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ABSTRACT
Manifold learning techniques have been widely used to pro-
duce low-dimensional representations of patient brain mag-
netic resonance (MR) images. Diagnosis classifiers trained
on these coordinates attempt to separate healthy, mild cogni-
tive impairment and Alzheimer’s disease patients. The per-
formance of such classifiers can be improved by incorporat-
ing clinical data available in most large-scale clinical studies.
However, the standard non-linear dimensionality reduction
algorithms cannot be applied directly to imaging and clini-
cal data. In this paper, we introduce a novel extension of
Laplacian Eigenmaps that allow the computation of manifolds
while combining imaging and clinical data. This method is a
distance-based extension that suits better continuous clinical
variables than the existing graph-based extension, which is
suitable for clinical variables in finite discrete spaces. These
methods were evaluated in terms of classification accuracy us-
ing 288 MR images and clinical data (ApoE genotypes, Aβ42
concentrations and mini-mental state exam (MMSE) cogni-
tive scores) of patients enrolled in the Alzheimer’s disease
neuroimaging initiative (ADNI) study.

Index Terms— Manifold learning, population analysis,
image processing, clinical data, Alzheimer’s disease

1. INTRODUCTION

Large scale population studies aim to improve the understand-
ing of the causes of diseases, define biomarkers for early di-
agnosis, and develop preventive treatments. In the context
of the Alzheimer’s disease (AD), imaging biomarkers, blood
biomarkers, cognitive tests, lifestyle and diet biomarkers are
all potential sources of information to diagnose the disease as
early as possible.

Manifold learning techniques have been used to analyse
trends in populations and describe the space of brain images
by a low-dimensional non-linear manifold [1, 2]. These stud-
ies attempt to describe the space of brain images via a low-
dimensional manifold while capturing relevant information
with regard to disease diagnosis. Diagnosis classifiers trained

on the low-dimension coordinates evaluate the ability to cap-
ture this information and separate healthy, mild cognitive im-
pairment and Alzheimer’s patients [2].

As most of the current large-scale clinical studies also pro-
vide non-imaging information, one would want to be able to
use this information to improve the diagnosis classification.
However, as the imaging and clinical data are in different
spaces, the non-linear dimensionality reduction cannot be ap-
plied directly and must be adapted. We introduce a distance-
based extension and compare it theoretically to an exisiting
graph-based extension [2]. We also evaluate their numerical
classification performances on a large dataset from ADNI [3].

2. METHODS

2.1. Population analysis and diagnosis classification from
manifold learning

It has been shown that the space of brain images in RM can be
described by a non-linear manifoldM of intrisic dimension
m, with m � M [1]. Laplacian eigenmaps (LEM) [4] can
be used to compute the low-dimensional representation of the
data (Fig. 1). Given a matrix ∆ of pairwise distances between
n images and a number of nearest neighbours (NN) k ∈ N , an
adjacency-graph G =< V,E > is computed. Each node rep-
resents an image, and weighted edges connecting each image
to its k-NN are created. From the weight matrix W , a diag-
onal matrix D is computed with dii =

∑
j wij . The graph

Laplacian is given by L = D −W . Its eigenvectors {ej ∈
Rn}1≤j≤m associated to them smallest non-zero eigenvalues
provide the low-dimension coordinates {yi = (ei1, . . . , e

i
m) ∈

Rm}1≤i≤n. Noting y = (y1, . . . , yn)T , these coordinates are
the solutions of the optimization problem:

argmin
yTDy=I

∑
ij

wij ||yi − yj ||2 (1)

To evaluate the ability of the dimensionality reduction
process to capture relevant information with regard to disease
progression, it is possible to use the low-dimension coordi-
nates to train a disease classifier.



Distance matrix→ k-NN graph→ Laplacian → Coordinates
∆ ∈ Rn×n W∈Rn×n L∈Rn×n Y∈Rn×m

Fig. 1: Standard LEM pipeline to compute low-dimension
coordinates Y. The distance-based extension modifies ∆,
whereas the graph-based extension modifies W .

2.2. Extended LEM based on distance matrix combina-
tion

To combine imaging and clinical data in the manifold learning
process, one can define a distance on the clinical data, com-
bine linearly the image-based and clinical-based distance ma-
trices (∆ = ∆img+λ∆clinical), and apply the standard LEM
algorithm. This extension adds two constraints to the origi-
nal algorithm: 1) the need for a distance on the clinical data
and 2) the need to define a weight for the clinical data. Com-
bining the two distance matrices and applying LEM creates
a graph with the same nodes but different edges and weights
ŵij (Fig. 2a and 2b). Using this extension, the optimisation
problem becomes:

argmin
yT D̂y=I

∑
ij

ŵij ||yi − yj ||2

2.3. Extended LEM based on adjacency graph extension

An alternative method to combine imaging and clinical data
is to extend the adjacency graph by adding extra nodes and
edges. One such technique has been presented in [2]. This

extension also adds two constraints to the original algorithm:
1) a set of rules to extend the graph (extra nodes and extra
weights), 2) the need to define a weight for the clinical data.

When the clinical variable is in a discrete finite space,
such as for ApoE genotype, one node is created for each el-
ement of that space. Extra edges are created (with a weight
equal to one) between the node of each patient with a partic-
ular element to the node of that element (e.g. all the patients
with a particular genotype are connected to the node repre-
senting that genotype). When the clinical variable is in a con-
tinuous space, such as Aβ42 concentration or MMSE clinical
score, Wolz et al. proposed to partition this continuous space
and set the weights as the fuzzy probabilities of belonging to
each partition:

∀k ∈ {1, . . . , ñ},∀i ∈ {1, . . . , n}, cik =

1
d(zi,zk)∑ñ
k=1

1
d(zi,zk)

where d is a distance on the space of clinical variable, the zk
are the means of the sub-intervals defined using the mininum,
maximum and several percentile values. Figure 2c represents
the extended graph, which corresponding matrix is written

W̃ =

(
I γ

2C
T

γ
2C

T W

)
where I is the identity matrix, W is the weight matrix of
the standard LEM on images, and C contains the weights
of the extra-edges. A parameter γ is introduced to weight
the clinical data versus the imaging data. When extend-
ing the graph by ñ nodes, we are now looking for Y =

(a) Standard LEM (b) Distance-based LEM extension (c) Graph-based LEM extension

Fig. 2: Comparison of the graphs in the standard LEM algorithm and in the two extensions. When combining distances
matrices, one gets a graph as in 2b with the same nodes as the standard LEM 2a but different edges and different weights. In
the graph-based LEM extension, the graph 2c is built from the graph of the standard LEM 2a, then extra new nodes and weights
are added.



(ỹ1, . . . , ỹñ, y1, . . . , yn), ỹk, yi ∈ Rm as a solution of the
optimisation problem:

argmin
Y TDY=I

∑
ij

wij ||yi − yj ||2 + γ
∑
ik

cik ||yi − ỹk||2

3. MATERIAL AND RESULTS

3.1. Data

A dataset of 288 Magnetic Resonance images from 101
patients enrolled in ADNI (http://www.loni.ucla.
edu/ADNI, [3]) has been used to compare the diagnosis
classification performances of the standard LEM algorithm
and its two extensions.

As clinical data, ADNI provides the Apolipoprotein E
(ApoE) genotype. Three ApoE alleles exist (ε2, ε3, ε4), and
since each individual carries two alleles, six ApoE genotypes
are possible. The ε4 allele has been shown to increase the risk
of developing AD, whereas ε2 decreases this risk [5]. More-
over an Aβ42 protein analysis of cerebrospinal fluid (CSF) is
provided. A decrease in the concentration of this protein has
been shown to be associated with a development of AD [3].
Table 1 summarises the clinical information for the various
diagnostics in the dataset.

3.2. Experiments

The 288 images were intensity normalized by histogram
equalization to the ICBM152 atlas [6] used as template. All
the images were then rigidly registered to the atlas using [7].
Sub-images around the hippocampus were finally extracted.
A deformation based distance of this area was used for the
image distance matrix. The ApoE genotype was used con-
sidering all possible pairs of alleles and considering ApoE
carriers as in [2], respectively leading to 6 and 3 extra nodes
in the graph-based extension. For the graph-based extension
with the continuous clinical variables (Aβ42 and MMSE), 3
extra nodes were added as in [2]. Adjacency graphs were
k-nearest neighbour graphs (k = 100) with edges weights
computed using the gaussian kernel with a kernel width equal
to the standard deviation of the distance matrix coefficients.
LEM was applied with target dimension from 2 to 100. The
classifiers used were k-nearest neighbour classifiers (k = 50).
Training set and test sets were built using a leave 5% out
scheme. The optimal target dimension in LEM and optimal λ
(resp. γ) were automatically selected from a 20-cross valida-
tion on the training set on {1, . . . , 100}×{0.1, 1, 2, 5, 10, 25}
(resp. {1, . . . , 100} × {0.01, 0.01, 0.1, 0.5, 1, 2, 5, 10, 25}).

3.3. Results

Table 2 presents the classification performance of the stan-
dard LEM algorithm using the imaging data, and the two ex-
tensions using the combined imaging and clinical data. Using

clinical data combined with imaging data improves classifica-
tion results for both methods compared to the standard LEM
on only imaging data. For the discrete clinical variable ApoE
genotype, the two extensions have similar performance on
this dataset. For the continuous clinical variables Aβ24 CSF
concentration and MMSE cognitive score, the distance-based
extension performs better than the graph-based extension.

4. DISCUSSION

We have presented two extensions of LEM able to perform
non-linear dimensionality reduction with data from different
spaces, such as imaging and clinical data. Both methods come
with two additional constraints. In particular, they both need
to set an extra parameter to balance how much weight is given
to the clinical information versus the weight of the imaging
information.

From a theoretical point of view, the graph-based exten-
sion seems more natural when the clinical variable is in a
finite discrete space, whereas the distance based extension
seems more natural when the clinical data lives in a con-
tinuous space. First, when the clinical variable’s space is
a finite discrete space, it is easy to add one node per pos-
sible value and edges with weights equal to one for class
memberships. However, using the distance-based extension
when the clinical variable is in a discrete space requires to
define a distance on that space. Depending on the problem,
this can raise difficult questions. In the case of the ApoE
genotype, we can for example wonder if creating a distance
being equal to one between all pairs of different genotypes
is really optimal. Having d((ε2, ε2), (ε4, ε4)) higher than
d((ε2, ε2), (ε2, ε3)) would not be absurd given the known
biological impact of the ApoE alleles [5]. This example illus-
trates that the distance-based extension is not necessarily well
suited for discrete clinical variables. On the other hand, when
the clinical variable lives in a continuous space such as Rn,
many distances are commonly associated (e.g. distances from
lp norms ‖x‖p = (

∑
i xi

p)
1/p). However, if one wants to

use the graph extension technique, it is obviously impossible
to add an infinite number of nodes. So the continous space
has to be discretized into a finite number of subparts. At this
point, using memberships to these subparts would mean that
each z value would be considered as being one of the zk. To
avoid this huge loss of information, Wolz et al. introduced
fuzzy memberships. Nonetheless, there is no natural way to
select the number of elements of the partition. In their paper,
Wolz et al. have a clinical variable in z ∈ R, they add ñ = 3
extra nodes, and the weights were defined by the minimum of
z, its 33% and 67% percentiles and its maximum value, but
this choice is rather arbitrary.

From a numerical point of view, when the graph-based
LEM extension is used with a continuous clinical variable, the
divisions in the cik can be sources of numerical instability.



Table 1: Number of patients, ApoE genotypes, mean and standard deviation of Aβ42 concentration in CSF and mini-mental
state exam (MMSE) cognitive scores are shown for the normal controls (NC), mild cognitive impairment (MCI) and Alzheimer’s
disease (AD) patients.

Diagnosis N ApoE genotype
Aβ42

MMSE
(ε2, ε2) (ε2, ε3) (ε2, ε4) (ε3, ε3) (ε3, ε4) (ε4, ε4) cognitive score

NC 94 0 12 0 65 17 0 210.15± 58.15 29.28± 1.02
MCI 114 0 2 0 58 46 8 160.48± 43.50 26.62± 1.92
AD 80 0 0 3 26 37 14 137.53± 24.54 21.53± 4.74

Table 2: Performance (%) of the standard LEM algorithm and its two extensions in diagnosis classification.

Data Algorithm NC vs MCI NC vs AD MCI vs AD
Imaging LEM 65.6 63.3 61.9

Imaging & ApoE carriers Distance-based LEM extension 66.7 71.8 66.1
Imaging & ApoE carriers Graph-based LEM extension 65.8 73.0 64.8

Imaging & ApoE pairs Distance-based LEM extension 62.3 62.5 66.0
Imaging & ApoE pairs Graph-based LEM extension 63.8 65.8 65.3

Imaging & Aβ42 Distance-based LEM extension 70.7 75.5 67.1
Imaging & Aβ42 Graph-based LEM extension 65.2 70.7 65.5

Imaging & MMSE Distance-based LEM extension 83.2 93.1 67.1
Imaging & MMSE Graph-based LEM extension 65.8 75.3 68.8

5. CONCLUSION AND PERSPECTIVES

We have introduced a novel extension of LEM able to per-
form non linear dimensionality reduction while combining
imaging data and clinical data which are in different spaces.
This distance-based extension leads to a graph with the same
nodes as from the standard LEM but with different edges and
weights, whereas the previously existing graph-based exten-
sion leads to a graph where all the nodes and edges from the
standard LEM are kept and extra ones are created. This new
distance-based extension is better suited for a continuous clin-
ical data than the graph-based which is well-suited when the
clinical variable lives in a finite discrete space.

We have shown that both extensions improve the nu-
merical classification performance compared to the original
LEM on a large dataset from ADNI. Performances of both
extensions are similar with the discrete ApoE genotype clini-
cal value, and our new distance-based extension have higher
classification accuracy with the continuous clinical variables
Aβ42 CSF concentrations and MMSE clinical scores.

In terms of generalization of the two extensions to other
dimensionality reduction algorithms, the existing graph-
based extension can potentially be adapted only if the di-
mensionality reduction process is based on a graph. Our new
distance-based extension is more general and can be directly
used in any dimensionality reduction algorithm that requires
a distance of pairwise distances between all objects as input.
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