
International Journal of Computer Vision 69(1), 145–156, 2006

c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11263-006-6859-3

Geodesic Remeshing Using Front Propagation

GABRIEL PEYRÉ
CMAP, École Polytechnique, UMR CNRS 7641

peyre@cmapx.polytechnique.fr

LAURENT D. COHEN
CEREMADE, Université Paris Dauphine, UMR CNRS 7534

Place du Marechal de Lattre de Tassigny, 75775 Paris cedex 16, France
cohen@ceremade.dauphine.fr

Received April 12, 2004; Revised November 12, 2004; Accepted May 11, 2005

First online version published in May, 2006

Abstract. In this paper, we propose a complete framework for 3D geometry modeling and processing that uses only
fast geodesic computations. The basic building block for these techniques is a novel greedy algorithm to perform a
uniform or adaptive remeshing of a triangulated surface. Our other contributions include a parameterization scheme
based on barycentric coordinates, an intrinsic algorithm for computing geodesic centroidal tessellations, and a fast
and robust method to flatten a genus-0 surface patch. On large meshes (more than 500,000 vertices), our techniques
speed up computation by over one order of magnitude in comparison to classical remeshing and parameterization
methods. Our methods are easy to implement and do not need multilevel solvers to handle complex models that
may contain poorly shaped triangles.

Keywords: remeshing, geodesic computation, fast marching algorithm, mesh segmentation, surface parameteri-
zation, texture mapping, deformable models.

1. Introduction

The applications of 3D geometry processing abound
nowadays. They range from finite element computa-
tion to computer graphics, including solving all kinds
of surface reconstruction problems. The most common
representation of 3D objects is the triangle mesh, and
the need for fast algorithms to handle this kind of ge-
ometry is obvious. Classical 3D triangulated manifold
processing methods have several well known short-
comings: mainly, their high complexity when dealing
with large meshes, and their numerical instabilities.

To overcome these difficulties, we propose a ge-
ometry processing pipeline that relies on intrinsic in-
formation of the surface and not on its underlying
triangulation. Borrowing from well established ideas

in different fields (including image processing, percep-
tual learning, and finite element remeshing) we are able
to process very large meshes efficiently.

1.1. Overview

In Section 2 we introduce some concepts we use in our
geodesic computations. This includes basic facts and
some contributions about the Fast Marching algorithm
and Voronoi diagrams on surfaces.

In Section 3 we will expose a greedy algorithm for
manifold sampling and remeshing, which iteratively
adds points to find a mesh that has a uniform or adaptive
distribution of vertices on the surface. Figure 1 shows
some results of our remeshing procedure.

146 Peyré and Cohen

In Section 4 we will expose two applications of
our geodesic sampling strategy: the construction of a
geodesic centroidal tesselation, and a fast flattening
scheme.

In Section 5 we will show the whole pipeline in
action, and see how we can texture large meshes faster
than current techniques would otherwise allow. We
will then give a complete study of the timings of each
part of our algorithm, including a comparison with
classical methods.

1.2. Related Work

Geodesic Computations. Distances computation on
manifolds is a complex topic, and a lot of algorithms
have been proposed such as Chen and Han shortest path
method (Chen and Hahn, 1990) which is of quadratic
complexity. Kimmel and Sethian’s Fast Marching algo-
rithm (Kimmel and Sethian, 1998) allows finding nu-
merically the geodesic distance from a given point on
the manifold, in O(n log(n)) in the number of vertices.
They deduce minimal geodesics between two given
points. Some direct applications of geodesic compu-
tations on manifolds have been proposed, such as in
(Kimmel and Sethian, 2000), which applies the Fast
Marching algorithm to obtain Voronoi diagram and off-
set curves on a manifold.

Surface Remeshing. Huge 3D datasets often arise
from surfaces reconstructed in medical imaging
for exemple. This reconstruction task can be per-
formed using algorithms from algorithmic geome-
try, e.g. (Delingette, 1999) or deformable models
see (McInerney and Terzopoulos, 1996; Osher and

Figure 1. Remeshing of a 3D model using increasing weight for the speed function.

Paragios, 2003). These 3D models can also be acquired
from multiple stereo views, e.g. (Fua, 1997), or other
industrial applications. These algorithms often produce
meshes with a large amount of redundant vertices, and
triangulations with poor quality. Thus these meshes
must undergo a remeshing process.

Remeshing methods roughly fall into two categories:

• Isotropic remeshing: a surface density of points is
defined, and the algorithm tries to position the new
vertices to match this density. For example the al-
gorithm of Terzopoulos and Vasilescu (Terzopoulos
and Vasilescu, 1992) uses dynamic models to per-
form the remeshing. Remeshing is also a basic task in
the computer graphics community, and (Surazhsky
et al., 2003) have proposed a procedure based on
local parameterization.

• Anisotropic remeshing: the algorithm takes into ac-
count the principal directions of the surface to align
locally the newly created triangles and/or rectan-
gles. Finite element methods make heavy use of such
remeshing algorithms (Kunert, 2002). The algorithm
proposed in Alliez et al. (2003) uses lines of curva-
ture to build a quad-dominant mesh.

The importance of using geodesic information to per-
form this remeshing task is emphasized in Sifri et al.
(2003).

Ideas similar to our greedy solution for sam-
pling a manifold (see Section 3.1) have been used
with success in other fields such as computer vi-
sion (component grouping, (Cohen, 2001)), halfton-
ing (void-and-cluster, (Ulichney, 1993)) and remeshing
(Delaunay refinement, (Ruppert, 1995)).

Geodesic Remeshing Using Front Propagation 147

2. Geodesic-Based Building Blocks

2.1. Fast Marching Algorithm

The classical Fast Marching algorithm is presented in
Sethian (1999), and a similar algorithm was also pro-
posed in Tsitsiklis (1995). This algorithm is used in-
tensively in computer vision, for instance it has been
applied to solve global minimization problems for de-
formable models (Cohen and Kimmel, 1997).

This algorithm is formulated as follows. Suppose
we are given a metric P(s)ds on some manifold
such that P > 0. If we have two points x0, x1 ∈ ,
the weighted geodesic distance between x0 and x1 is
defined as

d(x0, x1)
def.= min

γ

(∫ 1

0

||γ ′(t)||P(γ (t))dt

)
, (1)

where γ is a piecewise regular curve with γ (0) = x0

and γ (1) = x1. When P = 1, the integral in (1) corre-
sponds to the length of the curve γ and d is the classical
geodesic distance. To compute the distance function

U (x)
def.= d(x0, x) with an accurate and fast algorithm,

this minimization can be reformulated as follows. The
level set curve t

def.= {x\U (x) = t} propagates follow-
ing the evolution equation ∂ t

∂t (x) = 1
P(x)

−→nx , where −→nx

is the exterior unit vector normal to the curve at x , and
the function U satisfies the nonlinear Eikonal equation:

||∇U (x)|| = P(x). (2)

The function F = 1/P > 0 can be interpreted as the
propagation speed of the front t .

The Fast Marching algorithm on an orthogonal grid
makes use of an upwind finite difference scheme to

Figure 2. Front Propagation (on the left), level sets of the distance function and geodesic paths (on the right).

compute the value u of U at a given point xi, j of a grid:

max(u − U (xi−1, j), u − U (xi+1, j), 0)2

+ max(u−U (xi, j−1), u−U (xi, j+1), 0)2 = h2 P(xi, j)
2.

This is a second order equation that is solved as detailed
for example in Cohen (2001). An optimal ordering of
the grid points is chosen so that the whole computation
only takes O(N log(N)), where N is the number of
points.

In Kimmel and Sethian (1998), a generalization to
an arbitrary triangulation is proposed. This allows per-
forming front propagations on a triangulated manifold,
and computing geodesic distances with a fast and accu-
rate algorithm. The only issue arises when the triangu-
lation contains obtuse angles. The numerical scheme
presented above is not monotone anymore, which can
lead to numerical instabilities. To solve this problem,
we follow (Kimmel and Sethian, 1998) who propose
to “unfold” the triangles in a zone where we are sure
that the update step will work. To get more accurate
geodesic distance on meshes of bad quality, one can use
higher order approximations, e.g. (Manay and Yezzi,
2003), which can be extended to triangulations using a
local unfolding of each 1-ring. Figure 2 shows the cal-
culation of a geodesic path computed using a gradient
descent of the distance function.

2.2. Extraction of Voronoi Regions

It is possible to start several fronts from points
{x1, . . . , xn} and make them evolve together, as shown
on Fig. 3. The areas shown on the surface on the
right define the Voronoi diagram of the starting

148 Peyré and Cohen

Figure 3. Progression of the fronts, Voronoi diagram, and resulting tessellation.

points, namely the tessellation into the regions, for
i ∈ {1, . . . , n}

Vi
def.= {x ∈ \ ∀ j �= i, d(x, x j) > d(x, xi)}.

To accurately compute the boundaries of the Voronoi
regions, we allow an overlap of the front on one vertex.
Suppose a front a arrives at a vertex v1 with time arrival
ta
1 and another front b arrives at a vertex v2 (connected

to v1) with time tb
2 . Allowing an overlap of the fronts,

we record the time arrival ta
2 of a at v2, and tb

1 of b at
v1. Then the two fronts meet at (1 − λ)v1 + λv2 where

λ = da
2 −da

1 +db
1 −db

2

db
1 −da

1

.

3. Isotropic Remeshing of a Triangulation

We proposed recently (Peyré and Cohen, 2003) a new
method for sampling a 3D mesh that follows a farthest
point strategy based on the weighted distance obtained
through Fast Marching on the initial triangulation. This
is related to the method introduced in Cohen (2001). A
similar approach was proposed independently and si-
multaneously in Moenning and Dodgson (2003). It fol-
lows the farthest point strategy, introduced with success
for image processing in Eldar et al. (1997) and related
to the remeshing procedure of Chew (1993).

Our approach iteratively adds new vertices based on
the geodesic distance on the surface. The result of the
algorithm gives a set of vertices uniformly distributed
on the surface according to the geodesic distance. Tak-
ing into account a local density of vertices will be done
in Sections 3.3 and 3.4.

3.1. A Greedy Algorithm for Uniformly
Sampling a Manifold

We now describe how to automatically build an evenly
spaced set of points on a triangulated surface. A first

point x1 is chosen at random on the mesh and its
geodesic distance map U1 computed by fast marching.
A more elaborate choice consists in replacing this ran-
dom point by the point with maximum distance from
it.

Then we assume we have already computed a set
of points Sn = {x1, . . . , xn}, together with Un the
geodesic distance map to Sn . To add a new point xn+1,
we simply select a point on the manifold that is fur-
thest away from Sn , meaning that it has maximal value
of Un . To compute the new distance map Un+1, we use
the fact that Un+1 = min(Un, Uxn+1

), where we have
noted Uxn+1

the distance map to xn+1. So we simply
need to update Un by starting a front from xn+1 (using
the Fast Marching algorithm exposed in Section 2) and
to confine it on the set {x ; Uxn+1

(x) ≤ Un(x)}. This
assures that the whole remeshing process roughly takes
less than O(N log(N)2) operations.

At each iteration, the new point xn+1 needs not to be
a vertex of the original mesh. It can be positioned ac-
curately by interpolating the distance map. To be more
precise, it happens most often that the point with max-
imum distance is located in a triangle where three dif-
ferent fronts meet. We simply compute the intersection
of each pair of fronts along each edge as it is described
in Section 2.2. We then choose for xn+1 the center of
mass of the three intersection points.

We choose to stop the algorithm either when the last
added point xn+1 satisfies Un(xn+1) ≤ δ, where δ is a
given threshold, or when a given number of points have
been distributed. Figure 4 shows the first steps of our
algorithm on a square surface.

3.2. Calculation of the Geodesic Triangles

Once we have found the complete set Sn0
, we must de-

termine which vertices to link together to obtain our

Geodesic Remeshing Using Front Propagation 149

Figure 4. An overview of our greedy algorithm.

Figure 5. Geodesic remeshing with an increasing number of points.

new triangulation which is built incrementally dur-
ing the algorithm. To that end, during the point dis-
tribution process we keep track of saddle points (see
Cohen (2001)), which are vertices v that satisfy these
two criterions:

• When the value of U (v) is set by the Fast March-
ing algorithm, two fronts coming from different base
points xi and x j must meet for the first time at v (see
Cohen (2001)).

• Adding edge [xi , x j] to the new triangulation must
keep the triangulation valid (e.g. the edge must have
at most two adjacent faces).

The set of saddle points tells us which vertices xi and x j

should be linked together to obtain a valid triangulation

. Note that when we update a distance map Un+1, a
previously found saddle point v can disappear (if v is
reached by the front coming from xn+1), and of course
new saddle points can be created.

Figure 5 shows progressive remeshing of the bunny
and the David. In order to have a valid triangula-
tion, the sampling of the manifold must be dense
enough (for example 100 points is not enough to cap-
ture the geometry of the ears of the bunny). A the-
oretical proof of the validity of geodesic Delaunay
triangulation can be found in Leibon and Letscher
(2000), and more precise bound on the number of
points is derived in Onishi and Itoh (2003). Note
that our algorithm works with manifolds with bound-
aries, of arbitrary genus, and with multiple connected
components.

150 Peyré and Cohen

Figure 6. Adaptive remeshing: Iterative insertion of points in a square surface.

Figure 7. Curvature-repulsive versus curvature-attractive sampling and remeshing.

3.3. Adaptive Remeshing

In the algorithm presented in Sections 3.1 and 3.2, the
fronts propagate at a constant speed which results in
uniformly spaced mesh. To introduce some adaptivity
in the sampling performed by this algorithm, we use
a speed function F = 1/P (which is the right hand
side of the Eikonal equation) that is not constant across
the surface. Figure 6 shows the progressive sampling
of a square surface using a speed function with two
different values. The colors show the level sets of the
distance function U to the set of selected points.

Since vertices are added at maximal values of the
geodesic weighted distance, the resulting mesh will be
dense in regions with smaller F , and in regions with
higher F the mesh will be sparse. This is due to the
fact that the algorithm distributes points in such a way
that their weighted geodesic distances to neighbors are
almost equal. The geodesic distance to vertices in a
region with higher value of P is thus smaller. Function
F can reflect the need of the user to refine some specific
regions with more vertices.

To illustrate our approach, we give an example of
a mesh obtained from range scanning. A picture I
of the model can be mapped onto the 3D mesh. Us-
ing a function F of the form F(x) = 1

1+μ|grad(I (x))| ,
where μ is a user-defined constant, one can refine re-
gions with high variations in intensity. On figure 1, one

can see a 3D head remeshed with various μ ranging
from μ = 0 (uniform) to μ = 20/ max(|grad(I (x))|)
(highly adaptive).

3.4. Curvature-Based Remeshing

The local density of vertices can also reflect some ge-
ometric properties of the surface. The most natural
choice is to adapt the mesh in order to be finer in regions
where the local curvature is larger. The evaluation of
the curvature tensor is a vast topic. We used a robust
construction proposed recently in Cohen-Steiner and
Morvan (2003).

Let us denote by τ (x)
def.= |λ1| + |λ2| the total curva-

ture at a given point x of the surface, where λi are the
eigenvalues of the second fundamental form. We can

introduce two speed functions F1(x)
def.= 1 + ετ (x) and

F2(x)
def.= 1

1+μτ (x)
, where ε and μ are two user-defined

parameters. Figure 7(a) shows that by using function
F1, we avoid putting more vertices in regions of the
surface with high curvature. The speed function F1 can
be interpreted as an “edge repulsive” function. On the
other hand, function F2 could be called “edge attrac-
tive” function, since it forces the sampling to put more
vertices in region with high curvature such as mesh
corners and edges. Figure 7(b) shows that this speed
function leads to very good results for the remeshing

Geodesic Remeshing Using Front Propagation 151

Figure 8. Different steps in mesh parameterization: from left to right original mesh, automatic determination of basis points, determination of

associated Delaunay triangulation, calculation of the corresponding geodesic triangles, parameterization interpolation, semi-regular remeshing.

of a surface with sharp features, which is obviously
not the case for the “edge repulsive” speed function
(Fig. 7(a)).

4. Applications to Mesh Parameterization,
Segmentation and Flattening

4.1. Mesh Parameterization

In Peyré and Cohen (2003) we proposed a simple
scheme to parameterize an arbitrary triangulated man-
ifold using a coarse triangulation as base domain. This
coarse version of the mesh is built using our geodesic
remeshing. The parameterization on each correspond-
ing geodesic triangle of the original mesh is built with a
geodesic extension of the barycentric coordinates that
makes use of Heron formula.

The resulting parameterization is smooth on each
triangle of the base domain, and only continuous across
the geodesic edges (much more complex method have
to be used to get globally smooth parameterization, see
(Khodakovsky et al., 2003)). It can be used to build a
semi-regular mesh, as shown on Fig. 8, and a simple
relaxation scheme can be used to regularize vertices
location near the boundaries of geodesic triangles (see
(Lee et al., 1998)).

4.2. Mesh Segmentation Using Centroidal
Tessellation

In Peyré and Cohen (2004b) we have proposed an au-
tomatic mesh segmentation method very well adapted
to the tessellation of a complex manifold in elemen-
tary domains topologically equivalent to a disk. In this
method the mesh is cut into regions that best satisfy the
following properties:

(C1) Boundaries of the regions agree with sharp fea-
tures of the surface.

(C2) Regions are as compact as possible (the ratio
area/perimeter should be large), enclosing equal
areas.

The goal of the algorithm is to build a segmentation
= ⋃n

i=1 Vi of a triangulated manifold . The Vi

will be the Voronoi regions associated with a given set
of points {v1, . . . , vn}. Initially, these points are cho-
sen using the sampling algorithm of Section 3.1. Then
a geodesic extension of Lloyd algorithm will refine the
location of the vi so that they agree with the geodesic
center of mass of each region Vi . Figure 9 shows some
iterations of the Lloyd relaxation scheme, and we ob-
tain a geodesic bee-hive segmentation. At each itera-
tion, the center of mass of each region is computed
using a gradient descent of the energy

Ei (w)
def.=

∫
x∈Vi

d(x, w)2ds.

where ds is the area element on the surface and d is the
geodesic distance.

In order to force the boundaries of the regions Vi

to follow the discontinuities of the surface, we use
the “edge attractive” speed function F2(v) defined in
Section 3.4. This will allow us to “freeze” the front
in regions with high curvature. This way the result-
ing Voronoi regions will have boundaries aligned with
sharp features of the surface, and condition (C1) will be
satisfied. Figure 10 shows the segmentation we obtain
on complex models. In the close-up we can see that
the cell boundaries try to follow the edges of the mesh
whenever it is possible.

Following the ideas of the Section 3.3, we can use
a texture function to modulate the speed function. The
resulting segmentation can take into account both the
texture intensity and the curvature information, accord-
ing to the user will. Figure 11 shows the segmentation
of a texture computed directly on the triangulated mesh
(which can have arbitrary topology). The “segmented
function” on the right is the speed function represented
on the 2D parameter space together with the boundaries
of the Voronoi cells.

152 Peyré and Cohen

Figure 9. Lloyd iterations on various models.

Figure 10. Segmentation of two complex models.

Figure 11. Segmentation of a textured head.

4.3. Fast Geodesic Flattening

In Peyré and Cohen (2004a) we have proposed a
method for flattening a triangulated manifold. This

method is very fast and in contrast to traditional meth-
ods (see Floater et al. (2002) for a complete survey,
and (Gu and Yau, 2003; Khodakovsky et al., 2003)
for more complex and global schemes), it does not

Geodesic Remeshing Using Front Propagation 153

Figure 12. Flattening: influence of the number of base points. The original model is shown on the left of Fig. 13.

Figure 13. From left to right, the original model, texture on the flattened domain, and on the 3D mesh.

require the solution of a large and ill-conditioned linear
system.

Recently, some nonlinear algorithms for dimension-
ality reduction have appeared in the community of
perceptual manifold learning. The most notable are
IsoMap (Tenenbaum et al., 2000) and Locally Linear
Embedding (LLE) (Roweis and Saul, 2000).

The multidimensional scaling approach to flattening
of Zigelman et al. (2002) is closely related to IsoMap.
In order to speed-up the computation and to achieve
a local control over the flattening, we have extended
the classical LLE approach to the geodesic setting.
Our procedure can be used to flatten a small set of
points (chosen using the greedy procedure presented
in Section 3.1). We then extend the mapping to the
whole mesh using a Nyström integral relation, as
already proposed in Bengio et al. (2003). Figure 13
shows the extension of the flattening from this small

Table 1. Average and standard deviation of the angle distribution.

David (Fig. 5) Feline (Fig. 10) Bunny (Fig. 5) Fandisk (Fig. 10)

(700k vert.) (50k vert.) (35k vert.) (6500 vert.)

Original 54◦ (± 8◦) 60◦ (± 7◦) 59◦ (± 6◦) 57◦ (± 8◦)

Remeshing (10% #verts) 58◦ (± 2◦) 60.5◦ (± 2.5◦) 61◦ (± 4◦) 59◦ (± 4◦)

Remeshing (30% #verts) 59◦ (± 2◦) 61◦ (± 2◦) 60◦ (± 3.5◦) 59◦ (± 3◦)

set of points and figure 13 shows the influence of
the number of points. We can then use the resulting
mapping to perform texture mapping, see Fig. 13.

5. Results and Discussion

Uniform remeshing. To show the improvement of the
quality of the mesh that our uniform remeshing algo-
rithm can bring, we report in Table 1 the average angle
of the triangulation together with the standard deviation
of the angle repartition.

Adaptive remeshing. To study the behavior of our
isotropic remeshing as an approximation procedure, we
measure the mean-square Hausdorf distance between
the original mesh and a coarse version produced by our
method. We also compare the distortion result of our
scheme with another greedy procedure, the progres-

154 Peyré and Cohen

Figure 14. Remeshing error. Left: distorsion curve, right: graphic display of the location of the error.

Figure 15. Texturing of the feline model.

Figure 16. An overview of our pipeline. The mesh is first segmented using a weighted geodesic centroidal tessellation. Each resulting patch

is then flattened using the Geodesic LLE procedure. At last, we can perform texture mapping on each base domain.

sive mesh (Hoppe, 1996). On the left of Fig. 14 one
can see the decreasing of the error with the number of
vertices, and on the right a display of the location of
the error. This clearly shows the strength of our scheme
for models with sharp features.

Texturing of a Complex Model. On Figs. 15 and 16
one can see the whole pipeline in action. This includes

first a centroidal tessellation of the mesh, then the ex-
traction and flattening of each cell, and lastly the tex-
turing of the model.

Computation Times. Table 2 shows the complexity of
the algorithms mentioned in the paper. The constant A
is the number of steps in the gradient descent for the
localization of the intrinsic center of mass, which is
about A = 8 for 10 k vertices. The constant B represent

Geodesic Remeshing Using Front Propagation 155

Table 2. Complexity of the algorithms.

F. Marching Greedy sampling 1 Lloyd iter. Zigelman02 Geodesic LLE

Complexity n log(n) n log(n)2 An log(n) Bn log(n) + B3 n log(n) + B2

Times (10k vert.) 2s 10s 6s 55s 28s

the number of base points, which is 100 in our tests.
This clearly shows the speed up that Geodesic LLE
can bring over global methods such as Zigelman et al.
(2002). On a mesh of 700k vertices, the whole pipeline
(i.e. segmentation, sampling and flattening) takes 740s
for Geodesic LLE, 1320s for the classical method of
Desbrun et al. (2002) and several hours for Zigelman
et al. (2002).

Our future works include a theoretical study of the
quality of the embedding given by our algorithms. We
also would like to analyze experimentally the quality of
the whole pipeline. A good way of evaluating the effi-
ciency of such a scheme is to use its output to perform
mesh compression. The mesh atlas provided by our
algorithm is an ideal pre-processing step for perform-
ing wavelet transform in parameter space, in a fashion
similar to Sander et al. (2003).

6. Conclusion

We have described a complete pipeline for 3D mesh re-
sampling, segmentation and flattening. The main tool
that allows to have a fast algorithm is the fast marching
on a triangulated mesh, together with some improve-
ments we added. We introduced a fast algorihtm for
remeshing of a surface with a uniform or adaptive dis-
tribution. This is based on iteratively choosing the far-
thest point according to a weighted distance on the sur-
face. The first stage of the pipeline is the segmentation
of the mesh into a set of genus-0 patches. Our contri-
bution there includes a geodesic extension of the Lloyd
algorithm that is able to construct a geodesic centroidal
tessellation. This iterative algorithm takes into account
curvature information of the surface and is very well
suited to building a set of base domains for mesh flat-
tening. The second stage of our pipeline is a geodesic
flattening procedure. We introduced a geodesic version
of Locally Linear Embedding that is able to perform
fast computations on a given set of points, and to extend
the embedding to the rest of the mesh in a transparent
manner. The resulting flattening is smooth and achieves
a desirable trade-off between conservation of angle and
area.

References

Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., and Desbrun,

M. 2003. Anisotropic Polygonal Remeshing. ACM Transactions
on Graphics. Special Issue for SIGGRAPH Conference, pp. 485–

493.

Bengio, Y., Paiement, J.-F., and Vincent, P. 2003. Out-of-Sample Ex-

tensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clus-

tering. Proc. NIPS, 2003.

Chen, J. and Hahn, Y. 1990. Shortest Path on a Polyhedron. Proc.
6th ACM Sympos, Comput Geom pp. 360–369.

Chew, L.P. 1993. Guaranteed-Quality Mesh Generation for Curved

Surfaces. In Proc. of the Ninth Symposium on Computational Ge-
ometry, pp. 274–280.

Cohen, L. 2001. Multiple contour finding and perceptual grouping

using minimal paths. Journal of Mathematical Imaging and Vision,

14(3):225–236.

Cohen, L.D. and Kimmel, R. 1997. Global minimum for active con-

tour models: A minimal path approach. International Journal of
Computer Vision 24(1):57–78.

Cohen-Steiner, D. and Morvan, J.-M. 2003. Restricted delaunay tri-

angulations and normal cycles. In Proc. 19th ACM Sympos, Com-

put. Geom. pp. 237–246.

Delingette, H. 1999. General object reconstruction based on simplex

meshes. International Journal of Computer Vision, 32(2):111–

146.

Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameteriza-

tions of surface meshes. Eurographics Conference Proceedings,

21(2):209–218.

Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. 1997. The far-

thest point strategy for progressive image sampling. IEEE Trans.
on Image Processing, 6(9):1305–1315.

Floater, M.S., Hormann, K., and Reimers, M. 2002. Parameterization

of manifold triangulations. Approximation Theory X: Abstract and
Classical Analysis, pp. 197–209.

Fua, P. 1997. From multiple stereo views to multiple 3-D Sur-

faces. International Journal of Computer Vision, 24(1):19–

35.

Gu, X. and Yau, S.-T. 2003. Global conformal surface parameteri-

zation. In Proc. ACM Symposium on Geometry Processing, 2003

pp. 127–137.

Hoppe, H. 1996. Progressive meshes. In Proc. ACM SIGGRAPH
1996 pp. 99–108.

Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth

parameterizations with low distortion. ACM Transactions on
Graphics. Special Issue for SIGGRAPH Conference, pp. 350–

357.

Kimmel, R. and Sethian, J. 1998. Computing geodesic paths on man-

ifolds. Proc. Natl. Acad. Sci., 95(15):8431–8435.

Kimmel, R. and Sethian, J.A. 2000. Fast voronoi diagrams on tri-

angulated surfaces. In Proc. of the 16th European Workshop on
Comp. Geom., (EUROCG-00). pp. 1–4.

156 Peyré and Cohen

Kunert, G. 2002. Towards anisotropic mesh construction and error

estimation in the finite element method. Numerical Methods in
PDE, 18:625–648.

Lee, A.W.F., Schröder, P., Sweldens, W., Cowsar, L., and Dobkin, D.

1998. MAPS: Multiresolution adaptive parameterization of sur-

faces. Computer Graphics 32(Ann. Conf. Series), 95–104.

Leibon, G. and Letscher, D. 2000. Delaunay triangulations and

voronoi diagrams for riemannian manifolds. ACM Symposium on
Computational Geometry, pp. 341–349.

Manay, S. and Yezzi, A. 2003. Second-order models for computing

distance transforms. In Proc. IEEE Variational, Geometric and
Level Set Methods 2003, pp. 105–112.

McInerney, T. and Terzopoulos, D. 1996. Deformable models in med-

ical image analysis: A survey. Medical Image Analysis 1(2):91–

108.

Moenning, C. and Dodgson, N.A. 2003. Fast marching farthest point

sampling. In Proc. EURO-GRAPHICS, 2003.

Onishi, K. and Itoh, J. 2003. Estimation of the necessary number of

points in Riemannian Voronoi diagram. In Proc. CCCG 2003, pp.

19–24.

Osher, S. and Paragios, N. 2003. Geometric Level Set Methods in
Imaging, Vision, and Graphics. Springer-Verlag New York, Inc.

Peyré, G. and Cohen, L.D. 2003. Geodesic remeshing using front

propagation. In Proc. IEEE Variational, Geometric and Level Set
Methods 2003, pp. 33–40.

Peyré, G. and Cohen, L.D. 2004a. Geodesic computations for fast

and accurate surface flattening. Preprint CMAP.

Peyré, G. and Cohen, L.D. 2004b. Surface Segmentation Using

Geodesic Centroidal Tesselation. In Proc. IEEE 3D Data Pro-
cessing Visualization Transmission 2004, pp. 995–1002.

Roweis, S. and Saul, L. 2000. Nonlinear dimensionality reduction

by locally linear embedding. Science, 290(5500):2323–2326.

Ruppert, J. 1995. A delaunay refinement algorithm for quality 2-

Dimensional mesh generation. Journal of Algorithms, 18(3):548–

585.

Sander, P., Wood, Z., Gortler, S., Snyder, J., and Hoppe, H. 2003.

Multi-chart geometry images. Proc. Symposium on Geometry Pro-
cessing 2003 pp. 146–155.

Sethian, J. 1999. Level Sets Methods and Fast Marching Methods.

2nd edition, Cambridge University Press.

Sifri, O., Sheffer, A., and Gotsman, C. 2003. Geodesic-based surface

remeshing. In Proc. 12th International Meshing Roundtable, pp.

189–199.

Surazhsky, V., Alliez, P., and Gotsman, C. 2003. Isotropic remeshing

of surfaces: A Local Parameter-ization Approach. In Proc. 12th
International Meshing Roundtable.

Tenenbaum, J.B., de Silva, V., and Langford, J.C. 2000. A global

geometric framework for nonlinear dimensionality reduction. Sci-
ence, 290(5500):2319–2323.

Terzopoulos, D. and Vasilescu, M. 1992. Adaptive meshes and shells:

Irregular triangulation, dis-continuities, and hierarchical subdivi-

sion. In Proc. IEEE CVPR 92. Champaign, Illinois, pp. 829–832.

Tsitsiklis, J. 1995. Efficient algorithms for globally optimal

trajectories. IEEE Trans. on Automatic Control.
Ulichney, R. 1993. The void-and-cluster method for generating dither

arrays. Proc. IS&T Symposium on Electronic Imaging Science &
Technology, San Jose, CA 1913(9):332–343.

Zigelman, G., Kimmel, R., and Kiryati, N. 2002. Texture mapping us-

ing surface flattening via multi-dimensional scaling. IEEE Trans.
on Visualization and Computer Graphics, 8(1):198–207.

