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In this paper, we present a new method for segmenting closed contours. Our work builds on a variant of
the Fast Marching algorithm. First, an initial point on the desired contour is chosen by the user. Next, new
keypoints are detected automatically using a front propagation approach. We assume that the desired object has
a closed boundary. This a-priori knowledge on the topology is used to devise a relevant criterion for stopping
the keypoint detection and front propagation. The final domain visited by the front will yield a band surrounding
the object of interest. Linking pairs of neighboring keypoints with minimal paths allows us to extract a closed
contour from a 2D image. Detection of a variety of objects on real images is demonstrated.

1 Introduction

Energy minimization techniques have been applied
to a broad variety of problems in image process-
ing and computer vision. Since the original work on
snakes (Kass, Witkin, and Terzopoulos 1988), they
have notably been used for boundary detection. An
active contour model, or snake, is a curve that deforms
its shape in order to minimize an energy combining
an internal part which smooths the curve and an ex-
ternal part which guides the curve toward particular
image features. For instance, the geodesic active con-
tour model (Caselles, Kimmel, and Sapiro 1997)relies
on the minimization of a geometric energy functional
that deforms an initial curve toward local geodesics
in a Riemannian metric derived from the image.
Whereas the geodesic active contour model presents
significant improvements compared to the original
snake model, the energy minimization process is still
prone to local minima. Consequently, results strongly
depend on the model initialization.

To avoid local minima, Cohen and Kimmel (Co-
hen and Kimmel 1997) introduced an approach to
globally minimize the geodesic active contour energy,
provided that two endpoints of the curve are initially
supplied by the user. This energy is of the form

∫
γ
P̃

where the incremental cost P̃ is chosen to take lower
values on the contour of the image, and γ is a path
joining the two points. The solution of this minimiza-
tion problem is obtained through the computation of
the minimal action map associated to a source point.
The minimal action map can be regarded as the arrival

times of a front propagating from the source point
with velocity (1/P̃), and it satisfies the Eikonal equa-
tion. We can compute simultaneously, and efficiently,
the minimal action map and its Euclidean path length
with the Fast Marching Method as will be detailed in
section 2.2.

In section 3, we introduce a novel segmentation ap-
proach, based on the Fast Marching Method, to dis-
tribute a set of points on a closed curve that is not
known a priori. We only assume the user provides a
single point (or more if desired) initialized on the de-
sired object boundary. Each newly detected keypoint
is immediately defined as a new source of propaga-
tion, and keypoints are detected with a criterion based
on the Euclidean length of the minimal paths. Since
the front propagates faster on the object boundary, the
first point for which the length λ is reached, is located
in this area (of small values of P̃) and is a valuable
choice as a new keypoint. By using the a-priori knowl-
edge on the topology of the manifold, we devise a rel-
evant criterion for stopping the keypoint detection and
front propagation. The criterion is general for any di-
mension.

In section 4, we explain how to extract a bound-
ary curve using the previous results. The main idea
is to link pairs of neighboring keypoints with mini-
mal paths via gradient descent on the minimal action
map. Segmentation results on a set of 2D images are
presented in section 5. Finally conclusions and per-
spectives follow in section 6.
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2 Background on minimal paths
2.1 Definitions
Given a 2D image I : Ω → R+ and two points p1

and p2, the underlying idea introduced in (Cohen and
Kimmel 1997) is to build a potential P : Ω → R∗+

which takes lower values near desired features of the
image I . The choice of the potential P depends on the
application. For example, one can define P as a de-
creasing function of ‖∇I‖ to extract edges by finding
a curve that globally minimizes the energy functional
E : Ap1,p2 → R+

E(γ) =

∫
γ

{
P

(
γ(s) + w

)}
ds =

∫
γ

P̃
(
γ(s)

)
ds, (1)

whereAp1,p2 is the set of all paths connecting p1 to p2,
s is the arc-length parameter, w > 0 is a regularization
term and P̃ = (P + w). A curve connecting p1 to p2

that globally minimizes the energy (1) is a minimal
path between p1 and p2, noted Cp1,p2 . The solution
of this minimization problem is obtained through the
computation of the minimal action map U1 : Ω→ R+

associated to p1. The minimal action is the minimal
energy integrated along a path between p1 and any
point x of the domain Ω :

∀ x ∈ Ω, U1(x) = min
γ∈Ap1,x

{∫
γ

P̃
(
γ(s)

)
ds

}
. (2)

The values of U1 may be regarded as the arrival times
of a front propagating from the source p1 with veloc-
ity (1/P̃).U1 satisfies the Eikonal equation{

‖∇U1(x)‖ = P̃(x) for x ∈ Ω,

U1(p1) = 0.
(3)

The map U1 has only one local minimum, the point
p1, and its flow lines satisfy the Euler-Lagrange equa-
tion of functional (1). Thus, the minimal path Cp1,p2

can be retrieved with a simple gradient descent on U1

from p2 to p1 (see Fig. 1), solving the following or-
dinary differential equation with standard numerical
methods like Heun’s or Runge-Kutta’s :

dCp1,p2(s)

ds
= −∇U1

(
Cp1,p2(s)

)
,

Cp1,p2(0) = p2.
(4)

Let us extend the definitions given so far to the
case of multiple sources and introduce other defini-
tions which will be useful hereinafter. These defini-
tions hold in dimension 2 and higher. The minimal
action map associated to the potential P̃ : Ω → R∗+

p1

p2

p1

p2

p1

p2

(a) (b) (c) (d)

Figure 1: Extraction of an open contour from an elec-
tron microscopy image. (a) Original image I . (b) Po-
tential P = (‖∇I‖+ ε)−3, where ε is a small positive
constant, and user-supplied points p1 and p2. (c) Min-
imal action map U1 and minimal path Cp1,p2 between
p1 and p2. (d) Image I and minimal path Cp1,p2 .

and the set of n sources S = {p1, . . . ,pn} is the func-
tion U : Ω→ R+ defined by

∀ x ∈ Ω, U(x) = min
1≤j≤n

{
Uj(x)

}
,

where Uj(x) = min
γ∈Apj ,x

{∫
γ

P̃
(
γ(s)

)
ds

}
. (5)

The map U is a weighted distance map to the set of
sources S, and it satisfies the Eikonal equation{

‖∇U(x)‖ = P̃(x) for x ∈ Ω,

U(pj) = 0 for pj ∈ S.
(6)

The Voronoi region associated to the source pj ∈ S,
notedRj , is the locus of points of the domain Ω which
are closer (in the sense of a weighted distance) to pj

than to any other source of S. The region Rj is a
connected subset of the domain Ω, and its boundary
is noted ∂Rj . The union of Voronoi regions and its
complementary set, the Voronoi diagram, leads to a
tessellation of the domain Ω, called the Voronoi parti-
tion. The Voronoi index map is the function V : Ω →
{1, . . . , n} that assigns to any point of the domain Ω
the index of its Voronoi region :

∀ x ∈ Rj, V(x) = j. (7)

If two Voronoi regions Ri and Rj are adjacent (i.e. if
∂Ri ∩ ∂Rj is a non-empty set), then the minimal path
Cpi,pj

passes through the point of ∂Ri ∩ ∂Rj which
has the smallest U value. This point, noted mi|j , is the
midpoint of the minimal path Cpi,pj

since it is equidis-
tant to pi and pj in the sense of a weighted distance.
This is a saddle point of U .

The Euclidean path length map is the function L :
Ω → R+ that assigns to any point x of the domain Ω
the Euclidean length of the minimal path between x
and the source which is the closest in the sense of a
weighted distance :

∀ x ∈ Rj, L(x) =

∫
Cpj ,x

ds. (8)
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Table 1 : Fast Marching Method for solving equation (6).

• Notation.
NM(x) is the set of M neighbors of a grid point x,
where M = 4 in 2D and M = 6 in 3D.

• Initialization.
For each grid point x, do

Set U(x) := +∞, V(x) := 0 and L(x) := +∞.
Tag x as Far.

For each source pj ∈ S, do
Set U(pj) := 0, V(pj) := j and L(pj) := 0.
Tag pj as Trial.

• Marching loop.
While the set of Trial points is non-empty, do

Find xmin, a Trial point with the smallest U value.
Tag xmin as Alive.
For each point xn ∈ NM(xmin) which is not Alive, do

{u, v, `} :=UpdateSchemeFMM
(
xn,NM(xn)

)
.

Set U(xn) := u, V(xn) := v and L(xn) := `.
If xn is Far, tag xn as Trial.

Note that if P̃(x) = 1 for all x ∈ Ω, then the maps U
and L are equal and both correspond to the Euclidean
distance map to the set of sources S.

2.2 Fast Marching Method

The Fast Marching Method (FMM) is a numerical
method introduced in (Sethian 1999b; Sethian 1999a;
Sethian 1996) and (Tsitsiklis 1995) for efficiently
solving the isotropic Eikonal equation on a cartesian
grid. In equation (6), the values of U may be regarded
as the arrival times of wavefronts propagating from
each point of S with velocity (1/P̃). The central idea
behind the FMM is to visit grid points in an order con-
sistent with the way wavefronts propagate, i.e. with
the Huygens principle. It leads to a single-pass al-
gorithm for solving equation (6) and computing the
maps U , V and L in a common computational frame-
work (see Table 1). The FMM is a front propaga-
tion approach that computes the values of U in in-
creasing order, and the structure of the algorithm is
almost identical to Dijkstra’s algorithm for comput-
ing shortest paths on graphs (Dijkstra 1959). In the
course of the algorithm, each grid point is tagged as
either Alive (point for which U has been computed
and frozen), Trial (point for which U has been es-
timated but not frozen) or Far (point for which U
is unknown). The set of Trial points forms an inter-
face between the set of grid points for which U has
been frozen (the Alive points) and the set of other
grid points (the Far points). This interface may be re-
garded as a set of fronts expanding from each source
until every grid point has been reached (see Table 1).
The key to the speed of the FMM is the use of a pri-
ority queue to quickly find the Trial point with the
smallest U value. If Trial points are ordered in a min-
heap data structure, the computational complexity of
the FMM isO(N log2N), where N is the total number
of grid points.

Outputs of the routine UpdateSchemeFMM in Ta-
ble 1 are estimated using a correct first order accurate
scheme, for equation 6, given by Rouy an Tourin in
(Rouy and Tourin 1992). The scheme is an upwind
scheme : the forward and backward differences are
chosen to follow the direction of the flow of infor-
mation. The Euclidian length ` is computed in the
same manner as the minimal action map by solving
the equation ‖∇L‖ = 1 by using the same neighbors
as used to solve 6 (see (Deschamps and Cohen 2002)).

3 Distribution of a set of points on a closed curve
First, we consider the case where the domain Ω is a
2D domain. We assume that we are given an initial set
S = {p1, . . . ,pn} of points on a closed curve along
which a potential P̃ : Ω → R∗+ takes lower values.
Note that the set S may contain only one point.

We propose here a variant of the FMM, called
the Fast Marching Method With keypoint Detection
(FMMWKD, see Table 2), to propagate fronts from
each point of S with velocity (1/P̃) and sequentially
detect, during the front propagation, a set of keypoints
S∗ = {p∗n+1, . . . ,p∗n+m} on the closed curve along
which P̃ takes low values. Each newly detected key-
point is immediately defined as a new source of prop-
agation, and keypoints are detected with a criterion
based on the Euclidean length of minimal paths. This
criterion depends on only one parameter, denoted λ.
Front propagation and keypoint detection ceases as
soon as the domain visited by the fronts contains the
whole curve of interest.

The final domain visited by the fronts, denoted ΩF,
correspond to a band surrounding the curve of in-
terest. Furthermore, the FMMWKD also enables the
computation of the minimal action map U : ΩF →R+,
the Voronoi index map V : ΩF → {1, . . . , n + m} and
the Euclidean path length map L : ΩF → R+ associ-
ated to the potential P̃ and the set of sources S ∪ S∗.

3.1 Keypoint detection and local correction of maps
U , V and L.

Initially, fronts are propagated from each point of S
with velocity (1/P̃), until a grid point x such that
L(x)≥ λ is tagged as Alive. This point is then defined
as the first keypoint, denoted p∗n+1 (see Fig. 2). Such
a criterion has already been used in (Deschamps and
Cohen 2001) to find a minimal path given only one
endpoint and also to adapt front propagation for seg-
mentation of tubular shapes (Deschamps and Cohen
2002). Assuming that the point p∗n+1 belongs to the
Voronoi region Rj when it is detected, this criterion
ensures that the minimal path Cpj ,p∗n+1

minimizes the
integral of P̃ (along itself) over all open curves with
Euclidean lengths greater than or equal to λ and with
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endpoints in S. Therefore, p∗n+1 is likely to belong to
the curve along which the values of P̃ are low.

Once the first keypoint has been detected, it is de-
fined as a new source of propagation. It is unneces-
sary to restart the overall algorithm since values of U ,
V and L which have already been estimated would
not differ in the vicinity of initial sources (i.e. in the
vicinity of points of S). In order to limit the computa-
tional cost, one just needs to update U , V and L in the
following manner :

U(p∗n+1) := 0, V(p∗n+1) := n + 1, L(p∗n+1) := 0,

tag p∗n+1 as Trial and continue front propagation.
However, without any additional modification of the
original FMM, final values of U , V andLwould be in-
correct for grid points which are tagged as Alive when
p∗n+1 is detected and closer (in the sense of a weighted
distance) to p∗n+1 than to the initial sources. These er-
rors would be solely due to the fact that, in the orig-
inal FMM, values of U , V and L are frozen for Alive
points. An easy way to avoid this problem is just to let
an Alive point be tagged as Trial again if it is closer to
the new source of propagation than to initial sources.
This algorithmic trick enables the local correction of
U , V and L in the neighborhood of p∗n+1.

Next, front propagation is continued until a grid
point x such that L(x) ≥ λ is tagged as Alive. This
point is defined as the second keypoint, denoted p∗n+2,
and is added to the set of sources. Afterward, front
propagation is continued, and so on. Thus, during the
front propagation, keypoints are sequentially detected
on the curve along which P̃ takes low values (see
Fig. 2).

3.2 Stopping criterion for keypoint detection and
front propagation.

In order to prevent the algorithm from distributing
keypoints over the whole domain Ω, one needs to stop
the keypoint detection as soon as the domain visited
by the fronts contains the curve of interest. Note that
even if this curve is unknown, we assume that it is
closed. This topological assumption is used to devise
a relevant criterion for stopping keypoint detection
and front propagation.

One possible strategy is to take into account the
Voronoi partition, and to stop keypoint detection as
soon as each Voronoi region is adjacent to at least two
other Voronoi regions (i.e. as soon as there exists a
cycle of Voronoi regions). This strategy, although cor-
rect, is limited to the 2D case. To get a scheme which
may be extended to higher dimensions, another strat-
egy is employed in the FMMWKD. Let us denote by
ΩF the domain visited by the propagating fronts, de-
fined as the set of grid points which are not Far (i.e.
the set of grid points which are either Alive or Trial).
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Figure 2: Intermediate and final results for the
FMMWKD applied to the 2D potential of the Fig-
ure 2.b, with S = {p1} and λ = 200. The first, sec-
ond and third rows show intermediate results ob-
tained when are detected, respectively, p∗2 (the first
keypoint), p∗3 (the second keypoint) and p∗7 (the last
keypoint). The last row shows final results.

In the FMMWKD, keypoint detection is stopped as
soon as ΩF becomes a simply connected subset of
Ω delimited by exactly two simply connected bound-
aries.

The set ΩF may be divided into two subsets : the
set of interior points, denoted int(ΩF), and the set of
boundary points, denoted ∂ΩF. In the original FMM,
int(ΩF) and ∂ΩF respectively correspond to the set of
Alive points and the set of Trial points. This is no
longer true in the FMMWKD because of the local
correction of U , V and L in the neighborhood of a
keypoint. That is why a second labelling is introduced
in the FMMWKD : each grid point which is not Far,
in addition to being tagged as Alive or Trial, is also
tagged as Interior or Boundary depending on whether
it belongs to int(ΩF) or ∂ΩF. Noting that the iteration
of the marching loop at which int(ΩF) becomes a sim-
ply connected subset of Ω is also the iteration at which
the number of simply connected components of ∂ΩF

increases for the first time, we just need to monitor
the topological changes of ∂ΩF.

In the algorithm detailed in Table 2, the stopping
criterion for keypoint detection is satisfied as soon
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Table 2 : FMM With keypoint Detection.

• Notation.
NM(x) is the set of M neighbors of a grid point x,
where M = 4 in 2D and M = 6 in 3D.
NM+(x) is the set of M+ neighbors of a point x,
where M+ = 8 in 2D and M+ = 26 in 3D.

• Initialization.
For each grid point x, do

Set U(x) := +∞, V(x) := 0 and L(x) := +∞.
Tag x as Far.

For each source pj ∈ S, do
Set U(pj) := 0, V(pj) := j and L(pj) := 0.
Tag pj as Trial and as Boundary.

m := 1, StopDetection:=FALSE.
• Marching loop.

While the set of Trial points is non-empty, do
Find xmin, a Trial point with the smallest U value.
If

(
StopDetection=FALSE

)
and

(
L(xmin) ≥ λ

)
, do

Here, xmin is defined as the keypoint p∗n+m.
Set U(xmin) := 0, V(xmin) := n + m , L(xmin) := 0.
m := m + 1.

Else, do
Tag xmin as Alive.
For each grid point xn ∈ NM(xmin), do

If xn is not Alive, do
{u, v, `} :=UpdateSchemeFMM

(
xn,NM(xn)

)
Set U(xn) := u, V(xn) := v & L(xn) := `.
If

(
StopDetection=FALSE

)
&

(
xn is Far

)
, do

Tag xn as Trial and as Boundary.
Else if V(xn) 6= V(xmin), do

{u, v, `} :=UpdateSchemeFMM
(
xn,NM(xn)

)
If u < U(xn), do

Set U(xn) := u, V(xn) := v & L(xn) := `.
Tag xn as Trial.

If xmin is Boundary, do
Tag xmin as Interior.
If StopDetection=FALSE, do

StopDetection:=
IsBoundarySplit

(
xmin,NM+(xmin)

)
.

as the routine IsBoundarySplit returns TRUE. This
routine is called after the grid point xmin is moved
from the set of Trial points to the set of Alive points,
once some of the M = 4 neighbors of xmin have been
tagged as Boundary. The routine IsBoundarySplit
returns TRUE if both of the following tests are satis-
fied :

(a)

Interior

Boundary

Legend :

(b)

Figure 3: Local test applied in the vicinity of a grid
point xmin (the point marked with an arrow) to detect
a front collision. (a) xmin is a simple point of int(ΩF)
and #C

(
∂ΩF ∩NM+(xmin)

)
= 1. (b) Two fronts have

collided in the neighborhood of xmin and #C
(
∂ΩF ∩

NM+(xmin)
)

= 2.

• Local test for detecting a front collision.
First, we check if some fronts collide in the
vicinity of xmin. Let us denote by NM+(xmin) the
set of M+ = 8 neighbors of xmin, and by ∂ΩF ∩
NM+(xmin) the set of points of NM+(xmin) which
are tagged as Boundary. The local test simply
relies on the computation of the number of 8-
connected components of ∂ΩF ∩NM+(xmin), de-
noted #C

(
∂ΩF ∩NM+(xmin)

)
. Most of the time,

xmin is a simple point of int(ΩF), and #C
(
∂ΩF ∩

NM+(xmin)
)

= 1 (see Fig. 3.a). The local test is
satisfied if #C

(
∂ΩF ∩NM+(xmin)

)
> 1, i.e. when

there is a shock between some propagating fronts
(see Fig. 3.b).

• Global test for detecting a topological change of
∂ΩF.
When the local test is satisfied, we need to check
if the different components of ∂ΩF ∩NM+(xmin)
are also disconnected at a global scale. The
global test is satisfied if the front collision has
split an 8-connected component of ∂ΩF into sev-
eral 8-connected components. Such a test is easy
to implement. For instance, consider the case
where #C

(
∂ΩF ∩ NM+(xmin)

)
= 2. Let x1 and

x2 be two grid points such that x1 belongs to the
first component of ∂ΩF ∩ NM+(xmin) and x2 to
the second. We just have to visit all grid points
which belong to the same 8-connected compo-
nent of ∂ΩF as x1, and assign to each visited point
a temporary label. Then, the global test is satis-
fied if x2 has not been labeled.

Since the scheme used to detect the iteration at which
the keypoint detection has to be stopped mainly re-
quires tests at a local scale, it is considerably less
computationally expensive than globally counting the
number of connected components of int(ΩF) and ∂ΩF

at each iteration of the marching loop. Moreover, note
that special care is required to deal with the fact that a
propagating front may reach the border of the domain
Ω. We suggest adding virtual points along each bor-
der of the discrete grid and tagging as Boundary every
virtual point in the neighborhood of an Interior point
lying on the border of the grid. This ensures that any
connected component of int(ΩF) is completely delim-
ited by a connected set of Boundary points.

Once the keypoing stopping criterion is satisfied,
no more grid points are moved from the set of Far
points to the set ΩF, and computations are continued
until correct values of U , V and L have been assigned
to each point of ΩF.

4 Building a cyclic sequence of minimal paths to
extract a closed contour.

The FMMWKD may be used to extract a closed con-
tour from a 2D image I given a single contour point
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(b)
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Figure 4: Extraction of a closed contour from a
2D microscopy image. Potential P , set of sources
S ∪ S∗, Minimal action map and cyclic sequence of
minimal paths. (a) Image size 101×521, λ = 180.
(b) 385×532, λ = 80. (c) 153×380, λ = 60. (d)
1032×435, λ = 160.

p1 in an easy and fast manner. Once a potential P̃ has
been chosen to drive the front propagation, applying
the FMMWKD with S = {p1} gives a set of points
S ∪ S∗, but also the maps U and V . We exploit the
Voronoi diagramm to decide if two sources pi and pj

of S ∪ S∗ are adjacent. Then we look for the associ-
ated saddle point mi|j as described in (Cohen 2001) to
make two gradient descent to pi and pj . Linking pairs
of neighboring points of S ∪S∗ by minimal paths en-
able the extraction of the desired contour.

5 Results and discussion

The way the FMMWKD is built ensures that λ is
an upper bound of the Euclidean path length map
L whenever a new keypoint is detected. Thus, the
smaller the value given to λ is, the smaller the num-
ber of grid points visited during the front propagation
is. In a sense, the FMMWKD may be regarded as a
way to limit the front propagation to a small neigh-
borhood around the manifold of interest. Better still,
FMMWKD speeds up the segmentation process.

In figure 4, we show segmentation results on mi-
croscopy images obtained on a commercial computer
in under a second.

6 Conclusion
We have presented a new fast front propagation ap-
proach for closed contour segmentation. Our method
is interactive. At least one keypoint and the Euclidean
length parameter λ have to be given by the user. Ex-
tending our method to higher dimensions is straight-
forward, but one may only get a mesh of minimal
paths on a closed surface called geodesic meshing.
Future work will include a new step based on an im-
plicit method, to obtain a complete closed surface.
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