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SUMMARY

Support Vector Machines (SVM) are a machine learning technique that have been used for segmentation
and classification of medical images, including segmentation of white matter hyper-intensities (WMH).
Current approaches using SVM for WMH segmentation extract features from the brain and classify these
followed by complex post-processing steps to remove false positives. The method presented in this paper
combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient
and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities
(T1-w, T2-w, PD and FLAIR), differing neighbourhood sizes and the use of multi-scale features were
compared. We found that although using all four modalities gave the best overall classification (average
Dice scores of 0.54± 0.12, 0.72± 0.06 and 0.82± 0.06 respectively for small, moderate and severe lesion
loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice
scores of 0.52± 0.13, 0.71± 0.08 and 0.81± 0.07). Furthermore, there was a negligible difference between
using 5× 5× 5 and 3× 3× 3 features (p = 0.93). Finally, we show that careful consideration of features
and pre-processing techniques not only saves storage space and computation time but also leads to more
efficient classification which outperforms the one based on all features with post-processing. Copyright c©
2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

White matter hyper-intensities (WMH) are regions in the brain white matter (WM) that appear
with bright signal on T2-weighted (T2-w) and fluid attenuated inversion recovery (FLAIR) MRI
modalities. They are a possible risk factor for Alzheimer’s Disease (AD) and vascular dementia, with
progression associated with vascular factors and cognitive decline [1]. To quantify these changes in
large scale population studies, it is desirable to have fully automatic and accurate segmentation
methods to avoid time-consuming, costly and non-reproducible manual segmentations. However,
WMH segmentation using a single modality is challenging because their signal intensity range
overlaps with that of normal tissue: in T1-weighted (T1-w) images, WMH have intensities similar
to grey matter (GM), and in T2-w and proton-density (PD) images, WMH look similar to cerebro-
spinal fluid (CSF). FLAIR images have been shown to be most sensitive to WMH [2], but can also
present hyper-intensity artifacts that can lead to false positives. To improve the WMH segmentation
performance, additional discriminative information is extracted from multiple MR modalities.

The most successful lesion segmentation methods in the literature have been developed for the
detection of multiple sclerosis lesions, with a recent grand challenge comparing the performance

Copyright c© 2012 John Wiley & Sons, Ltd.
Prepared using cnmauth.cls [Version: 2010/03/27 v2.00]



2

of various techniques [3]. Lesion segmentation algorithms can be categorised into unsupervised
clustering or (semi-)supervised voxel-wise classification [4]. Unsupervised methods suffer from the
issue of model selection. Supervised methods such as neural networks [5], k-NN [2], Naive Bayes
classifier [6] and Parzen windows [7, 8] have been proposed. Neural networks can be efficient but
designing an appropriate network architecture and setting the parameters are difficult.

We present an SVM based segmentation scheme whose preliminary results were presented as
a conference paper in [9], and inspired by the work in [1, 10]. Lao et al. applied four steps: pre-
processing (co-registration, skull-stripping, intensity normalisation and inhomogeneity correction),
SVM training with Adaboost, segmentation and elimination of false positives. Our implementation
utilises a similar but more advanced pre-processing pipeline and a simpler training procedure.
As one of the primary causes of errors in other approaches is false positive cortical regions, we
use information from multiple modalities to define a mask of potential WMH. This mask is built
from patient specific tissue segmentation and atlas based population tissue priors. It leads to three
main advantages compared to existing techniques. First, such careful feature selection enables to
have a more accurate model without the use of boosting. Second it limits the areas where the
classification is performed on the training set, which means a faster overall brain classification.
Third, it reduces the false positive regions that are usually found with naive classifiers, so the
advanced post processing required by other techniques [1] are not necessary. We also evaluated
the relative value of each MRI acquisition protocol for WM lesion segmentation. This scheme is
quantitatively validated on a significantly larger dataset including healthy aging, mild cognitive
impairment and AD subjects. These results were compared with other supervised classification
algorithms such as kNN, Naive Bayes, Parzen windows and decision tree.

2. CLASSIFICATION AND SUPPORT VECTOR MACHINE THEORY

Lesion segmentation can be formulated as a binary classification problem. The SVM technique [11]
solves it in a supervised way: given l labelled features (xi, yi) ∈ X × {−1, 1}, it builds a function
f : X → R such that y(.) = sign(f(.)) is an optimal labeling function. The function f is a solution
of the optimization problem:

f∗ = argmin
f∈HK

1

l

l∑
i=1

V (f(xi), yi) + γ‖f‖2K (1)

whereK : X ×X → R is a Mercer Kernel,HK its associated Reproducing Kernel Hilbert Space of
functions X → R and its corresponding norm ‖ ‖K , and V is the hinge loss defined as V (f(x), y) =
max{0, 1− y × f(x)}. The loss function V controls the labeling performance, and the second term
controls the smoothness of the solution.

The optimization problem is convex because of the convexity of the hinge loss function. However
as the objective function is not differentiable, the problem is reformulated with additional slack
variables ξ1, . . . , ξl ∈ R:

f∗ = argmin
f∈HK

ξ1,...,ξn∈R

1

l

l∑
i=1

ξi + γ‖f‖2K (2)

subject to: ξi ≥ V (f(xi), yi) ∀i ∈ {1, . . . , l}

The Riesz representation theorem states that the solution of (1) exists in HK , and can be written:

f∗(.) =

l∑
i=1

αiK(., xi) with αi ∈ R (3)

By plugging the expansion of f from (3) in (2), the optimisation problem becomes a finite dimension
optimisation problem. Let the matrix K be defined as Ki,j = K(xi, xj). The optimisation problem
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is now:

min
α1,...,αl∈R
ξ1,...,ξl∈R

1

l

l∑
i=1

ξi + γαTKα subject to: (4)

{
ξi − 1 + yi

∑l
j=1 αjK(xi, xj) ≥ 0 ∀i ∈ {1, . . . , l}

ξi ≥ 0 ∀i ∈ {1, . . . , l}

Let µ, ν ∈ Rl be the Lagrangian multipliers. The Lagrangian of this problem is:

L(α, ξ, ν, µ) =
1

l

l∑
i=1

ξi + γαTKα−
l∑
i=1

µi

(
ξi − 1 + yi

l∑
j=1

αjK(xi, xj)

)
−

l∑
i=1

νiξi (5)

Solving ∇αL = 0 leads to α∗i (µ, ν) = yiµi

2γ ∀i ∈ {1, . . . , l}. Solving ∇ξL = 0 leads to µi + νi = 1
l .

The Lagrance dual function is:

q(µ, ν) = inf
α,ξ∈Rl

L(α, ξ, ν, µ) = (6){∑l
i=1 µi −

1
4γ

∑l
i,j=1 yiyjµiµjK(xi, xj) if µi + νi = 1

l

−∞ otherwise

The dual problem consists in maximising q(µ, ν) subject to µ ≥ 0, ν ≥ 0, and is equivalent to:

max
0≤µ≤ 1

l

l∑
i=1

µi −
1

4γ

l∑
i,j=1

yiyjµiµjK(xi, xj) (7)

Therefore the problem that α must solve is:

max
α1,...,αl∈R

2

l∑
i=1

αiyi −
l∑

i,j=1

αiαjK(xi, xj) = max
α1,...,αl∈R

2αT y − αTKα

The training vectors with αi 6= 0 are called the support vectors. The optimization maximizes the
margin, which is the distance between the decision boundary and the support vectors.

3. MATERIALS AND METHODS

3.1. Data

The dataset used in this paper comes from the AIBL study [12], where T1-w (160× 240× 256
image, spacing 1.2× 1× 1 mm in the sagittal, coronal and axial directions, TR = 2300 ms, TE =
2.98 ms, flip angle = 9◦), FLAIR (176× 240× 256, 0.90× 0.98× 0.98 mm, TR = 6000 ms,
TE = 421 ms, flip angle = 120◦, TI = 2100 ms), T2-w (228× 256× 48, 0.94× 0.94× 3, TR =
3000 ms, TE = 101 ms, flip angle = 150◦) and PD (228× 256× 48, 0.94× 0.94× 3, TR =
3000 ms, TE = 11 ms, flip angle = 150◦) were acquired for 125 subjects. WM lesions were
manually segmented by one of the authors (PR), reviewed by a neuro-radiologist and used as ground
truth in the classification (Fig. 1).

3.2. Proposed algorithm

The proposed algorithm uses the standard supervised classification design for segmentation: given
images and corresponding segmentations, the goal is to build a classifier to segment new images
(Fig. 2). To obtain good performance, adequate preprocessing, mask and feature type have to be
defined. This application-specific part is followed by a machine learning process.

As summarised in Fig. 3, the proposed algorithm consists of the following steps:
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(a) FLAIR (b) T1-w (c) T2-w (d) PD (e) Manual
segmentation

Figure 1. Axial slices from one subject illustrating the different MR modalities and manual segmentation.
Lesions can be seen in the FLAIR and T2-w as a bright signal.
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Figure 2. Supervised classication algorithms for segmentation aim at building a classifier from images
and corresponding segmentations. To obtain good performance, adequate pre-processing, mask and feature
definitions have to be used. This application-specific part is followed by a machine learning process where

a classifier is built from training examples, to segment new (testing) images.
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Figure 3. The proposed WMH segmentation pipeline is composed of 3 mains steps:
pre-processing, mask creation and machine learning.

Preprocessing: Images were rigidly co-registered [13], bias-field corrected [14], smoothed using
anisotropic diffusion and histogram equalised to a reference subject. T1-w images were segmented
into WM, GM, CSF using an Expectation-Maximisation approach with priors [15]. For each
modality, features were extracted within the mask defined below, and scaled to [0, 1]. Multi-modality
features were created by concatenation of single modality features. Neighbourhood intensities
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T1

FLAIR

WM

EM with
priors

GM CSF Colin WM

µW = mean
x∈W

{FLAIR(x)}

σW = std
x∈W
{FLAIR(x)}

I(x ∈W ) =
FLAIR(x)−µW

σW

Final Mask Mτ

Mτ =

{
1 if I(x) > τ

0 otherwise

τ ∈ R

Figure 4. The mask creation uses both FLAIR and T1 modalities to combine intensity-based and tissue-based
properties. First, an Expectation-Maximisation (EM) technique on the T1 is used to generate WM/GM/CSF
segmentation. On the intersection W of the patient WM and the registered Colin WM, a normalized scalar

map is computed from the FLAIR intensities. A final threshold on this map provides the mask Mτ .

features (3× 3× 3 and 5× 5× 5 sizes) and pyramidal features (with 4 levels, taking one voxel
per level, Gaussian kernel convolutions of σ = {0.5, 1, 1.5}) were examined.

Mask creation: A global threshold on FLAIR images provides a high sensitivity, but poor
specificity, which means it can only be used to define areas of interest. To further refine the areas of
interest, we define the region W as the intersection of the dilated Colin WM mask [16] (which was
registered rigidly [13] then non-rigidly [17] to the subject) and the WM mask (from the tissue
segmentation in patient space). Using the mean µW and standard deviation σW of the FLAIR
intensities on W , an intensity threshold of µW + τ σW on W (τ = 2 was the numerical value used)
is used to define the mask Mτ :

Mτ (x) =

{
1 if FLAIR(x) > µW + τ σW and x ∈W
0 otherwise

Machine learning: A subset of 10 000 features, with half belonging to the lesion class, the other
half belonging to the non-lesion class, randomly selected and equally distributed among the training
samples was used to generate the classifiers. A Matlab implementation solving SVM in its primal
formulation was used [18, 19]. The chosen kernel was the (Gaussian) radial basis function. The
width of the kernel and the regularisation weight were selected via a 10-fold cross validation. Then
each image in the test set was segmented within the patient mask created. Pixels outside this region
were set to the non-lesion class. As post-processing, all the connected components segmented as
lesion with less than 10 voxels were removed.
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Table I. p-values of paired t-tests using 3× 3× 3 features. Statistically significant differences (p < α =
0.05) in bold green.

Modalities p-values of t-tests for lesion load
in mL (number of subjects)

Model 1 Model 2 < 3 (35) 3-10 (47) >10 (43) Any (125)
FLAIR FLAIR, T2-w 0.47 0.19 0.62 0.38
FLAIR FLAIR, T1-w 0.047 0.032 0.57 0.070
FLAIR FLAIR, T1-w, T2-w 0.048 0.014 0.26 0.047
FLAIR FLAIR, T1-w, T2-w, PD 0.011 0.002 0.23 0.014

FLAIR, T1-w FLAIR, T1-w, T2-w, PD 0.59 0.41 0.51 0.50

3.3. Validation

The dataset was randomly split equally into training and test sets. A classifier was built using the
training set, and then used to segment the test set. Then training set and test set were swapped,
another classifier was built, and the rest of the segmentations were computed. Results were then
merged. Model performances were compared using the Dice score [20] DSC = 2 λ(S∩GT )

λ(S)+λ(GT ) (with S
the computed segmentation, GT the ground truth and λ counting the number of voxels in a volume),
the number of true/false positive/negative (TP, FP, TN, FN) voxels, the specificity ( TN

TN+FP ) and the
sensitivity ( TP

TP+FN ) computed on the full images. Higher is better for DSC, TP, TN, sensitivity and
specificity. Lower is better for FP and FN. Statistical significance was analysed via the p-values of
paired t-tests [21]. We performed experiments to test the influence of the combination of modalities,
the influence of the feature type and the influence of using the mask in pre-processing instead of
in the post-processing. The performance of the SVM classifier was compared to the performance
of other supervized classification algorithms. As the overall lesion load impacts the segmentation
performance, as previously reported in [2], results are displayed for low (<3mL), moderate (3-
10mL) and severe (>10mL) lesion loads. Finally, the impact of the parameter in the mask creation
was evaluated by performance bounds of the segmentation performance.

4. RESULTS

4.1. Performance with regard to modality combinations

The segmentation performance was evaluated for various combinations of modalities (using 3×
3× 3 neighourhood features). Figure 5 shows DSC, FP and TP values for four single-modality
and four multi-modality features. TN, FN, sensitivity and specificity values are similar for the
various combinations, so corresponding graphs are not displayed. When using one modality, FLAIR
gives the best performance. However, combining several modalities reduces FP and increases TP.
Table I indicates that on low and moderate lesion loads the T1-w + FLAIR combination performs
statistically better than FLAIR (T2-w + FLAIR does not). On the overall dataset, the T1-w + T2-w
+ FLAIR combination performs statistically better than FLAIR. The model with the four modalities
performs the best (Fig. 5), but not significantly better than T1-w + FLAIR (p=0.50).

4.2. Performance with regard to features type

Using the four modalities, the segmentation performance was evaluated for various feature types
(Fig. 6). With neighbourhood intensity features, a 5× 5× 5 size slightly increased the DSC
compared to 3× 3× 3, but the difference was not statistically significant (p = 0.93). Pyramidal
features with 4 dimensions did not perform as well as neighbourhood intensity features, but the
DSC difference was not statistically significant (p=0.21 when compared with 3× 3× 3 features,
p=0.18 with 5× 5× 5 features).

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
Prepared using cnmauth.cls DOI: 10.1002/cnm



7

<3mL (41 subjects) 3−10mL (47 subjects) >10mL (37 subjects)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lesion Load

Dice

 

 

FLAIR

T1−w

T2−w

PD

FLAIR + T1−w

FLAIR + T2−w

FLAIR + T1−w

FLAIR + T1−w + T2−w + PD

<3mL (41 subjects) 3−10mL (47 subjects) >10mL (37 subjects)
0

0.5

1

1.5

2
x 10

4 False Positive

Lesion Load
<3mL (41 subjects) 3−10mL (47 subjects) >10mL (37 subjects)

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4 True Positive

Lesion Load

Figure 5. Segmentation performance with different modality combinations (using the 3× 3× 3
neighbourhood intensity feature type).
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Figure 6. Segmentation performance with different feature types (using the 4 modalities).

4.3. Performance with regard to the mask use

Using the FLAIR modality and 3× 3× 3 neighbourhood feature type, the impact of the mask on the
segmentation performance has been evaluated. The use of the mask in the pre-processing instead of
post-processing significantly decreased FP and led to a much better DSC (Fig. 7). The computation
time in the prediction step being linear in the number of features to label, computing predictions for
a significantly lower number of features (only within the mask) reduced the computation time (41
times computation speed-up on our dataset with τ = 2).

4.4. Performance comparison with other supervised classification algorithms

Using the FLAIR + T1 combination and 3× 3× 3 feature type, the performance of the SVM
classifier was compared with several other supervised classifiers: kNN (with k=100 as in [2]), Naives
Bayes, Parzen window and decision tree.
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Figure 7. Using our mask Mτ in the pre-processing gives better
results than using it only as a post-processing step.

The kNN classifier classifies a features x to the class with the highest cardinality among the k
nearest neighbours of x in the training set.

ŷ(x) = argmax
y

Card{xi ∈ kNN(x) and yi = y} (8)

The Naive Bayes method computes the posterior probability of a feature x belonging to each class
y, and classifies according the largest posterior probability (see Eq. (9)). To compute the parameters
of the probability density of feature x given class y, the features are assumed conditionally
independent given the class.

ŷ(x) = argmax
y

P (y|x) = argmax
y

P (x|y)P (y)

P (x)
= argmax

y
P (x|y)P (y) (9)

In the case of the Parzen window, the prior probability is estimated as

P (x|y) =
1

Card{i|yi = y}
∑
i,yi=y

K(x, xi) (10)

where K is for example the Gaussian kernel. The Parzen window classifier is then found using the
Bayes rule:

ŷ(x) = argmax
y

P (y|x) = argmax
y

∑
i,yi=y

K(x, xi)∑
iK(x, xi)

(11)

On this dataset, using combined 3× 3× 3 features from FLAIR and T1 modalities, SVM
obtained the best DSC results, followed by Parzen windows, kNN, decision tree and Naive Bayes
(Fig. 8). In terms of FP, kNN, Parzen window and SVM provide the best results. These tree
classifiers also provide the best specifities. However, kNN and Parzen window classifier have a
quite-low sensitivity, whereas SVM is most sensitive (followed by classification tree).

4.5. Performance bounds from mask parameter setting

The influence of the τ parameter in the mask creation on the segmentation performance was
evaluated. Three performance bounds were computed, which are independent of the modality
combination and feature type.

First, the upper bound of the final FP, which is equal to the number of FP for the ”lesion-
everywhere” classifier (worst-case scenario in terms of FP). Figure 9a shows the FP upper bound
for different values of τ . The higher τ is, the smaller is the mask Mτ (which is the area used for the
machine learning), and therefore the lower is the FP upper bound. Second, the lower bound of the
final FN, which is obtained when using the optimal classifier within the mask (best case scenario in
terms of FN). Figure 9b shows the FN lower bound for different values of τ . The higher τ is, the
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Figure 8. Segmentation performance with different algorithms (using the 3× 3× 3 neighbourhood intensity
feature type).

smaller is the mask Mτ , the more lesion features will be left out, and therefore the higher is the FN
lower bound. Third, the upper bound of the final Dice score, which is similarly obtained using the
optimal classifier within the mask. The higher τ is, the lower is the Dice upper bound (Fig. 9c).

These graphs give insight on the impact of the τ parameter. If τ is too high, the final segmentation
performance will be low, no matter how good is the classifier segmenting inside Mτ . If τ is too low,
the algorithm has a high risk of FP, which is a known drawback in WM lesion segmentation. Setting
τ therefore involves a trade-off between the use of tissue-information to reduce the risk of FP and a
high upper bound performance. The value τ = 2, which was selected for all experiments, is in the
range of acceptable values decreasing the FP upper bound without decreasing too much the Dice
upper bound.

5. CONCLUSION

We have presented a machine learning scheme applied to the WMH segmentation problem. Our
approach is inspired by the previous work on SVM but has a number of differences. It combines the
use of tissue segmentation, atlas propagation techniques and SVM classification to get efficient and
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Figure 9. Performance bounds due to the threshold τ in the mask creation. Increasing τ decreases the upper
bound of FP (a), increases the lower bound of FN (b), and decreases the lower bound of the Dice score (c).

The value τ = 2 was the value selected for all experiments.

accurate segmentation results. Using our pipeline and our dataseet, SVM has a higher classification
performance than other supervised algorithms such as kNN, Naive Bayes, Parzen window and
decision tree.

In this work we also quantified the relative performance variations with regard to different
modalities or feature types. Regarding the modalities, our results confirm that using all of the
four modalities adds discriminative information and improves the segmentation results, as reported
in [1]. However, our quantitative results show that using only FLAIR and T1-w can give similar
performance at a lower cost. One reason could be the lower axial resolution of our T2-w and PD
images. Regarding the features types, there is a trade off between the complexity, storage place and
computation time versus the performance.

As other important contribution of this work, the mask we define and use in the pre-processing
has several positive impacts. First, it improves the classifier performance as the training features are
selected in regions of interest, which leads to better classifiers. We have given insight on the trade-off
related to the threshold parameter selection in the mask creation. Increasing the threshold decreases
the upper bound of FP (and therefore the potential risk of final FP). However, a low FP upper bound
comes at a price as increasing the threshold increases the FN lower bound and decreases the Dice
upper bound, which means a treshold too high would cause poor final performance no matter how
good is the classifier. Second, computation time and storage space required are significantly lower
(41 times lower on our dataset with the chosen threshold) as features and predictions are computed
in a restricted area. Finally, using our mask in the pre-processing makes most of the complex post-
processing steps required in current state-of-art methods redundant.
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