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Abstract

In this paper, we present a new approach for segmenta-
tion of tubular structures in 2D images providing minimal
interaction. The main objective is to extract centerlines and
boundaries of the vessels at the same time. The first step is
to represent the trajectory of the vessel not as a 2D curve
but to go up a dimension and represent the entire vessel as
a 3D curve, where each point represents a 2D disc (two co-
ordinates for the center point and one for the radius). The
2D vessel structure is then obtained as the envelope of the
family of discs traversed along this 3D curve. Since this
2D shape is defined simply from a 3D curve, we are able
to fully exploit minimal path techniques to obtain globally
minimizing trajectories between two or more user supplied
points using front propagation. The main contribution of
our approach consists on building a multi-resolution metric
that guides the propagation in this 3D space. We have cho-
sen to exploit the tubular structure of the vessels one wants
to extract to built an anisotropic metric giving higher speed
on the center of the vessels and also when the minimal path
tangent is coherent with the vessel’s direction. This measure
is required to be robust against the disturbance introduced
by noise or adjacent structures with intensity similar to the
target vessel. Indeed, if we examine the flux of the projected
image gradient along a given direction on a circle of a given
radius (or scale), one can prove that this flux is maximal at
the center of the vessel, in its direction and with its exact ra-
dius. This approach is called optimally oriented flux. Com-
bining anisotropic minimal paths techniques and optimally
oriented flux we obtain promising results on noisy synthetic
and real data.

1. Introduction

In this paper we deal with the problem of finding a com-
plete segmentation of tubular structures like vessels. The
main objective is to extract at the same time the centerline
of the tubular structure and its boundary. During the last two
decades, the extraction of vascular objects such as the blood
vessel, coronary arteries, or other tube-like structures has
attracted the attention of more and more researchers. Vari-
ous methods such as vascular image enhancement methods
[15, 8, 14, 6], or others were proposed, see [5, 13] for a
complete survey. Some of these methods extract the vessel
boundary directly, and then use thinning methods to find its
centerline. Other methods extract only the centerline and
then estimate the vessel width to extract its boundary. De-
schamps and Cohen [3] proposed to use the minimal path
method to find the centerline as well as a rough estimate of
the vessel. The minimal path technique introduced by Co-
hen and Kimmel [2] captures the global minimum curve be-
tween two points given by the user. This leads to the global
minimum of an active contour energy. Since then, the min-
imal path method has been improved by many researchers,
and adapted to anisotropic media as done by Jbabdi et al
for tractography [7]. Unfortunately, despite their numerous
advantages, classical minimal path techniques exhibit some
disadvantages. First, precise vessel boundary extraction can
be very difficult, even in 2D where the vessel’s boundary
can be completely described by two curves. Second, the
path given by the minimal path technique does not always
yield to the centerline of the vessel. A readjustment step is
required to obtain a central trajectory. Third, the minimal
path technique provides only a trajectory and does not give
information about the vessel boundary and local width.
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Li and Yezzi [10] proposed a new variant of the classi-
cal, purely spatial, minimal path technique by incorporat-
ing an extra non-spatial dimension into the search space.
Each point of the 3D path (after adding the extra dimension
for the 2D image) consists of two spatial coordinates plus a
third coordinate which describes the vessel thickness at that
corresponding 2D point. Thus, each 3D point represents a
disc in 2D space, and the vessel is obtained by taking the
envelope of these spheres as we move along the 3D curve.
A crucial step of this method is to build an adequate poten-
tial that drives the propagation. Li and Yezzi [10] proposed
different isotropic potentials. As they said in the conclusion
of their paper, the proposed potentials are very parameter
dependent and they hoped to find more appropriate choice
of potential. In particular, one can see in their paper, that the
potential used does not yield to a correct detection of the ra-
dius when it is not constant (see figure 6 in [10]). An other
drawback of Li and Yezzi method is that they did not take
into account the vessel orientation. Our first contribution
is to take into account the vessel orientation by considering
an anisotropic metric. This metric has to make the propa-
gation faster along the centerlines and for the adequate ra-
dius. Law and Chung [9] proposed a new scalar descriptor
called Optimally Oriented Flux (OOF) for the detection of
curvilinear structures. But they did not exploit the orienta-
tion given by their descriptor. The major advantage of the
OOF technique is that it does not consider the regions in the
vicinity of target objects, where background noise or ad-
jacent structures with intensity similar to the target vessels
are possibly present. Therefore, the disturbance introduced
by the closely located nearby structures is avoided. The sec-
ond contribution of this paper is to build an anisotropic met-
ric based on the OOF descriptor, its scalar function as well
as its orientation. That makes the propagation faster along
the vessels center line and for exact associated scale. This
means that the path location, orientation and scale (radius)
have to be coherent with the local geometry of the image
extracted by the OOF.

In section 2, we give some background on the minimal
path method and Anisotropic Fast Marching. In section 3
the Optimally Oriented Flux descriptor is presented and the
metric construction is detailed in section 4. In section 5,
results on synthetic and real data are shown. Finally, con-
clusions and perspectives follow in section 6.

2. Background on Minimal Paths Method

A minimal path, first introduced in the isotropic (P does
not depend on the orientation of the path) case [2], is a path-
way minimizing the energy functional,

E(γ) =
∫

γ

P
(
γ(s), γ′(s)

)
ds (1)

where, P(γ(.), γ′(.)) =
√

γ′(.)TM(γ(.))γ′(.) describes
an infinitesimal distance along a pathway γ relative to a
metric tensor M (symmetric definite positive). Thus, we
are considering only the case of an elliptic medium which
is a particular case of the Finsler metric introduced in ac-
tive contour framework by Melonakos et al. in [12]. In the
isotropic case M(.) = P2(.)I , where I is the identity ma-
trix. A curve connecting p1 to p2 that globally minimizes
the above energy (1) is a minimal path between p1 and p2,
noted Cp1,p2 .

The solution of this minimization problem is obtained
through the computation of the minimal action map U :
Ω → R+ associated to p1 on the domain Ω which is a 3D
domain in our case since the considered minimal path (after
adding the scale dimension) is a 3D path. The minimal ac-
tion is the minimal energy integrated along a path between
p1 and any point x of the domain Ω :

∀ x ∈ Ω, U(x) = min
γ∈Ap1,x

{∫
γ

P
(
γ(s), γ′(s)

)
ds

}
, (2)

where Ap1,x is the set of paths linking x to p1. The values
of U may be regarded as the arrival times of a front propa-
gating from the source p1 with oriented velocity related to
the metric tensor M−1. U satisfies the Eikonal equation

‖∇U(x)‖M−1(x) = 1 for x ∈ Ω, and U(p1) = 0, (3)

where ‖v‖M =
√

vT Mv. The map U has only one local
minimum, the point p1, and the filed lines of M−1∇U sat-
isfy the Euler-Lagrange equation of functional (1). Thus,
the minimal path Cp1,p2 can be retrieved with a simple gra-
dient descent on U from p2 to p1 (see Fig. 1), solving the
following ordinary differential equation with standard nu-
merical methods like Heun’s or Runge-Kutta’s :

dCp1,p2

ds
(s) ∝ −M−1(Cp1,p2(s))∇U1

(
Cp1,p2(s)

)
,

Cp1,p2(0) = p2.
(4)

Proof of (3) and (4) can be found in [17, 7]. On figure
1, we show some examples of the minimal path method
on an isotropic case and an anisotropic one. On the first
image of figure 1 the metric is isotropic and the potential
P in the grey region is half of the one on the white re-
gion. Isolevel sets of the minimal action map associated
to the source point p1 are displayed and so the minimal
path Cp1,p2 . The second image represents a metric M.

We took M =
(

1 0.3
0.3 1

)
on the left side image and

M =
(

1 −0.6
−0.6 1

)
on the right side. On the last image,

the minimal action map U associated to the metric M and
to the source point p1 is shown. The minimal path Cp1,p2 is
found by solving equation (4).
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Figure 1. Minimal path examples on an isotropic case on the first
image. On the second image, visualization by small ellipses of
eigenvalues of a metric constant on each half side of the image.
On the last one, the minimal action map associated to the source
point p1 with the minimal path Cp1,p2 .

The Fast Marching Method (FMM) is a numerical
method introduced by Sethian in [16] and Tsitsiklis in [18]
for efficiently solving the isotropic Eikonal equation on a
cartesian grid. The central idea behind the FMM is to visit
grid points in an order consistent with the way wavefronts
of constant action propagate. It leads to a single-pass algo-
rithm for solving equation (3) and computing the minimal
action map U . Tsitsiklis’s method relies on minimizing di-
rectly the energy functional of equation (1) while Sethian’s
method uses the Eikonal equation. Both methods are suit-
able for isotropic metric, but they fail for anisotropic metric
[1]. To deal with anisotropy, Sethian and Vladimirsky [17]
proposed an update scheme that converges to the viscos-
ity solution of the anisotropic Eikonal equation. A simpli-
fied scheme, based on the original Tsitsiklis’s method [18],
was proposed by Lin in [11] to approximate the solution of
the anisotropic Eikonal equation. Contrary to Sethian and
Vladimirsky’s ordered upwind method (OUM) [17], Lin’s
algorithm does not converge to the viscosity solution of
the Eikonal equation. In this paper we used Lin’s scheme
to solve the anisotropic Eikonal equation, since it is much
faster than OUM and the introduced errors do not affect
much the extracted geodesics.

The FMM is a front propagation approach that computes
the values of U in increasing order, and the structure of
the algorithm is almost identical to Dijkstra’s algorithm for
computing shortest paths on graphs [4]. In the course of the

algorithm, each grid point is tagged as either Alive (point for
which U has been computed and frozen), Trial (point for
which U has been estimated but not frozen) or Far (point
for which U is unknown). The set of Trial points forms
an interface between the set of grid points for which U has
been frozen (the Alive points) and the set of other grid points
(the Far points). This interface may be regarded as a front
expanding from the source until every grid point has been
reached. Let us denote by NM(x) the set of M neighbors of
a grid point x, where M = 2 × 3 since the dimension of
Ω is equal to 3. Initially, all grid points are tagged as Far,
except the source point p1 that is tagged as Trial with es-
timate value 0. At each iteration of the FMM one chooses
the Trial point with the smallest U value, denoted by xmin.
Then, xmin is tagged as Alive and the value of U is updated
for each point of the set NM(xmin) which is either Trial or
Far. In order to satisfy a causality condition, the way U is
updated in the vicinity of xmin requires special care. The it-
eration ends by tagging every Far point of the setNM(xmin)
as Trial. The algorithm (see Table 1) automatically stops
when all grid points are Alive. The key to the speed of the
FMM is the use of a priority queue to quickly find the Trial
point with the smallest U value. If Trial points are ordered
in a min-heap data structure, the computational complexity
of the FMM is O(N logN), where N is the total number of
grid points.

Table 1 : Fast Marching Method for solving equation (3).

• Notation.
NM(x) is the set of M neighbors of a grid point x,
where M = 6 in 3D.

• Initialization.
For each grid point x, do

Set U(x) := +∞.
Tag x as Far.

For the source point p1, do
Set U(p1) := 0.
Tag p1 as Trial.

• Marching loop.
While the set of Trial points is non-empty, do

Find xmin, the Trial point with the smallest U value.
Tag xmin as Alive.
For each point xm ∈ NM(xmin) which is not Alive, do

{u} :=UpdateScheme
`
xm,NM(xm)

´
(see text).

Set U(xm) := u.
If xn is Far, tag xm as Trial.

A crucial step of the Fast Marching algorithm is the com-
putation of the weighted distance between the front and the
neighbouring voxels in the Trial set. Here, we present a
way to estimate this weighted distance in the anisotropic
case and only in 3D. Since the distance is anisotropic, we
cannot use the standard upwind methods, because they rely
on the fact that the geodesics are perpendicular to the level
sets of U . To take into account the anisotropy Jbabdi et al



[7] and Lin [11] considered a set of simplexes that cover
the whole neighborhood around a voxel of the narrow band.
The choice they made reduces errors on the obtained mini-
mal path but does not guarantee the convergence to the vis-
cosity solution of the Eikonal equation. The definition of a
simplex neighboring a point x is simply a set of three points
(x1,x2,x3) that are among the 26 neighbours of x, defin-
ing a triangle1 that we denote x1x2x3. There are 48 such
triangles around x for the 26 connexity. To make the up-
date procedure faster, we propose to consider only the sim-
plexes2 defined by a t-uple of three points of the 6-neighbors
of x. There are 8 such triangles (see Fig. 2), and by making
this modification, the precision of the algorithm is lower but
the algorithm is six times faster. To estimate U(xm), in rou-

x1

xm

x3

x
⋆

x2

Figure 2. On the left Position of the optimal point on a simplex
such as to minimize the geodesic distance to x. On the right the
considered simplexes.

tine UpdateScheme of Table 1, we say that the geodesic
passing by xm comes from a triangle x1x2x3 and then the
time of arrival is given by:

U(xm) = min
x∈x1x2x3

{
U(x) +

∫ xm

x

P (γ, γ′)
}

(5)

The term one wants to minimize is approximated by :

f(α) =
3∑

i=1

αiU(xi) +
∥∥∥x− 3∑

i=1

αixi

∥∥∥
M(x)

, (6)

where α = (α1, α2, α3), with
∑3

i=1 αi = 1 since the
point x is in the triangle (see figure 2). This equation fol-
lows Tsitsiklis’s approximation [18]. The first term approx-
imates the value of the minimal action map at the point
x =

∑3
i=1 αixi by a simple linear interpolation. And the

second term approximates the remaining distance by con-
sidering the metric constant along the segment [x,xm] equal
to its value at point xm. The function f is convex and the
constraints on α, i.e

∑3
i=1 αi = 1 and αi ≥ 0, define a con-

vex subset. Thus the minimization of f can be done using
classical optimization tools. See [7] for more details.

For each of the eight triangles, we get a value u. Finally,
we choose the triangle giving the smallest value of u. This

1Such that x1 is a 6-connectivity neighbor, x2 is a 18-connectivty
neighbor on the same face as x1, and x3 is a 26-connectivity neighbor
on the same edge as x2.

2This time, all xi are 6-connectivity neighbors, but on three adjacent
faces of the cube surrounding x.

is the estimate returned by routine UpdateScheme in the
Fast Marching algorithm described in table 1. Note that in
order to approximate ∇U , computing the derivatives of U
in the triangle using the estimate U(xn) gives a consistent
approximation of ∇U(xn) by the following:

∇U(xm) = (U(xm)− U(x?))
xm − x?

‖xm − x?‖
,

where x? is the minimizer of function f , see figure 2 left,
and ‖.‖ is the Euclidean norm. The computation of the gra-
dient is very useful since it is used to solve the gradient
descent described by equation (4).

3. Optimally Oriented Flux : an Anisotropy
Descriptor

We are interested in the construction of a metric that ex-
tracts from the image the geometric information leading to
reconstruction of vessels. This means that we wish to find
an estimate for the local orientation and scale and a criterion
on the local geometry to distinguish the presence of vessels
from the background.

At the position x on a 2D image I , the amount of the
image gradient projected along the axis v flowing out from
a 2D circle ∂Dr is measured as in [9],

f(x,v; r) =
∫

∂Dr

(
(∇(G ∗ I(x + h)) · v)v

)
· h
|h|

da,

(7)
where G is a Gaussian function with a scale factor of 1
pixel, r is the circle radius, h is the position vector along
∂Dr and da is the infinitesimal length on ∂Dr. To de-
tect vessels having higher intensity than the background re-
gion, one would be interested in finding the vessel direction
which minimizes f(x,v; r), i.e. we are looking for:

arg min
v

f(x,v; r).

Using the divergence theorem, it can be shown that
f(x,v; r) can be calculated using a simple convolution,

f(x,v; r) = vT {(∂i,jG) ∗ I ∗ 1Dr} v, (8)

where (∂i,jG) is the Hessian matrix of function G and 1Dr

is the indicator function of the disc Dr. By differentiating
the above equation with respect to v, minimization of func-
tion f is in turn acquired as solving a generalized eigenvalue
decomposition problem.

Solving the aforementioned generalized eigen decompo-
sition problem gives two eigenvalues, λ1(x; r) and λ2(x; r)
where λ1(·) ≤ λ2(·) and two eigenvectors v1(x; r) and
v2(x; r), i.e. λ1(x; r) = f(x,v1(x; r); r) and λ2(x; r) =
f(x,v2(x; r); r). v1 is perpendicular to the vessel direc-
tion and v2 is parallel to it when the chosen point x is on
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Figure 3. Five examples of computing OOF using different radii
at various positions inside a vessel. Local discs A and B have the
exact radius of the vessel. Local discs C and E have an undersized
radius and Local disc D has an oversized radius.

the centerline and the scale r is equal to the vessel radius.
Along the vessel direction, v2(·), it is obvious that the mag-
nitude of the eigenvalue λ2(·) is small inside the vessel as
image gradient magnitudes are minor along the vessel di-
rection. Meanwhile, along the first eigenvector v1(·), the
magnitudes of λ1(·) varies according to the radius of the lo-
cal disc and also the positions where OOF is evaluated. To
illustrate this idea, five examples are presented in Figure 3.

For Local disc A, OOF is computed at the center of the
vessel with its exact radius. As the evaluation of equa-
tion (7) is grounded on analyzing image gradients along the
boundary of the disc, the OOF detection results are only
induced when the disc boundary touches the object bound-
ary. In equation (7), when r is the vessel radius and the im-
age gradients are projected along v1, the projected image
gradients at the contacting positions between the bound-
ary of Local disc A and the vessel boundaries are aligned
along the orientation of the disc outward normal h

|h| . As
such, the contacting positions between the disc boundary
and the boundaries at the both side of the vessel contribute
to the computation of equation (7). Consequently, a neg-
ative eigenvalue λ1(·) with a large magnitude can be ob-
tained.

It is worth mentioning that the magnitudes of λ1(·) for
Local discs B, C, D and E are smaller than that of Local
disc A. For Local disc B, at the contacting positions be-
tween the disc boundary and the vessel boundary, the image
gradients that point to the center line of the vessels are not
aligned along the disc outward normal. It therefore sup-
presses the resultant magnitude of the dot product between
the projected image gradient and the disc outward normal
in equation (7).

On the other hand, for Local disc C, the disc boundary
and the vessel boundary have only one contacting position
that restraints the magnitude of λ1(·). It is in contrast to
the case of Local disc A where the disc touches the vessel
boundaries on the both sides of the vessel. The Local disc
D also returns a small magnitude eigenvalue λ1(·) with the
reasons similar to those of Local discs B and C. The magni-
tude of λ1(·) for Local disc E is insignificant and random as
there is no overlapping between Local disc E and the vessel
boundaries. Considering the small magnitudes of the first

r1 5 10 15 20 (in pixel)

Figure 4. The OOF’s eigenvalues computed on a 2D tubular struc-
ture. Top row: The synthetic image consists of a 10 pixels radius
tube, where the intensity inside the structure is 255 and 0 for the
background. Additive Gaussian noise with standard deviation 10
is added. The second and the third row: The second and the first
eigenvalues extracted by the OOF method using different values
of r (radii).

eigenvalues in the cases of Local discs B, C, D and E, the
first eigenvalue of OOF can attain the maximum negative
value on Local disc A, where OOF is evaluated at the cen-
ter of the vessel with its exact radius. Figure 4 shows the
OOF’s eigenvalues computed on a synthetic tube. In which,
strong detection responses are acquired along the center line
of the tube when OOF is evaluated with the same radius as
the vessel radius (see the sub-image of r = 10 in the bottom
row of Figure 4). At four different positions of the synthetic
tube (see figure 5a), the computation result of equation (7)
using various values of r and different projection axes v
are shown in figures 5c-f. As λ2(x; r) = f(x,v2; r), these
figures clearly demonstrate second eigenvalue of OOF only
attains its negative maximal at the center of the vessel with
its exact radius.

To handle the vessels having various radii, a multi-scale
approach should be used along with the OOF method.
In [9], Law and Chung have proposed to normalize the
OOF’s eigenvalues by the sphere surface area when the
OOF method is incorporated in a multi-scale approach for
3D image volumes. In the 2D case the eigenvalues are nor-
malized by the circle perimeter 2πr.

It is important to point out that the flux introduced by
Law and Chung in [9] is completely different than the flux-
based approach introduced by Vasilevskiy and Sidiqqi in
[19] which is included in a global energy to minimize along
the shape to find (for tubular structures segmentation), while
our flux is a local feature which allows to define a local
metric in order to minimize a path energy.

4. How to construct the metric?

Li and Yezzi [10] proposed a new variant of the classical,
purely spatial, minimal path technique by incorporating an
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Figure 5. The plots of the values of f(x,v; r) as a function of projection axis v and radius r, obtained from the synthetic image shown in
Figure 4, at four different positions with various radii and projection axes. (a) Four interest positions, denoted as x1, x2, x3 and x4 are
shown along with the original synthetic image presented in Figure 4. (b) An illustration regarding the polar coordinate system used for
direction v in (c)-(f). (c)-(f) The plots of the values of f(·) and the corresponding eigenvectors, computed at the four different positions
shown in (a), using various values of r and different projection axes (cos θ sin θ)T .

extra non-spatial dimension into the search space. The cru-
cial step of this method is to build an adequate metric that
drives the propagation. Li and Yezzi [10] proposed different
isotropic potentials. The main drawback, as they mention,
is that these potentials are very parameter dependent and
they do not exploit the vessel orientation. Our main con-
tribution is to improve Li and Yezzi method by adding to
it an anisotropic formulation, and the anisotropic metric is
constructed by extension of the OOF descriptor presented
by Law et al. [9].

The 3D minimal path is found by minimizing the follow-
ing energy: ∫

γ

{√
γ′(s)TM(γ(s))γ′(s)

}
ds, (9)

where M is the anisotropic metric we want to construct. It
is not natural to consider orientations on the 3rd dimension,
i.e. the radii dimension. Thus one can decompose by block
the metric M as follows:

M(x, r) =
(
M̃(x, r) 0

0 Pradius(x, r)

)
(10)

where M̃(x, r) is a 2×2 symmetric definite positive matrix
giving the spatial anisotropy and Pradius(x, r) is the radius
potential (also strictly positive).

Since the result given by the anisotropic minimal path
method is very dependent on the metric, results inherit ad-
vantages and drawbacks of the constructed metric, thus we
should be very careful with its construction. First, let us
fix conditions on the desired metric. The spatial metric M̃
has to be well oriented along the vessel centerline. And
the radius potential Pradius has to be small for the adequate
scale for any point of the image.

√
Pradius corresponds to

the inverse speed for the radii dimension. Since M̃ is sym-
metric definite positive, we can decompose it as follows:
M̃(.) =

∑2
i=1 mi(.)ui(.)ui(.)T , where 0 < m1 ≤ m2 are

the eigenvalues and ui are the associated eigenvectors. The

velocity of the propagating front along direction ui is equal
to 1/

√
mi, for i = 1, 2.

As presented in section 3, for a point on the center line of
the vessel, and when r is equal to the exact vessel scale, the
eigenvector v2 is parallel to the vessel, see figure 5. Thus
the associated speed should be higher than the speed along
the perpendicular direction v1. But the obtained eigenval-
ues satisfy λ1 ≤ λ2 and they may be negative. Since the
metric M̃ should be positive, we took:

M̃(.) = eαλ2(.)v1(.)v1(.)T + eαλ1(.)v2(.)v2(.)T , (11)

Pradius(.) = β exp
(
α

λ1(.) + λ2(.)
2

)
. (12)

The constant α is controlled by an intuitive parame-
ter, which is the maximal spatial anisotropy ratio: µ =

max
x,r

{exp(αλ2(x, r))
exp(αλ1(x, r))

}
. By choosing the maximal spatial

anisotropy ratio µ, the constant α is fixed. And by doing
so, the anisotropy descriptor M becomes contrast invariant
because the OOF is linear on the image. The parameter β
controls the radius speed. If Pradius ≤ exp(αλ1) then the
Fast Marching propagation is faster for the radii than the
spatial dimensions. If Pradius ≥ exp(αλ2) then the propaga-
tion is slower. One can tune parameter β depending on the
tubular structure one wants to extract. If its radius changes
a lot then β should be chosen such that the propagation on
the radius dimension is faster. If not, β is chosen such that
the propagation is less sensitive on the radius dimension.

On figure 6 the constructed metric of figure 4 at some
different scales is shown. Since we chose the same color
range for the visualization, we can see that the directions
are well detected, and that the optimal values are obtained
along the centerline of the tube when the scale is equal to
the tube radius. For our experiments, we took µ = 10 and
β such that max

(
eαλ1

Pradius

)
= 5, this means that in the worst

case, the speed along the radii dimension is
√

5 times faster
than the spatial dimensions. We did so, because we wanted
our algorithm to be sensitive to the radii dimension.



Figure 6. The constructed metric for different scales r = 1, 5, 10, 15, 20 from left to right. The original image is shown in figure 5 (a), the
radius of the structure is equal to 10. We used the same color range for all images, so one can see that the optimal anisotropy is obtained
along the centerline of the tubular structure when the scale r is equal to the exact radius of the tube. On the top, we show a display of
M̃(x, r)−1 using small ellipses of eigenvalues. On the bottom, responses of Pradius are shown.

Figure 7. The red cross points are source points given by the user, and the blue ones are end points. On each case the segmented centerlines
are displayed as well as the envelope of the moving discs. We show results on synthetic, medical and aerial images. In the middle, the
associated minimal action map U as well as the 3D minimal path between the two selected points are shown (transparent visualization).



5. Experimental Results
Our method is minimally interactive. First, the user

has to precise if the desired vessels are darker or brighter
than the background. So, we can consider different crite-
ria on the signs of the eigenvalues. Then the scale range
[rmin, rmax], which corresponds to the range of radii of the
vessel one wants to extract, is given by the user. Finally
few points are required as source points or end points of the
Fast Marching algorithm. We used the metric described in
the previous section to find the minimal anisotropic path (as
described in section 2) between two or more selected points
(see figure 7). For any selected point, the associated radius
is equal to the minimal radius rmin given by the user.

On figure 7, segmentation results on synthetic and real
noisy 2D images are shown. On the first synthetic image,
the source point and destination are selected on the center-
line. The obtained tube is perfectly detected as well as the
centerline. On the second image, the initial points are not
centered. But the centerline given by our algorithm goes
back fast to the real centerline. This makes our algorithm
robust to initialization. The third synthetic image shows that
our approach is robust to scale changing. On the last line of
figure 7, segmentation results are shown on real noisy im-
ages. Obviously, these early experiments are not sufficient,
and we are working on a quantitative comparison of our ap-
proach with existing ones like Siddiqi’s [19] and others.

6. Conclusion
In this paper we have proposed a new general method for

tubular structure extraction in 2D images. Our method ex-
ploit the orientation of the vessels by using the optimally
oriented flux to construct a multi-resolution anisotropic
metric that extracts from the image the local geometry and
describes the vessels orientation and scales. Combining this
metric with anisotropic minimal path technique, we were
able to find a complete description of the tubular structure,
i.e the centerline as well as the boundary. To summarize,
our method is minimally interactive, robust to initialization,
scale variations and bifurcations. In the future, we will ex-
tend our method to 3D vessels, and we will also work on
the medical validation on coronary arteries.
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