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Résumé
In this paper we present a new interactive method for tubu-
lar structure extraction. The main application and motiva-
tion for this work is vessel tracking in 2D and 3D images.
The basic tools are minimal paths solved using the fast
marching algorithm. This allows interactive tools for the
physician by clicking on a small number of points in or-
der to obtain a minimal path between two points or a set of
paths in the case of a tree structure. Our method is based
on a variant of the minimal path method that models the
vessel as a centerline and surface. This is done by adding
one dimension for the local radius around the centerline.
The crucial step of our method is the definition of the local
metrics to minimize. We have chosen to exploit the tubu-
lar structure of the vessels one wants to extract to built an
anisotropic metric giving higher speed on the center of the
vessels and also when the minimal path tangent is coherent
with the vessel’s direction. This measure is required to be
robust against the disturbance introduced by noise or ad-
jacent structures with intensity similar to the target vessel.
We obtain promising results on noisy synthetic and real 2D
and 3D images.

1 Introduction
In this paper we deal with the problem of finding a com-
plete segmentation of tubular structures like vessels. The
main objective is to extract at the same time the center-
line of the tubular structure and its boundary. During the
last two decades, the extraction of vascular objects such as
the blood vessel, coronary arteries, or other tube-like struc-
tures has attracted the attention of more and more resear-
chers. Various methods such as vascular image enhance-
ment methods [?, 8, 5], or others were proposed, see [7]
for a complete survey. Some of these methods extract the
vessel boundary directly, and then use thinning methods to
find its centerline. Other methods extract only the center-
line and then estimate the vessel width to extract its boun-
dary. Deschamps and Cohen [3] proposed to use the mini-
mal path method to find the centerline. The minimal path
technique introduced by Cohen and Kimmel [2] captures
the global minimum curve between two points given by
the user. This leads to the global minimum of an active
contour energy. Since then, the minimal path method has

been improved by many researchers, and adapted to aniso-
tropic media as done by Jbabdi et al for tractography [6].
Unfortunately, despite their numerous advantages, classi-
cal minimal path techniques exhibit some disadvantages.
First, vessel boundary extraction can be very difficult, even
in 2D where the vessel’s boundary can be completely des-
cribed by two curves. Second, the path given by the mini-
mal path technique does not always yield to the centerline
of the vessel. A readjustment step is required to obtain a
central trajectory. Third, the minimal path technique pro-
vides only a trajectory and does not give information about
the vessel boundary and local width.
Li and Yezzi [10] proposed a new variant of the classi-
cal, purely spatial, minimal path technique by incorpora-
ting an extra non-spatial dimension into the search space.
Each point of the 4D path (after adding the extra dimen-
sion for the 3D image) consists of three spatial coordinates
plus a fourth coordinate which describes the vessel thick-
ness at that corresponding 3D point. Thus, each 4D point
represents a sphere in 3D space, and the vessel is obtained
by taking the envelope of these spheres as we move along
the 4D curve. A crucial step of this method is to build an
adequate potential that drives the propagation. Li and Yezzi
[10] proposed different isotropic potentials. As they said in
the conclusion of their paper, the proposed potentials are
very parameter dependent and they hoped to find more ap-
propriate choice of potential. In particular, one can see in
their paper, that the potential used does not yield to a cor-
rect detection of the radius when it is not constant (see fi-
gure 6 in [10]). An other drawback of Li and Yezzi method
is that they did not take into account the vessel orienta-
tion. Our first contribution is to take into account the ves-
sel orientation by defining a suited anisotropic metric that
makes the propagation faster along the centerlines and for
the adequate radius. Law et al. [9] proposed a new scalar
descriptor called Optimally Oriented Flux (OOF) for the
detection of curvilinear structures. But they did not exploit
the orientation given by their descriptor. The major advan-
tage of the OOF technique is that it does not consider the
regions in the vicinity of target objects, where background
noise or adjacent structures with intensity similar to the tar-
get vessels are possibly present. Therefore, the disturbance
introduced by the closely located nearby structures is avoi-
ded. The second contribution of this paper is to build an
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anisotropic metric based on the OOF descriptor, its scalar
function as well as its orientation. That makes the propa-
gation faster along the vesselÕs center line and for exact
associated scale. This means that the path location, orien-
tation and scale (radius) have to be coherent with the local
geometry of the image extracted by the OOF.
In section 2, we give some background on minimal paths
method and Anisotro-pic Fast Marching. In section 3 the
Optimally Oriented Flux descriptor is presented as well as
the metric construction. In section 4, results on synthetic
and real data are shown. Finally, conclusions and perspec-
tives follow in section 5.

2 Background on Minimal Paths
Method

A minimal path, first introduced in the isotropic (P does
not depend on the orientation of the path) case [2], is a
pathway minimizing the energy functional,

E(γ) =
∫

γ

P
(
γ(s), γ′(s)

)
ds (1)

where, P(γ(.), γ′(.)) =
√

γ′(.)TM(γ(.))γ′(.) describes
an infinitesimal distance along a pathway γ relative to a
metric tensor M (symmetric definite positive). Thus, we
are considering only the case of an elliptic medium. In the
isotropic case M(.) = P2(.)I , where I is the identity ma-
trix. A curve connecting p1 to p2 that globally minimizes
the above energy (1) is a minimal path between p1 and p2,
noted Cp1,p2 .
The solution of this minimization problem is obtained
through the computation of the minimal action map U :
Ω → R+ associated to p1 on the domain Ω which can be a
2D, 3D or 4D domain. The minimal action is the minimal
energy integrated along a path between p1 and any point x
of the domain Ω :

∀ x ∈ Ω, U(x) = min
γ∈Ap1,x

{∫
γ

P
(
γ(s), γ′(s)

)
ds

}
, (2)

where Ap1,x is the set of paths linking x to p1. The values
of U may be regarded as the arrival times of a front propa-
gating from the source p1 with oriented velocity related to
the metric tensor M−1. U satisfies the Eikonal equation

‖∇U(x)‖M−1(x) = 1 for x ∈ Ω, and U(p1) = 0, (3)

where ‖v‖M =
√

vT Mv. The map U has only one lo-
cal minimum, the point p1, and its flow lines satisfy the
Euler-Lagrange equation of functional (1). Thus, the mi-
nimal path Cp1,p2 can be retrieved with a simple gradient
descent on U from p2 to p1 (see Fig. 1), solving the follo-
wing ordinary differential equation with standard numeri-
cal methods like Heun’s or Runge-Kutta’s :

dCp1,p2

ds
(s) ∝ −M−1(Cp1,p2(s))∇U1

(
Cp1,p2(s)

)
,

Cp1,p2(0) = p2.
(4)

Proof of (3) and (4) can be found in [14, 6].
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FIG. 1 – Minimal path examples on an isotropic case on the
left image. On the middle, visualization by small ellipses
of eigenvalues of a metric constant on each half side of the
image. On the right, the minimal action map associated to
the source point p1 with the minimal path Cp1,p2 .

On figure 1, we show some examples of the minimal path
method on an isotropic case and an anisotropic one. On the
first image of figure 1 the metric is isotropic and the po-
tential P in the grey region is twice as low as the white
one. Isolevel sets of the minimal action map associated to
the source point p1 are displayed and so the minimal path
Cp1,p2 . The second image represents a metric M. We took
two constant metrics in each half side of the image with
different orientations. On the last image, the minimal ac-
tion map U associated to the metric M and to the source
point p1 is shown. The minimal path Cp1,p2 is found by
solving equation (4).
The Fast Marching Method (FMM) is a numerical method
introduced by Sethian in [13] and Tsitsiklis in [15] for ef-
ficiently solving the isotropic Eikonal equation on a carte-
sian grid. The central idea behind the FMM is to visit grid
points in an order consistent with the way wavefronts of
constant action propagate. It leads to a single-pass algo-
rithm for solving equation (3) and computing the minimal
action map U . Tsitsiklis’s method relies on minimizing di-
rectly the energy functional of equation (1) while Sethian’s
method uses the Eikonal equation. Both methods are sui-
table for isotropic metric, but they fail for anisotropic me-
tric [1]. To deal with anisotropy, Sethian and Vladimirsky
[14] proposed an update scheme that converges to the vis-
cosity solution of the anisotropic Eikonal equation. A sim-
plified scheme, based on the original Tsitsiklis’s method
[15], was proposed by Lin in [11] to approximate the so-
lution of the anisotropic Eikonal equation. Contrary to Se-
thian and Vladimirsky’s ordered upwind method (OUM)
[14], Lin’s algorithm does not converge to the viscosity so-
lution of the Eikonal equation. In this paper we used Lin’s
scheme to solve the anisotropic Eikonal equation, since it
is much faster (than OUM) and the introduced errors do not
affect much the extracted geodesics.
The FMM is a front propagation approach that computes
the values of U in increasing order, and the structure of
the algorithm is almost identical to Dijkstra’s algorithm
for computing shortest paths on graphs [4]. In the course
of the algorithm, each grid point is tagged as either Alive
(point for which U has been computed and frozen), Trial
(point for which U has been estimated but not frozen) or
Far (point for which U is unknown). The set of Trial points
forms an interface between the set of grid points for which



U has been frozen (the Alive points) and the set of other
grid points (the Far points). This interface may be regar-
ded as a front expanding from the source until every grid
point has been reached. Let us denote by NM(x) the set of
M neighbors of a grid point x, where M = 2 × d if the
dimension of Ω is equal to d. Initially, all grid points are
tagged as Far, except the source point p1 that is tagged as
Trial. At each iteration of the FMM one chooses the Trial
point with the smallest U value, denoted by xmin. Then,
xmin is tagged as Alive and the value of U is updated for
each point of the set NM(xmin) which is either Trial or Far.
In order to satisfy a causality condition, the way U is up-
dated in the vicinity of xmin requires special care. The ite-
ration ends by tagging every Far point of the set NM(xmin)
as Trial. The algorithm automatically stops when all grid
points are Alive. The key to the speed of the FMM is the
use of a priority queue to quickly find the Trial point with
the smallest U value. If Trial points are ordered in a min-
heap data structure, the computational complexity of the
FMM is O(N logN), where N is the total number of grid
points.
A crucial step of the Fast Marching algorithm is the com-
putation of the weighted distance between the front and the
neighbouring voxels in the Trial set. Here, we present a
way to estimate this weighted distance in the anisotropic
case and only in 3D. It is straightforward to extend it to
4D. Since the distance is anisotropic, we cannot use the
standard methods, because they rely on the fact that the
geodesics are perpendicular to the level sets of U . To take
into account the anisotropy Jbabdi et al [6] and Lin [11]
considered a set of simplexes that cover the whole neigh-
bourhood around a voxel of the narrow band. The defini-
tion of a simplex neighbouring a point x is simply a set of
three points (x1,x2,x3) that are among the 26 neighbours
of x, defining a triangle1 that we denote x1x2x3. There are
48 such triangles around x for the 26 connexity. To make
the update procedure faster, we propose to consider only
the simplexes2 defined by a t-uple of three points of the 6-
neighbors of x. There are 8 such triangles (see Fig. 2), and
by making this modification, the precision of the algorithm
is lower but the algorithm is six times faster. To estimate
U(xm), where xm is a neighbor of the last trial point xmin,
we make two approximations. If the geodesic passing by
xm comes from a triangle x1x2x3 then the time of arrival
is given by :

U(xm) = min
x∈x1x2x3

{
U(x) +

∫ xm

x

P (γ, γ′)
}

(5)

The term one wants to minimize is approximated by :

f(α) =
3∑

i=1

αiU(xi) +
∥∥∥x− 3∑

i=1

αixi

∥∥∥
M(x)

, (6)

1Such that x1 is a 6-connectivity neighbor, x2 is a 18-connectivty
neighbor on the same face as x1, and x3 is a 26-connectivity neighbor on
the same edge as x2.

2This time, all xi are 6-connectivity neighbors, but on a same face of
the cube surrounding x, see figure 2.
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FIG. 2 – On the left Position of the optimal point on a sim-
plex such as to minimize the geodesic distance to x. On the
right the considered simplexes.

where α = (α1, α2, α3), with
∑3

i=1 αi = 1 since the
point x is in the triangle (see figure 2). This equation fol-
lows Tsitsiklis’s approximation [15]. The first term ap-
proximates the value of the minimal action map at the point
x =

∑3
i=1 αixi by a simple linear interpolation. And the

second term approximates the remaining distance by consi-
dering the metric constant along the segment [x,xm] equal
to its value at point xm. The function f is convex and the
constraints on α, i.e

∑3
i=1 αi = 1 and αi ≥ 0, define

a convex subset. Thus the minimization of f can be done
using classical optimization tools. See [6] for more details.
For each of the eight triangles, we get a value u. Finally,
we choose the triangle giving the smallest value of u. Note
that in order to approximate ∇U , computing the deriva-
tives of U in the triangle using the estimate U(xm) gives a
consistent approximation of ∇U(xm) by the following :

∇U(xm) = (U(xm)− U(x?))
xm − x?

‖xm − x?‖
,

where x? is the minimizer of function f , see figure 2 left,
and ‖.‖ is the Euclidean norm. The computation of the gra-
dient is very useful since it is used to solve the gradient
descent described by equation (4).

3 Optimally Oriented Flux : an Ani-
sotropy Descriptor

We are interested in the construction of a metric that ex-
tracts from the image the geometric information leading to
reconstruction of vessels. This means that we wish to find
an estimate for the local orientation and scale and a crite-
rion on the local geometry to distinguish the presence of
vessels from the background.
At the position x on an image I , the amount of the image
gradient projected along the axis v flowing out from a 3D
sphere (or a 2D circle) Sr is measured as in [9],

f(x,v; r) =
∫

∂Sr

(
(∇(G ∗ I(x + h)) · v)v

)
· h
|h|

da,

(7)
where G is a Gaussian function with a scale factor of
1 pixel, r is the sphere (or circle) radius, h is the posi-
tion vector along ∂Sr and da is the infinitesimal area (or



length) on ∂Sr. To detect vessels having higher intensity
than the background region, one would be interested in fin-
ding the vessel direction which minimizes f(x,v; r), i.e.
we are looking for : arg min

v
f(x,v; r). Using the diver-

gence theorem, it can be shown that f(x,v; r) can be cal-
culated using a simple convolution,

f(x,v; r) = vT {(∂i,jG) ∗ I ∗ 1Sr} v, (8)

where (∂i,jG) is the Hessian matrix of function G and 1Sr

is the indicator function inside the sphere (or circle) Sr. By
differentiating the above equation with respect to v, mini-
mization of function f is in turn acquired as solving a ge-
neralized eigenvalue decomposition problem. Solving the
aforementioned generalized eigen decomposition problem
gives d eigenvalues (where d = 2 or 3 is the dimension
of the image), λ1(·) ≤ · · · ≤ λd(·) and d eigenvectors
vi(·), i.e. λi(x; r) = f(x,vi(x; r); r) for i = 1, . . . , d. To
handle the vessels having various radii, a multi-scale ap-
proach should be used along with the OOF method. In [9],
Law and Chung have proposed to normalize the OOF’s ei-
genvalues by the sphere surface area when the OOF method
is incorporated in a multi-scale approach for 3D image vo-
lumes. In the 2D case the eigenvalues are normalized by
the circle perimeter 2πr. In the 3D case the eigenvalues are
normalized by the sphere area 4πr2.

In the 2D case (see figure 3), for a point on the centerline
and if r is equal to radius of the vessel, the first eigenvector
v1 represents the direction orthogonal to the vessel. v2 re-
prensents the direction along the vessel. In the 3D case, if
the point is on the centerline, the two eigenvectors associa-
ted to the first eigenvalues (λ1, λ2) represent the directions
orthogonal the vessel. v3 represents the direction along the
vessel, see figure 4. On the same figure, one can see that
if the point x is on the centerline, the minimal response
of the function f is obtained when the radius r is equal to
the exact radius of the tube. If the point is inside the tube
but not on the centerline, v3 is parallel to the tube orien-
tation, and the other eigenvectors depends on the scale r.
If the point is outside the tube (last line), then the vector
v3, corresponding to the red area, is oriented toward the
centerline.

Li and Yezzi [10] proposed a new variant of the classi-
cal, purely spatial, minimal path technique by incorpora-
ting an extra non-spatial dimension into the search space.
The crucial step of this method is to build an adequate me-
tric that drives the propagation. Li and Yezzi [10] propo-
sed different isotropic potentials. The main drawback, as
they mention, is that these potentials are very parameter de-
pendent and they do not exploit the vessel orientation. Our
main contribution is to improve Li and Yezzi method by
adding to it an anisotropic formulation, and the anisotropic
metric is constructed by extension of the OOF descriptor
presented by Law et al. [9].

The (d + 1)D minimal path is found by minimizing the

following energy :∫
γ

{√
γ′(s)TM(γ(s))γ′(s)

}
ds,

where M is the (d + 1)D anisotropic metric we want to
construct. It is not natural to consider orientations on the
(d + 1) dimension, i.e the radii dimension.. Thus one can
decompose by block the metricM as follows :M(x, r) =(
M̃(x, r) 0

0 Pradii(x, r)

)
where M̃(x, r) is a d × d sym-

metric definite positive matrix giving the spatial anisotropy
and Pradii(x, r) is the radii potential (also strictly positive).
Since the result given by the anisotropic minimal path me-
thod is very dependent on the metric, results inherit ad-
vantages and drawbacks of the constructed metric, thus we
should be very carful with its construction. First, let us fix
conditions on the desired metric. The spatial metric M̃ has
to be well oriented along the vessel centerline. And the ra-
dii potential Pradii has to be small for the adequate scale
for any point of the image. Pradii corresponds to the inverse
speed for the radii dimension. Since M̃ is symmetric de-
finite positive, we can decompose it as follows : M̃(.) =∑d

i=1 mi(.)ui(.)ui(.)T , where 0 < m1 ≤ · · · ≤ md are
the eigenvalues and ui are the associated eigenvectors. The
velocity of the propagating front along direction ui is equal
to 1/

√
mi. We used the OOF descriptor to construct the

metric as follows :

M̃(.) =
d∑

i=1

exp
(

α

∑
j 6=i λj(.)
d− 1

)
vi(.)vi(.)T , (9)

and

Pradii(.) = β exp

(
α

∑d
i=1 λi(.)

d

)
. (10)

The constant α is controlled by an intuitive parame-
ter, which is the maximal spatial anisotropy ratio :

µ = max
x,r

{
exp(αλ2(x, r))
exp(αλ1(x, r))

}
in the 2D case and µ =

max
x,r

exp
(
αλ2(x,r))+λ3(x,r)

2

)
exp

(
αλ1(x,r))+λ2(x,r)

2

)
 in the 3D case. By

choosing the maximal spatial anisotropy ratio µ, the
constant α is fixed. And by doing so, the anisotropy des-
criptor M becomes contrast invariant because the OOF
is linear on the image. The parameter β controls the radii
speed. In 2D (it is very similar in 3D), if Pradii ≤ exp(αλ1)
then the Fast Marching propagation is faster for the radii
than the spatial dimensions. If Pradii ≥ exp(αλ2) then the
propagation is slower. One can tune parameter β depen-
ding on the tubular structure one wants to extract. If its
radius changes a lot then β should be chosen such that the
propagation on the radii dimension is faster. If not β is cho-
sen such that the propagation is less sensitive on the radii
dimension.
On figure 5 the constructed metric of image 3 at some dif-
ferent scales is shown. Since we chose the same color range



FIG. 3 – The plots of the values of f(x,v; r) obtained from the synthetic image shown in the left, at four different positions
with various radii and projection axes. (a) Four interested positions, denoted as x1, x2, x3 and x4 are shown along with the
original synthetic image. (b) An illustration regarding the polar coordinate system used in (c)-(f). (c)-(f) The plots of the
values of f(·) and the corresponding eigenvectors, computed at the four different positions shown in (a), using various values
of r and different projection axes (cos θ sin θ)T .

for the visualization, we can see that the directions are well
detected, and that the optimal values are obtained along the
centerline of the tube when the scale is equal to the tube ra-
dius. For our experiments, we took µ = 10 and β such that
max

(
exp(αλ1)
Pradii

)
= 5, this means that in the worst case,

the speed along the radii dimension is 5 times faster than
the spatial dimensions. We did so, because we wanted our
algorithm to be sensitive to the radii dimension.

4 Experimental Results
Our method is minimally interactive. First, the user has to
precise if the desired vessels are darker or brighter than the
background. So, we can consider different criteria on the
signs of the eigenvalues. Then the scale range [rmin, rmax],
which corresponds to the range of radii of the vessel one
wants to extract, is given by the user. Finally few points
are required as source points or end points of the Fast Mar-
ching algorithm. We used the metric described in the pre-
vious section to find the minimal anisotropic path (as des-
cribed in section ??) between two or more selected points
(see figures 6 and 7). For any selected point, the associated
radius is equal to the minimal radius rmin given by the user.
On figure 6, segmentation results on synthetic and real
noisy 2D images are shown. On the first synthetic image,
the source point and destination are selected on the cen-
terline. The obtained tube is perfectly detected as well as
the centerline. On the second image, the initial points are
not centered. But the centerline given by our algorithm
goes back fast to the real centerline. This makes our al-
gorithm robust to initialization. The third synthetic image
shows that our approach is robust to scale changing. On the
last line of figure 6, segmentation results are shown on real
noisy images.
In figure 7, segmentation results are shown on real medical
images. First, right coronary arteries (RCA) are segmented.
Second, left anterior descending (LAD) arteries are seg-
mented. One can see that the obtained radii on the principal
coronary branches are larger than those of the secondary.
Thus, our approach is robust to scale changing and bifur-
cations. Nevertheless, our current implementation requires

huge memory allocations due to the 4D and anisotropic as-
pects. To overcome this issue, we added a pre-processing
interactive tool to select a sub-volume containing the desi-
red vessels (see figure 7). Moreover, we are working on a
new implementation of the tubular anisotropy approach to
make the memory allocation dynamic and hence to bene-
fit from the front propagation aspect of the fast marching
algorithm. Besides the reduction of the computation time
(which has been actually achieved), we will save on me-
mory allocation and will have a new version of our algo-
rithm that extract the whole coronary arteries using a regu-
lar PC.

5 Conclusion and Perspective
In this paper we have proposed a new general method for
tubular structure extraction in 2D and 3D images. Our me-
thod exploit the orientation of the vessels by using the opti-
mally oriented flux to construct a multi-resolution anisotro-
pic metric that extracts from the image the local geometry
and describes the vessels orientation and scales. Combi-
ning this metric with anisotropic minimal path technique,
we were able to find a complete description of the tubu-
lar structure, i.e the centerline as well as the boundary. To
summarize, our method is minimally interactive, robust to
initialization, scale variations and bifurcations.
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FIG. 7 – 1st image : LAD segmentation using the tubu-
lar anisotropy approach shown on the whole image. 2nd

image : the same result shown on the selected sub-volume.
3rd image : RCA segmentation shown on the whole image.
4th image : same result shown on the selected sub-volume.
Only few points are required (the extremities of the paths).
The tubular anisotropy method provides the center line as
well as vessels boundaries.



FIG. 4 – Plot of f(x,v; r) superimposed on the original 3D synthetic image for three different points(on each line) and
different values of the radius : r = 3, . . . , 7 from left to right. The radius of the tube on the top half side image is equal to 4,
and equal to 6 on the bottom half side. Similarly to figure 3, the visualization of the normalized flux function is done using a
spherical coordinate system (instead of the polar one used in 2D). The first point is on the centerline of the tube. The second
point is inside the tube but not on the centerline. The third point is outside the tube. The reader should zoom on each image.
Notice that the colormaps are different.

FIG. 5 – The constructed metric for different scales r = 1, 5, 10, 15, 20 from left to right. The original image is shown in
figure 3 (a), the radius of the structure is equal to 10. We used the same color range for all images, so one can see that the
optimal anisotropy is obtained along the centerline of the tubular structure when the scale r is equal to the exact radius of the
tube. On the top, we show a display of M̃(x, r)−1. On the bottom, responses of Pradii are shown.



FIG. 6 – The red cross points are source points given by the user, and the blue ones are end points. On each case the segmented
centerlines are displayed as well as the envelope of the moving discs. In the middle, the associated minimal action map U as
well as the 3D minimal path between the two selected points are shown (transparent visualization).


