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Abstract. Important attributes of 3D brain segmentation algorithms in-
clude robustness, accuracy, computational efficiency, and facilitation of
user interaction, yet few algorithms incorporate all of these traits. Manual
segmentation is highly accurate but tedious and laborious. Most automatic
techniques, while less demanding on the user, are much less accurate. It
would be useful to employ a fast automatic segmentation procedure to do
most of the work but still allow an expert user to interactively guide the
segmentation to ensure an accurate final result.

‘We propose a novel 3D brain cortex segmentation procedure utilizing dual-
front active contours, which minimize image-based energies in a manner
that yields more global minimizers compared to standard active contours.
The resulting scheme is not only more robust but much faster and allows
the user to guide the final segmentation through simple mouse clicks which
add extra seed points. Due to the global nature of the evolution model,
single mouse clicks yield corrections to the segmentation that extend far
beyond their initial locations, thus minimizing the user effort. Results on
15 simulated and 20 real 3D brain images demonstrate the robustness,
accuracy, and speed of our scheme compared with other methods.

1 Introduction

Three dimensional image segmentation is an important problem in medical image
analysis. Determining the location of the cortical surface of the human brain from
MRI imagery is often the first step in brain visualization and analysis. Due to the
geometric complexity of the brain cortex, manual slice by slice segmentation is
quite difficult and time consuming. Thus, many automatic segmentation methods
have been proposed which eliminate or nearly eliminate user interaction.

The active contour model has been widely applied in medical imaging, which
was introduced in [1] as the “snakes” and is an energy minimization method.
Malladi and Sethian [2] showed the initial contributions on 3D segmentation of
medical images, after that, numerous contributions [3-8] have been made on the
segmentation of complex brain cortical surfaces.

These methods used the active contour model as the final step for the cor-
tex segmentation, applied geometric and anatomical constraints and/or utilized
significant pre-processing of the data to obtain desirable final segmentations. Fur-
thermore, curve evolution process in these methods are very time-consuming.



Some other methods were also proposed for brain segmentation, such as fuzzy
set methods [9, 10], Bayesian Methods [11], Markov random field methods [12-
14], expectation-maximization (EM) algorithm [15] and so on. These methods
were aimed at segmenting the brain tissues automatically, and limiting the user
interaction to choosing the parameters of the automatic process, setting initial
surfaces for surface evolution, or restricting regions to be processed. It is usually
impossible or very difficult and unintuitive for experts to guide the segmentation
process with their professional knowledge for improving the accuracy of the final
result. In our opinion, methods that allow simple and intuitive user interaction
(while minimizing the need for such interaction as much as possible) are more
useful than totally automatic methods given the importance of high accuracy and
detail in cortical segmentation.

In this paper, we propose a novel 3D brain cortex segmentation scheme based
on dual-front active contours which are faster and yield more global image-based
energy minimizers compared to other active contours models. This scheme also
adapts easily to user interaction, making it very convenient for experts to guide
the segmentation process by adding useful seed points with simple mouse clicks.
This scheme is very fast and the total computation time is less than 20 seconds.
Experimental results on 15 simulated and 20 real 3D brain images demonstrate
the robustness of the result, the high reconstruction accuracy, and the low com-
putational cost compared with other methods.

2 Cortex Segmentation by Dual-Front Active Contours

2.1 3D Brain Cortex Segmentation with Flexible User-Interaction

The basic idea of dual-front active contour model is proposed by the authors in [16]
for detecting the object boundaries. Using this model, the segmentation objective
is achieved by iteratively dilating the initial curve to form a narrow region and
then finding the new closest potential weighted minimal partition curve inside by
dual front evolution.

Due to the complex and convoluted nature of the cortex and the partial volume
effects of MRI imaging, the segmentation of cortex must be considered in three
dimensions. Here we propose the 3D brain cortex segmentation scheme based
on the dual-front active contours. This scheme is simple, fast, and accurate with
flexible user-interaction. In Fig 1, we show an overall diagram of this scheme. And
we will give the details about choosing the active region and the potentials in the
following subsection.
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Fig. 1. Overall diagram of 3D brain cortex segmentation process.



2.2 Active Region and Potentials Decision By Histogram Analysis

The original dual front active contours use morphological dilation to form the
narrow active region from an initial curve. In fact, this is just one way to obtain
the active region, we may use some other methods to define the active regions for a
given segmentation, or class of images. And for the 3D brain tissue segmentation,
the morphological dilatation is not a good solution because of the complex and
convoluted structure of cortex. It is possible that the labels of some tiny and
convoluted parts may be changed during dilation, and this will affect the result’s
accuracy.

In this subsection, we give a simple way to decide the active region by analyz-
ing the histogram of the MRI normal brain image. The Fig. 2 shows the histogram
analysis of the three tissues in brain: CSF, GM, and WM. Panel (a) is the his-
togram of a sample 3D MRI elderly brain image. There are three peaks and two
bottoms in the histogram. These three peaks approximate to the average mean
value of the three tissues. In fact, the neighborhoods of these two bottoms corre-
spond to the voxels located around the boundary of different tissues. Because of
the partial volume effect, it is hard to separate these voxels just by simple thresh-
olding. We treat these voxels as unlabeled voxels, and use dual-front evolution to
separate them.

As shown in the Panel (b) of Fig. 2, by setting different thresholds, the whole
3D image may be divided into GM seeds, WM seeds, CSF seeds, background
points, and unlabeled voxels which are the voxels within the two regions R; and
Ry around these two bottoms. Background points are ignored for the computation.
For the image with high noise level, we will smooth it first, then calculate the
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Fig. 2. The active region location is decided by the histogram analysis and thresholding
of the 3D MRI brain image. (a): the histogram of a sample 3D MRI brain image; (b):
the center of R; is the bottom between the peaks of CSF and WM, the center of R is
the bottom between the peaks of CSF and WM. hi and h2 decide the size of R; and Ra.

Now, for the potentials for different labeled curves, we use region-based in-
formation for guiding the fronts’ evolution. We calculate the mean values ucgp,
ugm and uy p, the variance values 02 ¢, 02, and o3 ,,, of the three different
kind of voxels with different labels lcsr, lgar and lyps. Then the propagation
potentials for the labeled points (x,y) are decided by
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where I(x,7) is the average value of the image intensity in a window of size
3 x 3 centered at the examined point.

3 Experimental Results

In this section, we show validations of our approach on various 3D simulated
and real MRI brain image data sets. We use T'1-weighted images for our test
because they provide the best gray/white contrast and are commonly used for
neuroanatomical analysis. All the experimental results shown in this section are
obtained from 3D volume process directly.

To evaluate the efficiency of our method for every tissue type 7' (GM, WM,
and CSF), four probability measures are defined by equation
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where Np is the number of reference ground truth voxels of tissue T. Np is
the number of voxels detected by our algorithm as the voxels of tissue 7.

TP

3.1 Validation on Simulated MR brain data

In Fig. 3, we present the results of the segmented WM tissues for five different
slices of one 3D simulated brain image provided by BrainWeb [17]. We use the
potentials defined by Eq. 1 with w; =1 and ws = 0.1. The size of Ry, hq, is equal
to 20, the size of Ra, ha, is equal to 10 (see the Fig. 2).

In Table 1, we also give the comparison of the GM segmentation results on
the same 3D simulated image of our scheme and other three methods, the fuzzy
C-means method [18] implemented by ourselves, the Hidden Markov Method [12]
provided by the website of FMRIB Software Library (http://www.fmrib.ox.ac.
uk/fsl/), and the coupled surface algorithm reported in [7].

Rate Fuzzy C-means|Hidden Markov|Coupled Surface| Dual-Front
Method Method Algorithm  |Active Contours
TP (%) 87.3 92.3 92.8 93.3
FN (%) 12.7 7.7 7.2 6.7
FP (%) 23.2 5.7 6.0 5.6
Overlap Metric 0.708 0.873 0.875 0.883
Time (s) 373 500 3600 15

Table 1. Comparison of the gray matter segmentation results of our method with some
other methods on one 3D simulated brain image, which is the same one as that in Fig. 3.

In Fig. 4, the 3D models of segmented GM and WM surfaces from our method,
and the ground truth data are also shown. From these segmentation results and
comparison results, we can see that our scheme performs better than the other
three methods in the accuracy of result and the computational efficiency.

We also test our method on 15 3D simulated brain images provided by Brain-
Web [17,19], which are T'1 modality, Imm slice thickness, different noise levels
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Fig. 3. Comparison of the segmentation results from our method with the ground truth
data of five slices of one 3D simulated brain image provided by BrainWeb [17], which
is T'1 modality, 1mm slice thickness, 3% noise level, 20% INU. And the image size is
181 x 217 x 181.

The top row presents the segmentation results obtained from our method; the middle
row shows the ground truth data provided by BrainWeb database; the bottom row shows
the difference between the segmentation results from our method and the ground truth
data. These five columns correspond to five slices of the test 3D image.

1%, 3%, 5%, 7%, and 9%, and different INU settings 0%, 20%, and 40%. All im-
ages are the same size of 181 x 217 x 181. We still use the potentials defined by
Eq. 1 with w; = 1 and wo = 0.1. The size of Ry, h1, is 20, the size of Ro, ho is 10.
For the image with high noise levels 5%, 7%, and 9%, we first use the isotropic
nonlinear diffusion proposed by Perona and Malik [20] for denoising images. For
the segmentation results, the overlap metrics of three tissues for these 15 images
are from 0.747 to 0.944. The measurement results show that our scheme performs
well in segmenting the cortex even for the image with high noise level and INU
setting.

3.2 Validation on Real MR brain data

To further evaluate our segmentation method under a wide range of imaging
conditions, we also test the proposed algorithm on 20 real MRI brain images and
compare the segmentation results with the manual segmentation by experts and
some other segmentation methods. The 20 normal MR brain data sets and their
manual segmentations were provided by the Center for Morphometric Analysis at
Massachusetts General Hospital and are available at ISBR website http://www.
cma.mgh.harvard.edu/ibsr/.

Fig. 5 shows the overlap metric, the average overlap metric of the CSF, GM
and WM segmentation results on 20 normal brains, from the manual method,
various automatic segmentation results provided by ISBR, the hidden Markov
method [12] provided by the website of FMRIB Software Library (http://www.
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Fig. 4. Comparison of the 3D models of the GM and WM surfaces from our method
and from the ground truth data. The test image is the same one as that in Fig. 3. (a)
and (b) are the 3D models of the GM and WM surfaces obtained from our method; (c)
and (d) are the 3D models of the GM and WM surfaces from the ground truth.

fmrib.ox.ac.uk/fsl/), and our proposed scheme. For the segmentation of these
real brain images, we still use the potentials defined by Eq. 1 with w; = 1 and
wo = 0.1. The size of Ry, hy, is 20, the size of Ro, hs, is 10. For these 20 brain
images, the histograms are not as that shown in Fig. 2, we need to choose the two
bottoms manually. So how to decide the two bottoms automatically need further
research.

In this comparison with other segmentation methods, except for the meth-
ods provided by ISBR [21], we also compare our method with the other three
recently proposed methods, the Bayesian method proposed in [11] (MPM-MAP);
the couple-surface algorithm [7] (ZENG), and the hidden Markov method [12]
(FAST). But with the rapid development of the medical image processing tech-
nology, it is impossible to compare all the related methods and test our methods
on all the real brain images. This study is just the initial step of our research
work on brain image analysis. We will still work on it, and improve the model’s
robustness and the segmentation’s accuracy.

3.3 Simple and Useful User Interaction

The above two subsections show the segmentation result of our scheme with auto-
matic thresholding only. Furthermore, our scheme is very convenient for users to
add simple seed points just by mouse clicks to improve the segmentation accuracy
dramatically. Fig. 6 gives an example of this nice property.

In Fig. 6, the first row shows one slice of the test 3D image (Panel (a)) which
is the same as that in Fig. 3, the ground truth data of the WM tissue (Panel (b))
in this slice, and the corresponding 3D model of the WM tissue (Panel (c)). The
second row shows the segmentation result based on one automatic thresholding.
When setting the active region according to the Fig. 2, if the region Rs is shifted
to high intensity region, and the size of Ry is large, we get the different active
region between WM and GM tissue. The black voxels in Panel (d) present the un-
labeled voxels after setting this threshold, and the different labeled voxels (shown
in the figures with different colors) present different tissues’ seed points. After
segmentation, the WM tissue is shown in Panel (e), the 3D model of segmented
WM is shown in Panel (g). Here we can see, if automatic thresholding cannot
provide enough WM seed points, the segmented WM tissue is incorrect. In this
case, the third row shows the segmentation result after user interaction. As shown
in Panel (h), the user interaction is just several mouse clicks within seconds to
add some new seed points manually only on one slice, then we run the dual-front
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Fig. 5. The overlap metric of the CSF, GM, and WM segmentation results on 20 normal
real brain images from various segmentation methods. The results of some automatic
segmentation methods provided by ISBR. AMAP: adaptive MAP; BMAP: biased MAP;
FUZZY: fuzzy c-means; MAP: Maximum Aposteriori Probability; MLC: Maximum-
Likelihood; TSKMEANS: tree-structure k-means; FAST: Hidden Markov method [12];
MPM-MAP: the Bayesian method proposed in [11]; ZENG: the couple-surface algo-
rithm [7]; DFM: our scheme.

evolution again to segment GM and WM. The segmented boundary of GM/WM is
shown in Panel (i), the extracted WM tissue and the corresponding 3D model are
shown in Panel (j) and Panel (k). The figures show that the accuracy of the result
after user interaction is much better than that just based on automatic thresh-
olding. This sample shows that our method allow the simple user-interaction, we
will still research on the efficiency of the user-interaction.

3.4 Computational Time

Another nice property of our methods is the high computational efficiency. We
test our method on 15 simulated 3D MR brain images and 20 real normal 3D MR
brain images. The average total computation time is around 20 seconds, in which
the average computational time for the histogram analysis is around 5 seconds
and the average computational time for dual front evolution is around 15 seconds,
on the 2.5 GHz Pentium4 PC processor.

We downloaded the software of the Hidden Markovian method from the web-
site of FMRIB Software Library (http://www.fmrib.ox.ac.uk/fsl/), and im-
plemented the fuzzy C-means method [18] for the comparison with our method.
On the same computer, the average computational time of Hidden Markovian
method for the same test images used in our method is around 550 seconds, the
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Fig. 6. The simple user interaction can improve the segmentation accuracy dramatically.
The blue line in figure (1) is the zoom-in of the user added seed points in figure(h).
The difference of the segmentation result from the automatic thresholding (fig.(g)), the
automatic thresholding with manual correction (fig.(k)), and the ground truth (fig.(c))
are shown in the red circles of figure (c), (g), and (k).

average computational time of the fuzzy C-means method for the same images is
around 450 seconds. The comparison shows that our method is much faster then
these two methods. The average overlap metric for gray matter and white mat-
ter segmentation of these two methods are 0.473 and 0.567 from fuzzy C-means
methods, 0.556 and 0.648 from Hidden Markov method, which are lower than that
of 0.739 and 0.670 from our method.

Although the average overlap metric for white matter segmentation of the
Bayesian method proposed in [11] on the same 20 real brain data sets is 0.683
(shown in Fig. 5), a little higher than that of 0.670 from our method, they reported
that the computational time is around 280 seconds which is much slower than our
methods.

Because many active contour model based methods always combined with
some pre-processing methods such as fuzzy C-means, Bayesian segmentation, and
etc. The active contour model is just implemented as the final step to yield the
final cortical surface, it is hard for us to give an exact comparison. Here, we give
the brief discussion about the computational time of some active contour model
based methods.

Xuw’s method [6] combined the adaptive fuzzy C-means algorithm [9], they
reported that the computational time for the final deformable surface algorithm
is about 3 hours. As for the coupled surface method proposed by Zeng [7], it was
reported that for a 3D image of the whole brain with the voxel size of 1.2 x 1.2 x



1.2mm3, their algorithm runs in about 1k on a SGI Inigo2 machine with a 195MHz
R10000 processor for the implementation of skull stripping, cortex segmentation
and measurement simultaneously. They also reported that the average overlap
metric for gray matter segmentation on the same 20 normal brain images provided
by ISBR is 0.657, which is lower than that of our method, 0.739. Goldenberg [8]
also adopted the coupled surfaces principle and used the fast geodesic active
contour approach to improve the computational time for cortex segmentation.
They reported that the computational time of their method is about 2.5 mins for
a 192 x 250 x 170 MR image of the whole brain on a Pentium3 PC. But they did
not give the quantitative analysis of the segmentation results.

4 Conclusions and Future Work

In this paper, we propose a novel scheme for 3D brain cortex segmentation based
on dual-front active contours. The cortex segmentation results from the synthetic
and real MR brain images, and the computation time compared with other meth-
ods demonstrate the high reconstruction accuracy, the low computational cost and
the minimum user interaction of this scheme. In the future, our research work will
focus on the following aspects.

First, our dual-front active contour model is very fast, and easy to be im-
plemented, it is flexible to combine with other methods as the post-processing
method and improve the segmentation accuracy further. We will work on the
combination of the current model with some powerful INU bias compensation
methods and smooth methods to improve the model’s robustness.

Second, in this paper, we just use the region-based information to guide the
curve evolution because the interfaces among difference tissues is not clear (be-
cause of the partial volume effect). We are also working on proposing some better
local operators, and combine them with the region-based information in the po-
tentials to improve the accuracy of the segmentation result further.

Third, our model can be generalized to multi-spectral data, which is very
common in MR imaging. In this case, the voxel intensities are assume to be
vectors instead of scalars, and how to design the potentials, and the thresholds
need further investigation.

Fourth, we are working on finding the better methods to choose active region
automatically for improving the method’s generality.

This dual front active contour model provides a novel, simple idea for 3D brain
tissue segmentation, and also has strong potential applications in other medical
image analysis domains, where a volumetric layer is the study of interest. Exam-
ples include the left ventricular (LV) myocardium of the heart and the boundary
of the liver.
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