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Abstract

This paper presents a new method to quickly extract geodesic paths on images and 3D meshes. We
use a heuristic to drive the front propagation procedure of the classical Fast Marching. This results in a
modification of the Fast Marching algorithm that is similar to the A∗ algorithm used in artificial intelli-
gence. In order to find very quickly geodesic paths between any given pair of points, two methods are
proposed to devise an heuristic that restrict the front propagation. The multiresolition heuristic computes
the heuristic using a propagation on a coarse map. For applications where pre-computation is accept-
able, the landmark-based heuristic pre-computes distance maps to a sparse set of landmark points. We
introduce various distortion metrics in order to quantify the errors introduced by the heuristically driven
propagations. We show that both heuristic approaches bring a large speed-up for large scale applications
that require the extraction of geodesics on images and 3D meshes.
Keywords: geodesics, Fast Marching, shortest paths, heuristic, A∗ algorithm.

No heuristic 1 landmark 3 landmarks 20 landmarks 50 landmarks 100 landmarks

Figure 1: In order to compute the geodesic path between two points on the surface, computation is needed
on a large part of the surface when using classical fast marching (left). When the distance map to a set
of landmarks is pre-computed, and the propagation is heuristically driven by these maps, only the colored
region is explored, and it becomes smaller and smaller as the number of landmarks increases.

1 Previous works

The extraction of shortest paths is a building block for a large class of applications ranging from graph
theory to computer vision. The computation can be carried in a totally discrete setting (such as a graph) or
over a discretized domain (such as an image or a 3D mesh).
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Graphs and discrete computation. The canonical method to compute shortest paths on graphs is the
Dijkstra algorithm (see for instance [5]). Fast exploration strategies have been used to speed-up the com-
putation. The A∗ algorithm [15] makes use of a heuristic to reduce the search space. Other exploration
strategies have been proposed in the field of artificial intelligence, such as IDA∗ [13].

Images and continuous setting. In order to extract geodesics for a continuous metric, the Fast March-
ing algorithm [19] uses a front propagation to solve non-iteratively a finite difference approximation of
the Eikonal equation. A similar algorithm was also proposed in [24]. The minimal length properties of
geodesics has been applied in computer vision, for example to solve global minimization problems for de-
formable models [3]. The continuous nature of this method is particularly attractive for image processing,
for instance to extract tubular structures and centerlines in 3D medical data [6].

Path planning: from discrete to continuous. Discrete computation on graphs gives rise to numerous
schemes to perform motion planning and the A∗ algorithm is extensively used for path-finding in video
games [21]. For the case of Euclidean metrics, faster algorithms have been devised that exploit specific
data structures such as visibility graphs [18]. The Fast Marching algorithm can be used to extract paths
with a non-Euclidean metric [19]. The authors of [14] compare the Fast Marching and the A∗ algorithms to
perform motion planning, but they do not propose a heuristic modification of the Fast Marching.

2 Shortest Path: Continuous and Discrete Algorithms

In this section we develop a unifying framework which includes the Fast Marching [19], Dijkstra [5] and
A∗ [15] algorithms together with our new heuristically driven propagation.

2.1 Front Propagation Methods for Shortest Path

We work on a discrete set of points and for each point x we have access to its neighbors y, defining the
relation y ∼ x. These points can be embedded in discretete grid (for Fast Marching and for our method)
or can be the vertices of a graph (for Dijkstra and A∗). Our goal is to compute the distance function
U(x) = d(x0, x) to some starting point x0.

Initialization:
• Alive set: the starting point x0;
• Trial set: the neighbors of x0;
• Far: the set of all other grid points.
Loop:
• Let x be the Trial point with the smallest priority P(x);
• Move it from the Trial to the Alive set;
• For each neighbor y of the current point x:

– if y is Far, then add it to Alive and compute a new value for U(y),
– if y is Alive, recompute the value U(y), and update it if the new value is smaller,
– recompute the priority P(y).

• If the end point x = x1 is reached, stop the algorithm.
Table 1: Pseudo-code for the common framework for front propagation.

The propagation methods label the points during the computation according to:
• Alive is the set of points at which the distance value U has been computed and will not change;
• Trial is the set of next grid points to be examined and for which an estimate of U has been computed;
• Far is the set of all other grid points, for which there is not yet an estimate for U .
Table 1 shows the main steps of the algorithms. Each algorithm must implement the following sub-
functions
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• A way to update the value U(y) at a given Trial point y. This computation uses the values of U at the
adjacent locations. This computation depends on the metric used, which can be defined on a graph (for
discrete methods) or on the whole space (for continuous methods). We explain in sections 2.2 and 2.3
specific instantiations for the Dijkstra and Fast Marching algorithms.

• A priority map P orders the set of Alive points according to some computational criterion. In the Fast
Marching and Dijkstra algorithm, P(x) = U(x) is the current distance to the starting point. In our
heuristical front propagation as in the A∗ algorithm, P(x) is chosen to minimize the number of visited
points. We explain in sections 3 to 5 how to actually construct a priority function P that makes use of a
heuristic.

2.2 Discrete Case: Dijkstra

In the discrete setting, a symmetric weight g(x, y) is used to define the distance between two adjacent
points x ∼ y of the graph. The length of a path v = [v1 ∼ . . . ∼ vm], of m adjacent points vi is
L(v) =

∑

g(vi, vi+1), and we define the distance between two vertices

d(x0, x1) = min
v

{L(v) \ v1 = x0, vm = x1} .

The distance U(x) at a vertex x in the alive set is updated during the propagation according to

U(x) = min
y∼x

(

U(y) + g(x, y)
)

.

The shortest path v from x0 to x1 is tracked backward using

v0 = x1 and vi+1 = argmin
y∼vi

U(y).

2.3 Continuous Case: Fast Marching

In R
d, we are given a potential function g(x) > 0, and the weighted geodesic distance between two points

x0, x1 ∈ R
d, is defined as

d(x0, x1) = min
γ

(
∫ 1

0

||γ′(t)|| g(γ(t))dt

)

, (1)

where γ is a piecewise regular curve with γ(0) = x0 and γ(1) = x1. When g = 1, the integral in (1)
corresponds to the length of the curve γ and d is the classical Euclidean distance.

The Fast Marching method uses the fact that the function U satisfies the nonlinear Eikonal equation:

||∇U(x)|| = g(x). (2)

The distance U(x) = u at a point x = xi,j in the trial set is updated during the propagation according to
the solution of

max(u − U(xi−1,j), u − U(xi+1,j), 0)2 +
max(u − U(xi,j−1), u − U(xi,j+1), 0)2 = h2g(xi,j)

2.

This is a second order equation (the equation is written in R
2 for simplicity) and it can be solved as detailed

for example in [4].
The geodesic curve γ from x0 to x1 can be computed by extracting the parametric curve C(t) that solves

the back propagation equation:
dC

dt
= −

−−→
∇U with C(0) = x1.

This gradient descent is a local computation, and it only uses the value of U for a small fraction of the visited
grid points. Note that these grid points are those located in the Alive set at the end of the front propagation
procedure.

3 Heuristically Driven Front Propagation

In this section we explain our algorithm in the 2D setting, and show some numerical results that illustrate
the main features of this method.

3



No heuristic,3D view of the potential

0x

1x

λ = 0.5 λ = 0.8 λ = 1λ = 0

Figure 2: An example of 2D path planning. The set of alive points according to increasing heuristic is
shown in red.

3.1 Propagation with a Heuristic

In order to minimize the number of Alive points at the end of the front propagation procedure, one should
use a priority function P that tries to advance the front toward the goal point x1. In order to do so, we
assume that, together with the current weighted distance to the start point U(x) = d(x0, x), we have an
estimate of the remaining weighted distance V (x) ≈ d(x1, x). Our heuristical front propagation algorithm
follows the implementation of table 1 with a priority map

P(x) = U(x) + V (x). (3)

The rationale behind the definition of P is that d(x0, x) + d(x1, x) is minimal and constant along the
geodesic path joining x0 and x1, see [12].

A∗ Algorithm. For discrete graphs, it has been shown that if the heuristic satisfies V (x) 6 d(x1, x),
then the extracted geodesic is a path of minimum length. This leads to the A∗ algorithm of [15]. Various
strategies have been proposed to devise admissible heuristics, see [10] and the references therein.

Heuristically driven Fast Marching In figure 2, one can see a front propagation, where we have used
the oracle heuristic V (x) = λ d(x1, x), with a parameter λ ∈ [0, 1]. The value λ = 0 corresponds to
the classical Fast Marching propagation, which results in a large region of Alive points (colored in red).
However, as we increase the value of λ toward 1, the explored region shrinks around the geodesic path that
links x0 to x1.

There are however two important issues with this ordering of the Trial set:
• This ordering can break the monotone condition that is required by the Fast Marching algorithm to produce

a valid approximation of the continuous underlying distance function. We show in the numerical results
presented in sub-section 5.2 that the geometric error on the extracted geodesic remains low.

• We do not have immediate access to the remaining distance d(x, x1), since it would involve performing
another front propagation from x1. We explain in sections 4 and 5 two methods to overcome this problem.

3.2 Evaluation of a Heuristic

We cast the problem of finding a good heuristic into the problem of approximating the distance function
d(x, y) between two points (x, y) by some function d̃. We define the heuristic using

V (x) = d̃(x1, x) ≈ d(x1, x).

This approximated distance d̃ should satisfy d̃ 6 d in order not to perturb the propagation from the true
shortest path (computed with V = 0). It must be fast to evaluate and can use a reasonable amount of
pre-computed data.

Section 4 uses a propagation on a coarse map in order to compute such an approximate d̃. This mul-
tiresolution heuristic is fast to compute and does not require the storage of additional data. Section 5 uses
pre-computed distances to landmark points to compute d̃. This landmark-based heuristic requires additional
data but leads to highly accurate estimation of the real distance d while enforcing d̃ 6 d.

To evaluate the quality of the heuristic, we propose two metrics
• The approximation metric

E1(d, d̃) =

∫∫

|d(x, y) − d̃(x, y)|2dx dy,
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is approximated during evaluation using a finite number of precomputed distance maps d(pi, x) to a set
of points {pi}

m
i=1 chosen at random

E1(d, d̃) =
1

m

m
∑

i=1

∫

|d(pi, y) − d̃(pi, y)|2dy.

• The computation gain metric: We measure the usefulness of the heuristic for extracting geodesics between
a set of pairs of points {(xi

0, x
i
1)}i. For each front propagation from xi

0 to xi
1, we measure the area Ai(d̃)

of the Alive set at the end of the propagation. We also measure the area Ai(0) of the Alive set for a
propagation without the heuristic. We define the computation gain metric to be

E2(d, d̃) =
1

m

m
∑

i=1

Ai(d̃)/Ai(0).

When the geodesics queries are random, these two metrics tend to be the same. However, the computation-
gain metric is able to better adapt to typical applications where queries can be highly non-uniform (for
instance in road or tubular structure extraction).

4 Multiresolution Heuristic

4.1 Coarse-to-fine Geodesic Computations

In order to compute the remaining distance V (x) ≈ d(x, x1) with a fast algorithm, we perform a Fast
Marching front propagation starting from the point x1, but on a coarser grid. We thus have introduced a
second parameter for our heuristical front propagation: the resolution R ∈ (0, 1) we use for the coarse grid.
If the original potential map g is of size n × n, the query of P(y) thus requires:
• The pre-computation of a coarse potential map gR of size (Rn)× (Rn). This is done by first pre-filtering

g (to avoid aliasing of high frequencies) and then applying a cubic spline re-interpolation on a coarser
grid.

• The pre-computation of the approximate distance map V of size (Rn) × (Rn) is done by performing a
full Fast Marching on a coarse grid, using potential gR, and starting from point x1.

• During the heuristical front propagation starting from point x0, when P(y) is queried, the value of V is
interpolated with cubic splines on the coarse grid to retrieve a value on the original grid.

In figure 3 one can see the coarse map gR, and high frequency details such as small roads disappear as the
resolution gets too low.

There is clearly a tradeoff between choosing a low R to reduce the computation time, and a high R so
that V (x) approximates d(x, x1) well.

=100%R =30%R =15%R

Figure 3: Resulting potential map gR for various values of R.

The new algorithm we propose allows us to use multiresolution computation for the extraction of
geodesic curves. Using a multiresolution framework for solving the point-to-point geodesic problem is
not so easy because it is a boundary problem, and for instance, multigrid methods are not suitable. Adap-
tive mesh [7] and multigrid methods [16] have been used in conjunction with geodesic active contours for
segmentation.
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4.2 Numerical Validation of Multiresolution Heuristic
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Figure 4: Influence of heuristic strength and resolution on number of visited cells, Hausdorff error and
computation time reduction.

1x
0x
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R 6 0 %<

R 9 0 %<

Figure 5: Influence of the resolution of the heuristic on the shape of the geodesic.

In order to estimate the precision of the results, we use the Hausdorff error between the paths obtained
by fast marching with and without the multiresolution heuristic. In figure 6 one can see the geodesics
extracted for different values of λ. Figure 4 shows the result of our algorithm for various settings on (a) a
synthetic map and (b) a satellite image. We have depicted:
• The 2D map: The red curves indicate the boundary of the visited region. One can see that these curves

shrink toward the geodesic (central blue curve) as one increase the strength of the heuristic from 0% to
100%.

• Hausdorff error vs. heuristic strength λ: We have set the heuristic resolution R to 50%. One can see
that the error is higher for the synthetic map (a). This is due to the fact that this map contains large flat
areas, where a small error in the computed geodesic distance leads to deviation of the extracted geodesic.
In contrast, the geodesic in the satellite image (b) contains very anisotropic areas, which stabilize the
extracted geodesic.

• Hausdorff error vs. heuristic resolution R: We have set the heuristic strength λ to 50%. One can see
that the synthetic map (a) is nearly insensitive to the resolution of the coarse map used to compute the
heuristic. This is because the underlying function is very smooth, so one can reduce the resolution a lot
without too much impact on the accuracy of the heuristic. In contrast, one can see that the satellite image
suffers from excessive variation when the resolution parameter R becomes smaller than 60% and then
again for 90%. This is due to strong topological changes in the path, as depicted in figure 5.
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Figure 6: Graphical display of extracted geodesics for various heuristic strengths.

• Computational time saving vs. heuristic strength λ: The saving is computed relative to the time spent by
classical Fast Marching. In 2D the computation times decrease roughly linearly with the strength of the
heuristic.

• Computational time saving vs. heuristic resolution R (not shown): There is a constant overhead due to the
coarse resolution computation (which results in an offset between the curves for R = 50% and R = 20%).
For R = 20%, this overhead is balanced by the heuristic saving as soon as λ > 5%.

These tests clearly show that our algorithm can bring a large computational speed-up, but the parameters
should be finely tuned to adapt to the characteristic of each map. For instance, these experiments show
that the user must have some prior knowledge about the typical width of the tubular structures he wants to
extract, and set the resolution R so that the coarse map VR still contains these structures.

4.3 Applications of a Multiresolution Heuristic

Volumetric Geodesic Extraction 3D geodesic extraction is very useful in medical volumetric data anal-
ysis. It can be applied to perform tubular structure extraction, and it is extended to virtual endoscopy in [6].
In figure 7 one can see the extraction of 3D geodesics from synthetic data (top and middle rows) and from
real medical data (bottom row) for R = 20%. The red surface shows the boundary of the explored regions
of alive cells. The computational time gain (Comp. gain) is also indicated.

Heuristic 0%3D data 100%40% 80%

1x

0x

Comp. gain -10% Comp. gain 10% Comp. gain 30% Comp. gain 60%

Comp. gain -10% Comp. gain 15% Comp. gain 40% Comp. gain 80%

Figure 7: Extraction of geodesics in 3D.

Globally Optimal Geodesic Active Contours The concept of circular geodesics was first introduced in
[22]. The authors of [1] proposed a simple way to compute circular geodesics around a point, in order to
compute a globally optimal geodesic, with an application to object segmentation. The user simply select a
point C inside the object to segment (see figure 8), and then the algorithm virtually “cuts” the image along
a horizontal line that links C to the boundary of the image. This way, one can force a geodesic path to go
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around C by running a classical Fast Marching from a point S to itself, but forbidding the front to pass
through the segment CD.

Cut
C D CS S

D

Figure 8: Cutting the square domain to compute circular paths.

For an underlying image I , the globally optimal geodesic around C is defined as the closed geodesic
curve with minimum length, where the metric is defined as

g(x) =
1

||C − x||

1

1 + ||∇I(x)||2
+ ε, (4)

where ||C − x|| is the distance from the curve point x to the center C.
The authors of [1] proposed a powerful algorithm based on the branch-and-bound paradigm, which is

a binary search that avoids computing the closed geodesic for each point S on the segment CD. However,
with our heuristic front propagation, we have tested a simpler algorithm that works well in practice. We
simply compute the circular geodesics that pass though a given fixed number of points along the cut segment
CD. These extractions can be performed quickly using our heuristically driven front propagation, with the
restriction that the front should not pass though the cut segment.

In figure 9, we have shown a globally optimal circular geodesic, computed with various heuristic
strengths λ.

Heuristic 0% 40% 100%60% 80%

Figure 9: Globally optimal circular path extraction with increasing heuristic.

Geodesic Extraction on 3D Meshes The Fast Marching algorithm has been extended to 3D meshes in
[20]. Our heuristic algorithm also extends to 3D meshes, with the following modifications with respect to
the Euclidean setting:
• We must construct a coarse mesh approximation of the original 3D mesh. Mesh simplification is a large

topic, and several greedy methods exist, see for example [11]. In our tests, we use the farthest point
strategy proposed in [17] for remeshing, since it uses Fast Marching as a building block.

• Once the heuristic function has been computed on the coarse mesh, it must be interpolated on the original
dense mesh. Several methods for data interpolation on 3D meshes exist, and we have used a method
derived from harmonic mesh parameterization [8]. This involves the solution of a sparse linear system
that describes a harmonic function that fits the values computed on the coarse mesh.

These two steps are quite computationally intensive, but note that:
• The coarse mesh can be pre-computed, and can be re-used for multiple geodesic extraction.
• To avoid the computational overhead of computing the interpolation on the whole mesh, we use the local

parameterization strategy of [23]. We compute the interpolation only on a small set of overlapping disk-
like charts that cover the region of alive vertices.

In figure 1 and 10, one can see the algorithm in action on various meshes, and for various values of the
parameter λ.
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Coarse mesh Heuristic 0% 50% 100%90%

Figure 10: Heuristically driven front propagation on 3D meshes with a multiresolution heuristic.

5 Landmark-based Front Propagation

In this section, we describe an alternate way to implement the heuristic. This heuristic is computed using
an approximated distance d̃ evaluated with a set of pre-computed distances to landmark points.

5.1 Landmark-based heuristic

A new method for distance evaluation on a graph has been introduced in [10] as an admissible heuristic for
the A∗ algorithm. We explain why this method can be useful for our heuristically driven Fast Marching and
give a quantitative numerical study.

This method exploits the triangle inequality, since we have, for every pair of points x and y,

d(x, y) = sup
z

(

|d(x, z) − d(z, y)|
)

.

This equality is still valid in the continuous framework of Fast Marching, and in order to derive a useful
heuristic, one can chose a small set z1, . . . , zn of Landmark points. The set of distance maps dk(x) =
d(zk, x) is pre-computed, and we define the approximation

d̃z1...zn
(x, y) = sup

k=1...n

(

|dk(x) − dk(y)|
)

. (5)

In the following, we drop the z1, . . . , zn dependencies and call the approximated distance d̃. We note that
this approximation always satisfies the condition d̃ 6 d.

Figure 11 gives an intuitive explanation of the efficiency of this approximation. In the ideal case, the
geodesic γk joining a landmark zk to x also passes through y. In this case, we have d(x, y) = d̃(x, y) and
there is no approximation. But in most cases, this is not true, but a geodesic γk passes close to y and d̃ is
indeed a good approximation of the real distance.

γγk γk

xx

zk
y

y y

k

Ideal case Real life case

d(
x
, y

)
d(

y,
z k

)−
d(

x , z
k
)

=

d(
x
, y

)
d(

y,
z k

)−
d(

x, z
k
)

>

Figure 11: Justification of the approximation properties of d̃.
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5.2 Landmark-based Path Extraction

This landmark-based propagation can be used to speed-up the computation of most path planing applica-
tions, including path finding in video games or robotic path planing.

No heuristic 1 landmark 3 landmarks 12 landmarks 20 landmarks

Figure 12: Example of propagation using a landmark-based heuristic with random seeding of base points.

In figure 12, one can see the active region explored by the propagation algorithm for an increasing
number of landmark points. These points are chosen at random on the 2D image. The explored region
progressively shrinks toward the central extracted curve when we add more points, since the heuristic is
becoming more accurate.

H
a
u
sd

fo
rf

f 
 e

rr
o
r

H
a
u
sd

fo
rf

f 
 e

rr
o
r

0
20 40 60 800 20 40 60 800

# landmarks # landmarks

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

Figure 13: Distortion caused by our heuristic propagation on the extracted geodesics. The error is reported
using the Hausdorff distance expressed in pixels (the size of the image is 256× 256).

In figure 13, one can see a numerical evaluation of the precision of the extracted geodesic. It reports
the distortion ||γ − γ̃||H between the original geodesic γ (computed without the heuristic) and γ̃ (computed
with the heuristic). We use the symmetric mean-square Hausdorff metric

||γ − γ̃||2H =
1

2

(

∫

γ

min
y∈γ̃

||x − y||22dx +

∫

γ̃

min
x∈γ

||x − y||22dx
)

,

since this captures the geometric distortion caused by our partial propagation.
On 2D maps containing important curvilinear features (such as the road in the example on the left), the

distortion caused by the heuristic is nearly unnoticeable. On the contrary, for relatively flat maps (such as
the one depicted on the right) the distortion can be relatively high (about few pixels for a map of 256× 256
pixels). This is because the salient features of this map catch the geodesic and avoid large lateral moves
when the front propagation is modified.

In order to improve the quality of the heuristic and thus the resulting speed-up, one has to carefully seed
the landmarks across the image. In the next section we set up a complete framework for the evaluation of
this sampling, together with strategies to get a high-quality seeding of the base points.
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5.3 Seeding strategies for the landmarks

The quality of a sampling can be measured using the previously introduced metrics

Ei(z1, . . . , zn) = Ei(d, d̃z1...zn
) for i = 1, 2.

In order to find sampling locations {z1, . . . , zn} for the landmarks, we use various strategies, among which:
(a) A manual sampling that exploits specific knowledge of the 2D map g. This semi-automatic method is

not studied in this paper.
(b) A random sampling in the image.
(c) A uniform sampling according to the distance d. This can be accomplished using the farthest point

sampling procedure proposed in [17], where one chooses

zn+1 = argmax
z

(argmin
16k6n

d(zk, z)).

(d) A uniform seeding on the boundary of the domain.
(e) A greedy strategy minimizing the E1 metric. We define the locations recursively

zn+1 = argmin
z∈R

E1(z1, . . . , zn, z),

where R is some small set of random candidates.
(f) Same as (e) but using E2 instead of E1.

Distance approximation evaluation. A good seeding strategy should be able to put a landmark before
any couple of points in the domain, near the geodesic path connecting these points. For a constant (i.e.
Euclidean) metric, (d) is thus the optimal sampling scheme. However, for a complex metric, this is no more
the case.

In figure 14, one can see the approximated distance d̃(x1, x) to a target point x1, computed for n = 32
landmarks using various seeding strategies.

Real distance to (a) Random sampling (e) Error-based sampling(d) Boundary samplingPotential g

1x

1x

1x

Figure 14: Graphical display of the approximated distance d̃(x1, x) for various seeding strategies.

In figure 15, one can see a plot of the approximation error E1(x1, . . . , xn). The error-driven seeding
strategy (e) clearly performs the best as expected by its definition. For a smooth potential g (left) the seeding
strategy on the boundary (d) performs well, but it fails to capture the topology of complex 2D maps (right).

Computational saving evaluation. In order to evaluate our algorithm in a real setting, we have set-up a
complete framework using 500 typical queries {(xi

0, x
i
1)}i for various 2D maps. Some resulting shortest

paths queries are shown on the left of figure 16, they are relevant for many standard applications such as
path finding in video games or robot path planing.
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Figure 15: Decreasing of the approximation error E1(z1, . . . , zn) for various seeding strategies.

The right of figure 16 shows how the computational metric E2(x1, . . . , xn) decreases for several sam-
pling strategies. For the greedy sampling strategy (f), we have used another set of 100 typical queries, in
order not to bias the computation of the error E2.

One can see that the computation-driven sampling strategy (f) clearly outperforms the other strategies.
In particular, the approximation-based strategy (e) does not give good results, mainly because typical paths
are not correlated to areas where the approximation error ||d − d̃|| is large.
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Figure 16: Computation speed-up E2(z1, . . . , zn) obtained with a various number of landmarks. The areas
colored in red correspond to the explored region without heuristic.

5.4 Reducing Memory Usage

Cells Representation Classical methods, such as using an octree data structure, can be used to reduce the
memory usage of level set algorithms, for example in order to perform image segmentation [7].

We choose to implement a simple data structure to reduce the memory usage by allocating the grid cell
on the fly during the propagation. A typical cell data structure, for 2D computation, is:

struct cell {
// current geodesic distance
double distance;
// either alive, trial or far
char state;
// pointers to the 4 neighbors
cell* neighbors[4]; };

To be able to retrieve a given cell in constant time, we also store the list of allocated cells in a hash table.
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This is important because when a new cell is allocated, we need to connect it to the existing cells. Figure
17 shows a graphical display of the overall data structures.

This pointer-based representation of the neighboring relation is convenient to extract the geodesic with
a gradient descent. There is some memory overhead due to the explicit storage of pointers to neighbors, but
the fact that our scheme explores significantly fewer cells than classical Fast Marching allows to save much
more memory, as shown in the next section. The computing time overhead due to the use of a hash table is
about 40% in all our tests.

cellNULL

(0,0)

(1,0)

(1,1)
NULL

NULL

NULLHash

NULL

NULL NULL

cell

cell

Figure 17: Data structures used for the propagation.

Computation from Compressed Data To reduce the storage requirement of the distances to landmark
dk(x), we implement a compression procedure. A typical implementation should
• Allow random access of the value dk(x), without decompressing the whole data.
• Be asymetric, since we do not care about the compression time, but we need fast access to distance values.
• Give low decompression error, since we need an accurate heuristic and we need to satisfy the condition

d̃ 6 d as much as possible.
We use a two-step procedure:
• Differential representation: A1(x) = d(x1, x) and

Ak+1(x) = d(xk+1, x) − dx1...xk
(xk+1, x),

where we use the approximated distance d̃x1...xk
to give an estimate of d(xk+1, x) using the first available

k landmarks. This new representation removes the redundancy that exists between the different distance
maps.

• We code each map Ai using a vector quantization scheme [9]. In our tests, we use codeblocks of size
3× 3, and we quantize the resulting vectors of R

9 using a codebook of size 256. This results in a memory
gain of 36 : 1 with respect to storing single precision floats.

The constraints we have on the computation from compressed data are similar to the process of rendering
from compressed textures [2]. We use the differential coding strategy to cope with the particular redundancy
of distances functions. The compression produces neither noticeable artifacts nor distortion of the extracted
geodesics. The computational time overhead due to decompression is about 15% in CPU time.

5.5 Applications of Landmark-based Heuristics

Our landmark-based propagation can be applied verbatim to higher dimensional propagation and to trian-
gulated surfaces in order to speed-up shortest path queries.

Constrained Path Planning Geodesics can be used to compute the path of a robot with various shape and
motion constraints [19]. Basically, each additional degree of freedom adds a new dimension to the domain
in which the front propagation should be performed. Solving such high dimensional problems is time and
memory consuming, so the use of a heuristic is highly desirable. In our experiment, the most important
issue is the memory used by the full-grid classical Fast Marching, and the memory management strategy
exposed in subsection 5.4 is crucial to scale to complex problems.
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Figure 18: Examples of constrained path planning.

In figure 18, one can see two examples of path extractions in 2D with one rotational additional degree
of freedom. This results in 3D front propagation, and the corresponding speed function is depicted on the
left. Figure 19 shows the influence of the heuristic strength λ on the cells explored by the front propagation.

0 Landmark 1 Landmark 5 Landmarks 20 Landmarks

Figure 19: Explored area for constrained path planning.

Geodesic Extraction on 3D Meshes The Fast Marching algorithm has been extended to 3D meshes in
[20]. Our heuristically driven front propagation extends to 3D surfaces in a straightforward manner. We use
a constant metric g = 1 and as the surfaces considered do not have boundaries, the uniform seeding strategy
(c) gives the best results for the E1 metric. In figure 20, one can see the approximated distance d̃(x1, x) for
various numbers of landmarks. In figure 1, one can see the front for various numbers of landmark points.

1 landmark 2 landmarks 5 landmarks 10 landmarks 20 landmarks 50 landmarks 100 landmarks

Figure 20: Approximation of the distance function d(x1, x) using d̃(x1, x) on a 3D mesh, with an increasing
number of landmarks.

6 Conclusion

In this paper we have presented a simple modification of Fast Marching to speed-up the extraction of
geodesics on images, higher dimensional data and triangulated surfaces. This modification uses a heuristic
that drives the propagation and reduces the number of visited cells. This heuristic takes into account the
remaining distance to the end point and two approaches are proposed to estimate this geodesic distance.
The first approach performs a backward propagation on a coarse grid and uses an interpolation scheme to
retrieve the remaining distance on the full resolution grid. This method provides an important speed-up and
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numerical evidences show its efficiently as long as the coarse grid can resolve fine scale details of the metric.
The other approach uses pre-computed distances to a set of landmark points that are combined during the
propagation according to the triangle inequality. This method provides estimations with arbitrary accuracy
when the number of landmarks is increased.

Acknowledgment. We would like to thank Anthony Yezzi for his comments and corrections on the
manuscript.

References
[1] B. Appleton and H. Talbot. Globally optimal geodesic active contours. J. Math. Imaging Vis., 23(1):67–86, 2005.
[2] A. C. Beers, M. Agrawala, and N. Chaddha. Rendering from compressed textures. In Proc. of SIGGRAPH 1996,

pages 373–378, 1996.
[3] L. D. Cohen and R. Kimmel. Global Minimum for Active Contour models: A Minimal Path Approach. Interna-

tional Journal of Computer Vision, 24(1):57–78, Aug. 1997.
[4] L.D. Cohen. Multiple Contour Finding and Perceptual Grouping Using Minimal Paths. Journal of Mathematical

Imaging and Vision, 14(3):225–236, May 2001.
[5] T. H. Cormen, C. E. Leiserson, and R. R. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Mas-

sachusetts, 1990.
[6] T. Deschamps and L.D. Cohen. Fast Extraction of Minimal Paths in 3D Images and Applications to Virtual

Endoscopy. Medical Image Analysis, 5(4), December 2001.
[7] M. Droske, M. Meyer, M. Rumpf, and C. Schaller. An adaptive level set method for interactive segmentation of

intracranial tumors. Neurosurgical Research, 27, 2005.
[8] M. S. Floater, K. Hormann, and M. Reimers. Parameterization of Manifold Triangulations. Approximation Theory

X: Abstract and Classical Analysis, pages 197–209, 2002.
[9] A. Gersho. Vector Quantization and Signal Compression. Kluwer Academic Publishers, Boston, 1992.

[10] A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph theory. Technical Report
MSR-TR-2004-24, 2004.

[11] H. Hoppe. Progressive meshes. Proc. of SIGGRAPH 1996, pages 99–108, 1996.
[12] R. Kimmel, A. Amir, and A. M. Bruckstein. Finding shortest paths on surfaces using level sets propagation. IEEE

Trans. on PAMI, 17(6):635–640, 1995.
[13] R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell., 27(1):97–109, 1985.
[14] P. Melchior, B. Orsoni, O. Lavialle, A. Poty, and A. Oustaloup. Consideration of obstacle danger level in path

planning using A* and fast-marching optimisation: comparative study. Signal Processing, 11(11):2387–2396,
November 2003.

[15] N.J. Nilsson. Problem-solving Methods in Artificial Intelligence. McGraw-Hill, New York, 1971.
[16] G. Papandreou and P. Maragos. A fast multigrid implicit algorithm for the evolution of geodesic active contours.

In CVPR04, pages II: 689–694, 2004.
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