point
lying on the border of the grid. This ensures that any con-
nected component of int(ΩF) is completely delimited by a
connected set of Boundary points.
Once the keypoing stopping criterion is satisfied, no

more grid points are moved from the set of Far points to the
set ΩF, and computations are continued until correct values
of U , V and L have been assigned to each point of ΩF. The
front propagation is thus limited to a band surrounding the
curve of interest.

3.2. 3D case : distribution of a set of points on a
closed surface

Now, we consider the case where the domain Ω is a 3D
domain, and we assume that we are given a few initial S =
{p1, . . . ,pn} points distributed on a closed surface along
which a potential P̃ : Ω→ R∗+ takes lower values.
The FMMWKD, as it has been introduced in section 3.1,

may be straightforwardly extended from a 2D to a 3D

(a) (b) (c)

p1

p1

Figure 5. Distribution of a set of points on a sphere, by applying
the FMMWKD to a 3D synthetic potential with S = {p1}. (a)
Cut view of Ω showing the initial point p1 and values of the po-
tential P . (b) Cut view showing values of the minimal action map
U inside ΩF. (c) Set of points S ∪ S∗.

framework, in order to distribute a set of points on a closed
surface. The overall algorithm (see Table 2) is similar in
2D and 3D, with the difference that 4-connectivity and 8-
connectivity on a 2D grid, becomes 6-connectivity and 26-
connectivity on a 3D grid.
Therefore, fronts are propagated from each point of

S with velocity (1/P̃) and, during the front propagation,
keypoints are sequentially detected on the closed surface
along which P̃ takes low values. Keypoint detection and
front propagation are led until a front collision splits a
26-connected component of ∂ΩF into several 26-connected
components. When the algorithm ends, we finally get a
set of points S ∪ S∗ distributed on the closed surface (see
Fig. 5), but also the maps U , V and L associated to the set
of sources S ∪S∗. These maps are defined on a domain ΩF,
such that ΩF is a simply connected subset of Ω delimited by
two simply connected surfaces (an inner boundary and an
outer boundary).

4. Geodesic meshing of a closed manifold

4.1. Extraction of a closed contour from a 2D image

The FMMWKD may be used to extract a closed con-
tour from a 2D image I given a single contour point p1
in an easy and fast manner. Once a potential P̃ has been
derived from the image I such that P̃ takes low values
along the contour of interest, applying the FMMWKD with
S = {p1} gives a set of points S ∪ S∗, but also the maps U
and V associated toS∪S∗ and defined on a domainΩF ⊂ Ω.
Linking pairs of points in the set S ∪ S∗ by minimal paths
finally enables the extraction of the desired contour.
Here, we explain first how to exploit the maps U and V

to link two neighboring sources of S ∪ S∗ with a minimal
path. Then, we describe how to correctly choose the pairs
of points of the set S ∪ S∗ that should be linked, in order
to build a cyclic sequence of minimal paths that follows the
contour of interest.
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Linking a pair of neighboring sources with a minimal
path.
Consider a source pi ∈ S ∪ S∗. The Voronoi region

Ri associated to pi may be deduced from the map V :
Ri = {x ∈ ΩF; V(x) = i}. If there exists a Voronoi region
Rj and a couple of grid points (xi,xj) ∈ Ri × Rj such
that (xi,xj) are 8-connected neighbors, then the Voronoi
regions Ri and Rj are adjacent and the sources pi and pj
are neighboring. In this case, the midpoint of the mini-
mal path Cpi,pj may be approximated by a couple of grid
points (mi|j ,mi|j) ∈ Ri × Rj . Among all pairs of grid
points (xi,xj) ∈ Ri × Rj which are 8-connected neigh-
bors, (mi|j ,mi|j) is the one that minimizes the accumu-
lated energy ΣU defined by

ΣU(xi,xj) = U(xi)+U(xj)+h(xi,xj)

2

³
P̃(xi)+P̃(xj)

´
,

where h(xi,xj) denotes the spacing between the grid points
xi and xj . Note that ΣU(mi|j ,mi|j) is the energy inte-
grated along Cpi,pj , i.e. the minimal weighted distance be-
tween the sources pi and pj . Once the grid points mi|j
andmi|j have been found, the minimal paths Cmi|j ,pi and
Cmi|j ,pj may be retrieved by performing two gradient de-
scents on U , respectively frommi|j to pi and frommi|j to
pj . Since the two paths Cmi|j ,pi and Cmi|j ,pj are the two
halves of Cpi,pj , connecting them to each other finally gives
the minimal path Cpi,pj that links the neighboring sources
pi and pj .

Building a cyclic sequence of minimal paths to extract a
closed contour.
Assuming that the set S ∪ S∗ contains at least three

points, linking each source of S ∪ S∗ to the two closest
neighboring sources (in the sense of a weighted distance)
via minimal paths gives a cyclic sequence of minimal paths
that follow the desired closed contour (see Fig. 6). Note
that finding the two closest neighboring sources of a given
source only relies on the minimal weighted distance be-
tween a pair of neighboring sources (pi,pj), which is given
by the accumulated energy ΣU(mi|j ,mi|j) defined above.

Results on 2D data.
In figure 6, we show the segmentation results on

microscopy images, found on the ANSP Algae Image
Database from the Phycology Section, Patrick Center for
Environmental Research, The Academy of Natural Sciences
at http://diatom.acnatsci.org/AlgaeImage/ For these images,
we used a 1.6Ghz PC with 512 MB of RAM to obtain this
segmentation in under a second.

(b)
(a)

(c) (d)

Figure 6. Extraction of a closed contour from a 2D microscopy
image. Potential P, set of sources S ∪ S∗, Minimal action map
and cyclic sequence of minimal paths. (a) Image size 101×521,
λ = 180. (b) 385×532, λ = 80. (c) 153×380, λ = 60. (d)
1032×435, λ = 160.

4.2. Geodesic meshing of a closed surface from a 3D
image

The FMMWKD may also be used to mesh a closed sur-
face from a 3D image I and a single surface point. Consider
a potential P̃, derived from the image I which takes lower
values along a closed surface, and a single surface point p1.
Applying the FMMWKDwith S = {p1} generates a cloud
of points S ∪ S∗ distributed on the whole surface of inter-
est. Moreover, the FMMWKD enables the computation of
the maps U and V associated to the set S ∪ S∗ and defined
in a domain ΩF that surrounds the underlying surface.
Then, it is quite straight forward to devise an algorithm

for meshing the surface of interest, interpreting the cloud of
points S ∪S∗ as a set of mesh vertices and the Voronoi par-
tition of ΩF as a way to derive the mesh connectivity. As in
the 2D case, two points of the set S∪S∗ may be considered
as neighboring sources if their respective Voronoi regions
are adjacent, and two neighboring sources may be linked
with a minimal path by performing two gradient descents
on U from the path midpoint. Linking each pair of neigh-
boring sources with a minimal path finally gives a geodesic
mesh that describes the underlying surface (see Fig. 7 and
Fig. 8).
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(a) (b) (c)

p1

p1

Figure 7. Geodesic meshing of a sphere from a 3D synthetic po-
tential and a single surface point p1. (a) Cut view of Ω showing
the initial point p1 and values of the potential P. (b) Cut view
showing values of the Voronoi index map V inside ΩF. (c) Set of
points S ∪ S∗ and geodesic mesh.

(a) (b)

(c) (d)

p1

p1

Figure 8. Geodesic meshing of a torus from a 3D synthetic poten-
tial and a single surface point p1. (a) Cut view of Ω showing the
initial point p1 and values of the potential P . (b) Cut view show-
ing values of the minimal action map U inside ΩF. (c) Cut view
showing values of the Voronoi index map V inside ΩF. (d) Set of
points S ∪ S∗ and geodesic mesh.

5. Conclusion and Perspectives

We have presented a new fast front propagation approach
for closed contour segmentation. Our method is interactive.
At least one keypoint and the Euclidean length parameter λ
have to be given by the user. The way the FMMWKD is
built ensures that λ is an upper bound of the Euclidean path
length map L whenever a new keypoint is detected. Thus,
the smaller the value given to λ is, the smaller the number
of grid points visited during the front propagation is. In a
sense, the FMMWKD may be regarded as a way to limit
the front propagation to a small neighborhood around the
manifold of interest. Better still, FMMWKD speeds up the
segmentation process.
As seen in Section 4.1, it is straightforward to extract

a closed contour from a 2D image. One may only get a
mesh of minimal paths on a closed surface. Future work
includes a new step based on a recent implicit method by
Ardon et. al. et al. [1], to obtain a complete closed sur-
face.
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