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Abstract

In this paper, we introduce a really 3-D deformable model, which evolves in true 3-D images, under
the action of internal forces (describing some elasticity properties of the surface), and external forces
attracting the surface toward some detected edgels. Our formalism leads to the minimization of
an energy which is expressed as a functional. We use a variational approach and a finite element
method to actually express the surface in a discrete basis of continuous functions. This leads to a
reduced computational complexity and a better numerical stability.

The power of the approach to segment 3-D images is demonstrated by a set of experimental
results on various complex medical 3-D images.

Another contribution of this approach is the possibility to infer easily the differential structure
of the segmented surface. As we end-up with an analytical description of class C* of the surface
almost everywhere, this allows to compute for instance its first and second fundamental forins. From
this, one can extract a curvature primal sketch of the surface, including some intrinsic features like
parabolic lines, extrema of curvatures, umbilic points etc. .., which can be used as landmarks for
3-D image interpretation.

Utilisation de surfaces déformables pour segmenter
des images 3D et en déduire les caracteristiques
differentielles

Résumé

Dans cet article nous définissons un modeéle déformable 3D qui évolue dans des images tridi-
mensionnelles sous l'action de forces internes (décrivant les propriétés élastiques de la surface) et
de forces externes attirant la surface vers les contours. La modélisation de ces forces définie une
fonctionnelle d’énergie 4 minimiser. Une approche variationnelle et des éléments finis conformes
sont utilisés pour decomposer la surface dans une base de fonctions continues. Ceci permet une
meilleure stabilité numérique et réduit la compléxité algorithmique.

La fiabilité de cette approche pour la segmentation 3-D est illustrée par plusieurs resultats
experimentaux obtenus a partir d’images médicales tridimensionnelles.

Un autre avantage de cette méthode est la possibilité de déduire la structure differentielle de
la surface segmentée grace a la description analytique (C* presque partout) de la surface. Cela
nous permet de calculer la premiére et seconde forme fondamentale de la surface et ainsi extraire
les caracteristiques intrinséques de celle-ci, telles que les lignes paraboliques, extremna de courbures,

points ombiliques etc. . ., qui seront utilisées comme point de repére a l'interpretation d'images 3-D.
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1 Introduction

We propose a deformable 3-D shape model which can be used to extract reliable surfaces in 3-D
images and infer a differential structure on them.

Usually, 3-D images are given as a set of intensity voxels (volume elements). A 3-D edge
detector, after a local image analysis 13, 19], provides a set of 3-D edgels (edge elements). These
edgels can be considered as the trace of a certain number of surfaces trace.

One is then confronted with a dual problem :
1. select edgels belonging to the same surface trace; this is the segmentation problem.

2. recover a continuous and differentiable description of each surface; this yields an interpolation
between the original sparse discrete data and the possibility to compute a differential structure

useful for interpretation [1].

Both questions were analyzed by {16] who proposed to solve (1) by a connectivity analysis and
{2) by the fitting of a set of local quadratic models. But difficulties arise when the connectivity
analysis fails because edges are too sparse, and also when the model is too local to reliably describe
a complex shape.

Another approach to solve a similar problem in 2-D consists in introducing an active deformable
model [12], which solves the segmentation problem (1) assuming an initial estimate is provided !
and the interpolation problem (2) when the curve is expressed in a basis of continuous functions
[8, 14]. Such models were generalized in 23-D and 3-D by [18, 17) where the deformable surface is
constrained as a surface of revolution evolving under the forces computed on a 2-D image or a set
of 2-D images.

In this paper, we introduce a really 3-D deformable model, which evolves in true 3-D images,

under the action of internal forces (describing some elasticity properties of the surface), and external

An initial solution might be provided by several means, including user-interactivity, which is usually encouraged

in medical applications.
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forces attracting the surface toward some detected edgels. Our formalism leads to the minimization
of an energy which is expressed as a functional. We use a variational approach and a finite element
method to actually express the surface in a discrete basis of continuous functions. This method

“adaptative subdivision” of the parametrization domain without adding nodal

allows us to do an
points and consequently without increasing the size of the linear system we solve. This leads to
a reduced computational complexity and a better numerical stability than the finite difference
method.

The power of the approach to segment 3-D images is demonstrated by a set of experimental
results on various complex medical 3-D images.

Another contribution of this approach is the possibility to infer easily the differential structure
of the segmented surface. As we end-up with an analytical description of class C* of the surface
almost everywhere?, this allows to compute for instance its first and second fundamental forms
[10]. From this, one can extract a curvature primal sketch of the surface [15, 4], including some
intrinsic features like parabolic lines, extrema of curvatures, umbilic points etc. .., which can be
used as landmarks for 3-D image interpretation [2].

Last but not least, a careful analysis of our external forces (those which attract the deformable
surface toward the edges) shows some intriguing connections with the properties of minimal sur-
faces : under certain conditions, the deformable surface should behave like a minimal surface, i.e.
a surface whose mean curvature is null everywhere. We should investigate this point further in the
near future.

The paper is organized as follows: We first define the 3D deformable model and then give

an appropriate external force and his relationship with 3D edge points. We show then, how to

2except between 2 finite element patches, where the representation is only of class €', i.e. the tangent plane is

continuous.
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solve this minimization problem by a finite element method. Finally we indicate how to infer the

differential structure of the 3D images from the obtained surface.

2 Energy Minimizing Surfaces

We need a surface model on which we can act and control its shape depending on the nature of the
3D image data we are trying to fit, while having an accurate localization of the surface boundaries.

A model which provides these two features is the deformable surface model (17, 18]. This
model is defined by a space of admissible deformations Ad and a functional E to minimize. This

functional F represents the energy of the model. A surface v is defined by a mapping:
Q=10,1x][0,1]— R®

(s,7)— v(s,7) = (z(s,7),y(s,7), 2(s,7))

and the associated energy E is given by:

E:.:Ad—- R
dv? vl|? 8% |’ 8% |’ 8211]2
U — E(v) = ‘/‘;wlvo -8-; +‘w0‘1 ’-(-9—1‘ + 2’(1)1'1 B—SE + wap 53—2 + wp 2 8_7‘_2—! + P(v(s,r))ds dr

where P is the potential associated to the external forces. The external forces refer to the forces
which will allow the surface to localize the image attributes. So, if we want the surface to he
attracted by 3D edge points, the potential P has to depend on the 3D gradient image. While
the internal forces represent the forces acting on the shape of the surface. They depend on the
coefficients w; ; which determine the elasticity (wip,wp1), the rigidity (weg,wg2) and the twist (wy 1),
i.e. the mechanical properties of the surface. We can also constrain the surface structure (like the
wrapping) by chosing different types of boundary conditions (for instance, to create a cylinder or

a torus).
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A local minimum v of £ satisfies the associated Euler-Lagrange equation:

J Jv ol v Vol ik ik 8%v a2 9\ _
~Be (w032) -~ B (woaB2) + 25005 (wiadigs) + i (w2088) + fn (weaB) = -vPw)
+ Boundary Conditions
(1)

which represents the necessary condition for the minimum (£’(v) = 0). A solution of equation (1)
can be seen either as realizing the equilibrium between internal and external forces or reaching the
minimum of the energy FE.

Since the energy function is not convex, there may be many local minima of E. The Euler-
Lagrange equation (1) may characterize any such local minimum. But as we are interested in
finding a 3D contour in a given area, we assume in fact that we have a rough prior estimation of
the surface. This estimation is used to solve the associated evolution equation in which we add a

temporal parameter ¢:

el Jé) o sl el a2 Jokd 82 92 } a2 a2 -
%~ & (w082) - & (woa ) + 255 (windigs) + £ (weodt) + £ (w0253) = -V P(v)

v(0,s,7) = vo(s,7) initial estimation

+ Boundary Conditions
(2)
A solution to the static problem is found when the previous solution v(t) stabilizes. Then the term

Ov

ot vanishes, thus providing a solution of the static problem.

3 Fixing up the potential P

The potential P is such that the force F(v) = —VP(v) has to attract the surface to the image
attributes we are looking for. Our main goal is the extraction of “good” edge points (i.e. to be

able to remove spurious edge points, while insuring connected contours). Thus the surface has to
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be attracted by edge points and those points must minimize the energy:

Eert = //P(v(s,r))dsdr (3)

For this purpose we set the potential P = — |VZ|? so that edge points will minimize E,,;, where
T is the 3D image convolved with a gaussian function. But for numerical stability (a complete

discussion is given in |7, 8]) the force is normalized as:

VP
F(v) = - k—m—.
)= ~kigpy

where k is a parameter which allows to tune the attraction force. Now, all the edge points including
spurious ones have the same ability to attract the surface. But spurious points generally form small
connected components in 3D images; consequently, when the surface converges towards the real
contours, all these points first attract the surface and then are ignored by the regularization effect
of the algorithm.

Another way to make the edge points attract the surface is using a Chamfer distance defined
in [3] or an Euclidean distance [9] image. This image is obtained by computing the distance
from edge points to every image point. These distances allow to compute at each image point the

attraction force to the nearest edgels and consequently produce a faster convergence. For instance
P(u(s, 7)) = —emd(er))?

produce a slow convergence whereas

P(v(s,7)) = m and P =-1if d(v(s,7))=0

produce a faster convergence (d(v(s,r)) denotes the distance between v(s,r) and the nearest edge

whereas the smallest distance between two distinct points is one pixel).
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4 Minimizing surfaces and 3D image edge points

In the previous section we showed how to choose correctly the potential P such that the surface
will localize accurately the edge points. Here we comment on the relationship between the surface

minimizing the energy of external forces E.,, and 3D edge points.

Eeut = // P(a(s,r))dsdr = —//IVI(x(s,r))[dsdr

First we recall the definition of the 3D edges [5].
Definition: A 3D edge is a surface § whose points have a maximal gradient magnitude in the

direction normal to the surface. All points along the surface S (called Canny’s edge points) satisfy:

d|VI(z(s,r))|
dN(z(s,r))

=0 (4)
where N (xz(s,r)) is the normal to the surface § parametrized by the application z(s,7) and Z is
the image /(z,y, z) convolved with a gaussian.

To establish the relation between the energy minimizing surfaces and this definition, we define

the energy associated to the external forces as

Bp(S) = —ﬁ//]VI(z(s,r))ldsdr (5)

where |S| = [ [ dsdr.
In the appendix we show that a surface § is a local minimum of Ep, with respect to infinitesimal

deformation, if:

d|VI(z(s,7))] eG+gE 1 .
dN(z(s,7)) _ _EC (lVI(x(s,r))I- m//IVI(z(s,r))(dsdr) =0, (6)

where E(s,r), G(s,r), e(s,r) and g(s,r) are the coefficients of the first and second fundamental

forms in the basis {z,,z,} (we use the same notations as in [10}). A similar result for planar
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curves was shown in {11]. A remarkable result is that the fraction 2%‘%92 is nothing else than

the mean curvature of the surface S, if we use an orthogonal parametrization.

Equation (6) shows that there exists two very interesting specific situations:
1. minimal surfaces (i.e. surfaces with a mean-curvature which is null everywhere),

2. surfaces whose trace is made of edgels with constant gradient magnitude (in this case, the

term within parentheses vanishes in equation (6)).

In effect, in both cases, the second member of equation (6) vanishes to zero, which means
that Canny’s edge points coincide with the minimal external energy of a deformable maodel (if the
parametrization remains orthogonal).

In practice these are interesting but exceptional academic situations, and the deformable model
simply converges toward a solution which is an equilibrium between the applied external forces
(corresponding to the energy Ep) and the internal forces, parametrized by the elasticity coefficients
w; ;.

If the surface has cyclic conditions (as it is the case for cylinders or torus), we have two additional

equations:
: 1
IVI(2(L, 7)) = |VI(2(0,r))] = E//|\7I(:c(s,r))[dsdr vr € [0, M] (7)

IVI(z(s, M))| = [VI(z(s,0))| = %//|V1(z(s,r))|dsdr Vs € [0, L] (8)

where © = [0, L] x [0, M].

-~1
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5 Numerical solution by finite elements

We consider the same evolution equation as in the previous section:
2 2 2 2 82 a2
8 - & (wio8) - & (woade) + 20 (wiadigs) + B (wao5) + & (woafs) = -V P()

v(0,s,7) = vo(s,r) initial estimation

+ Boundary Conditions

(9)

In the following, to simplify the notations, we consider the equation (9) with null houndary condi-
tions (this is done by a simple change of variables).

We solve this last equation using a Finite Elements Method (FEM) [6]. The main idea of the

FEM is to approximate over the Sobolev space HZ(1) the solution of the associated variational

problem: find v € HZ(Q) such that

a(v,p) = L(y) VY € H3(Q) (10)

where L is assumed to be independent of v (see appendix for details). There exists a unique
solution to this equation, since the bilinear form a{y, ¥ ) is symmetric and positive definite as long
as wg (s, ) > 0.

A well-known approach for approximating such problems is Galerkin’s method, which consists
in defining a similar discrete problem, over a finite subspace Vj, of the Sobolev space H}(Q). The

associated discrete problem for (10) is: find v, € V}, such that
a(vh,up) = L(up) VYV up €V (11)

which leads to solve a linear system over the space V}. The finite element method is characterized

by three aspects in the construction of the space Vj:

e A tessellation is established over the set @ = [0,1] x (0, 1].

8
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¢ The functions v, € V) are piecewise polynomials.

o There exists a basis in the space V;, whose functions have small support.

Details on the tessellation of the domain §? and the construction of the subspace V} with the
Bogner-Fox-Schmit (BFS) elements are given in the appendix. Expressing v; € Vj in the BFS

basis leads to the identity:

Np—l,Nr—l 3vh 8‘Uh 82vh
vh= ) on(a)es+ 5 (@)W + 5 = (ai)ms + 5 (ai) (12)
1,7=0

where a;; = (th,, jh,) are the nodal points. Equation (12) gives us a C! analytic solution over the
set ). Finally the solution of the discrete problem associated to the equation (1) is equivalent to
a solution of the linear system:

A-V=1L (13)

where the matrix A is symmetric, definite positive and tridiagonal per bloc. The reader can find

all details on the variational problem and linear system (13) in the appendix.

6 Discretization of the evolution problem

After we discretized the problem (2) in space, we discretize it in time with a finite difference method.

This leads to:

-1
VE=V'Z L AVt = Ly

(14)
V0 = v initial estimation.
where 7 is the time step. Equation (14) can be rewritten:
(Id+ 7A)- V' = V'™l 4 7Ly (15)

Finally to find a solution to the equation (9) we have to solve a linear system M -V = N at each

time step, for which the matrix M = (Id 4 rA) is banded, symmetric and positive definite. This

9
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linear systemn is solved with a Conjugate Gradient method, in which the solution V;_; is taken as
an initial guess at time t. This approach appears to have a faster convergence than a Cholesky

factorization.

7 Elasticity and rigidity coefficients

The elasticity and rigidity coefficients wi; have a very important role in the convergence process
of the surface toward the image edges.

These coefficients have to be chosen in a correct way such that the internal energy (the terms
of the energy F including a coefficient wy ;) and the external energy [ [ F(v)dsdr have the same
magnitude. In this case a minimum of the energy F will be a trade-off between the internal and
external energy, and the obtained surface will perfectly fit the edge points while heing smooth
and regular. But if the internal energy is preponderant, the surface will tend to collapse on itself
without detecting any image edge, whereas in the opposite case (small internal energy) the surface
will converge toward the image edges while being very rough.

To insure that both internal and external energy have the same order of magnitude we found
that it is sufficient to chose the coefficients wy; in a way that the linear system of equations (9) be

well conditioned. This leads to:
212 3
wip = wor = hihl and  wy = wi] = wee = h,hf

where h, and h, are the discretization step of §2.
We set w19 = wpy and wyg = wyy; = wose since the 3D image data were isotropic and consequently

all directions have the same weight.

10
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8 The computation of the vector L

The vector L(e;;) = — [ VP (vi1(s,7))ei;(s, ) dsdr (where e;; = (¢ij, ¥ij, mij, Gj) is detailed
in the appendix) represents the contribution of the external forces which attract the surface toward
the edges in the linear systemn we solve at each iteration. Thus, the more we weight the potential
P=- |VI|2 the more accurate is the result and the faster is the convergence.

Since the potential P is known only at integer values (discrete image data) we have to compute
the L(e;;) with a numerical integration. Consequently we compute VP at any point (z,y,z) € B3
by a trilinear interpolation of its eight neighbors.

To take into account all the contributions of the external forces, we modified the numerical
integration formula such that every image point in the set v([(i—1)h,, (i+1)h,)x[(7 —1)h., (7 +1)h,])
will be taken into account in the computation of each term L(e;;). This method allows us to do an
“adaptative subdivision” of the rectangle K;; = [ih,, (i+1)h,]x [k, (j+1)h,] without adding nodal
points and consequently without increasing the size of the linear system we solve. This method
significantly reduces the algorithmic complexity while increasing the accuracy and the convergence

speed.

9 Inferring the differential structure from 3D images

In the previous sections we showed how to use the deformable surface to segment and fit some
3-D image edge points. In the following we assume that the surface has localized accurately the
3-D image edges, which means that we have reached a minimum of E. We now use this surface
to compute the differential characteristics of the 3-D image surface boundary. This computation

can be done analytically at each point of the surface since the use of FEM gives us an analytic

11
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representation of the surface v(s, r):

Ne=1Ne-1 avh (9vh 32vh
v= > wa(ai)ei + 55 (@) + 5= (aig)n; + gan(as)s (16)

1,5=0

where ;;,¥i;,7;; and (;; are the basis functions and the coefficients vx(a;;), %%(aij), %y—"(a,-j)

S T

2
and gs—gﬁr(aﬁ) are computed by solving the linear system (14). Another major contribution of the

analytic representation is that at each point of the surface the tangent plane is given by the vectors

_ Ov — OJus
v,_mandv,_a—; .

This allows us to compute all the differential characteristics in local

coordinates, and consequently handle more general situations. Let us consider the basis {v,,v,, N}

vy AV

AL and let Tp(S) denotes the tangent plane to S at the point p € R3. Since N,
3 r

where N =

and N, belong to T,(S) we can write

N, = anv, + ano,

z
(

221V, + a220»

and therefore dV,, which denotes the differential of N computed at point p, is given by the matrix
(@ij)ij=1.2 in the basis {v,,v,, N}. This matrix can be expressed in terms of the first and second
fundamental forms of § in the following way [10].
an a1z -1 e f G -F
~ EG- F?
as1  Qazm f g -F F

where E, F, G, e, f and g are the coeflicients of the first and second fundamental form in the basis

{vs,vs, N} defined by:

E=<uv,v,> F=<v,v,> G=<v,v >

e=< Nyvg,, >, f=<N,v,e > ¢g=<N,vp >

*In the following the subscripts s,r,ss,7 and sr denote the first and second derivatives.

12
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This gives us the relations:
F —eG F - fG
w o= R e = ST
_ eF-fE _ [F—-gF
T BG-F? "™ T EG-F
known as the equations of Weingarten. Thus the Gaussian curvature K and the mean curvature

H of S at p are:

_ eg — f? _ 1 _1leG-2fF+ gk
=ga-p H=-zlantaen)=c—Frm

K = det(dN,,) = det(a,-j)
The principal curvatures are the negative eigenvalues of dN, they satisfy the equation:
det(dN, + kI) = k* —2Hk + K =0 and therefore k= H + H? - K

These equations give us a systematic method for classifying the points p of the surface in different

classes:

o Elliptic if det(dN,) > 0

Hyperbolic if det(dN,) < 0

Parabolic if det(dN,) = 0 with dN, # 0

Planar if dN, = 0

Umbilic if ky = k,.

Thus for computing these characteristics we have to compute the first and the second fundamental
forms of the surface. The surface v(s,r) is C*® within each finite element patch but only C! along
the isoparametric curves s = th, or » = jh,. Therefore, in the following experiments, the number
of nodal points is about 600 (N, ~ 30 and N, ~ 20) for a surface which fits approximately 210 x 60
data points. This gives the abhility to compute the coefficients of the second fundamental form

over more than 6000 data points, whereas only the coefficients of the first fundamental form and

13
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the coeflicient f of the second fundamental form can be computed over the totality of the data
points*. If absolutely necessary, we could convolve the second derivatives in the neighborhood of

the isoparametric curves, with a gaussian filter to insure a C? continuity everywhere.

10 Experimental results

Using a real 3-1) deformable model to segment a 3-D image provides better results than the iterated
application of a 2-1) deformable model to successive 2-D cross-sections. In effect, the 3-D model
easily brides edge gaps in 3-D, i.e. not only within a cross section, but also l)e.tween cross-sections,
insuring that the result is globally a smooth surface, and not only a collection of smooth planar
curves. This significantly improves the robustness of the segmentation; for instance it is even
possible to remove all the edges of a single cross section (assuming that the edges are correctly
detected in the other ones) without degrading too much the final result.

We present in Figure 3 an example with artificial data. The 3D image here is a cylinder
where we have removed some edges in 3 successives cross sections, to compare the results obtained
by a 2-D model applied to successive cross sections with a full 3-D deformable model. With the
deformable surface we can restore the lost edges and obtain a perfect reconstruction of the cylinder
(Figurc 3), whereas a 2-D model [8] cannot restore the lost edges even if we use the same attraction
force as for the 3-D model.

We present now a typical example, with real data. Figure 4 shows a set of significant cross-
sections of a vertebra (out of a total of 40 cross-sections), obtained with a X-ray scanner® and the

initial segmentation provided by the user (the external curves show the intersection of the given

‘the computation of f involves the cross derivative v,, which is a component of the Bogner-Fox-Schmit basis, and
hence is computed at the nodal points directly by solving the linear system (15).

®a courtesy of Pr. J.L. Coatrieux

14
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surface with the corresponding cross-sections).

Figure 5 shows the resulting surface obtained after 40 iterations, in the same set of cross-
sections. It is interesting to notice the remarkable accuracy of the segmentation, although the
detected contours were often incomplete (due to noise effect). Figure 6 shows a wire-frame repre-
sentation of the resulting surface®.

We also present another typical example with real data. Figures 7 and 9 present some cross-
sections of a human head (out of 70) obtained with Magnetic Resonance Imaging (MRI)”. Figures
8 and 9 show some cross sections of two different surfaces with the 2-D images. We remark the
accurate localization by the surface of the 3-D edges. A wire-frame representation of these surfaces
is given in figure 10.

Figure 11 represents some cross sections of the 3D edge image of a human heart (obtained with
MRI) with the initial surface (in grey). Figure 12 shows some cross sections of the surface, once it
has reached the minimum of £. We can notice the good localization of the surface on the 3D edge

points. Figure 13 gives a 3D representation of the inside cavity of the left ventricle.

11 Conclusion and future research

We have shown how a deformable surface can be used to segment 3-D images by minimizing an
appropriate energy. The minimization process is done by a variational method with finite elements.

The use of finite elements method has some advantages compared to the finite difference method:

1. it requires less discretization points and consequently produces smaller linear system to solve,

thus reducing significantly the algorithmic complexity.

®Obtained with the modeller of Chakib Bennis at INRIA.

"by courtesey of General-Electric CGR.

15



inria-00075157, version 1 - 24 May 2006

2. it produces more accurate results since the external forces can be computed more accurately,
3. it provides an analytical representation of the surface.

This last feature is the most important one for inferring differential structures of the surface,
and we showed how to compute the first and second fundamental forms of the deformable model.
These characteristics provide a helpful tool for recognizing 3D objects. They will be used soon to

match the deformable surface to an anatomical atlas [2].

12 Appendices
A Surfaces and 3D edge points

In this first appendix we give a necessary and sufficient condition for a surface to produce a local

extremum of the energy:
Ep(S) = |5| /[vz s,7))ldsdr

where |S| = [ [dsdr. A necessary and sufficient condition for the surface S to produce a local

extremum of Ep with respect to infinitesimal deformations is:

dclgvlz(;((ssr))))l - g (1wt ) w//'w seldsin) <0, (17)

and
P(e(L,r)) = P(z(0,r) JS;//Pdsdr vr € [0, M] (18)
Pla(s, M) = P(e(5,0)) = 5 //Pdsdr ¥s € [0, L] (19)

where E(s,r), G(s,7), e(s,7) and g(s,r) are the coefficients of the first and second fundamental
form in the basis {z,,z.} (see [10] for details about the notations),Q = [0, L] x[0, M} and P = |VI]|.

Let us consider S, a small deformation of the surface S such that the parametrization of Sy is:

z* =z + Moz, + Bz, +YN) (20)
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where a(s, ), B(s,7) and 7(s, r) are arbitrary continuous and differentiable functions and {z,,z,, N}
are the derivatives of z and the normal to the surface.

S is a local extremum of Ep if and only if

dEp(S))

=0 21
dA A=0 ( )

for all a, 8 and 7.

We are going to show that (21) holds if and only if (17, 18, 19) are satisfied.

By definition
[Ja, P(z*(sx,72))dsxrdry
ffﬂ,\ dsydry

where (s, 7)) € Q) are the parametrization variables of Sy . Let A : Q@ — §Q, such that h(s,r) =

Ep(Sy) = (22)

A

3 . Hence

z?

(sx,72). Since the variables s and r are independent the Jacobian J, = |2

Jh P(z* o h(s,r))dsdr

Er(Si) = [ Jo Indsdr

To compute the derivative %ﬂ

and N. For this purpose we use the following equations (§ 4.3 p. 231 in [10]):

(23)

, we need to compute the derivatives of the vectors z,, z,
A=0

1 T2
z,, = I'1yz, + 12, + N

Ty = Tpy = oz, + [z, + fN
2,y = D392y + Tipz, + gN

where the coefficients I‘f-‘j are the Christoffel symbols of § in the parametrization ¢ and where e, f,
g are the coeflicients of the second fundamental form of S. In the following the Christoffel symbols
I‘fj have been replaced in terms of the coefficients of the first fundamental form F, F, G and their

derivatives.

17
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Thus computing %‘2’\—) and evaluating it at A = 0 leads to:
dP G .| E
PERTAT TNV
+//a,\/EG(P — P,)dsdr + //a,F\/g(P — Pn)dsdr
dP — 1 /G | E
+//ﬁ,\/EG(P _ P,)dsdr + //5,1«“\/;:’(19 _ P.)dsdr

+//7 [%\/E—C—;_ (P - Pm)ig—j‘\/.E—zég} dsdr

dEp(Sy)
d\

|S| dsdr

1
where P,, = Pdsdr.
L0y
Integrating by parts the integral (except the last one) yields (17) as a necessary and sufficient
condition for (21) to be satisfied for all a, 8 and . And evaluating these integrals at the boundaries

yields the two additional equations (18) and (19).

B Details on the numerical solution

B.1 Variational formulation

Let ¢ € HZ(Q) be a smooth function. If v is a solution of equation (9), we have:

v 0 v 0 Ov 0%
at(pdsdr /‘;5;<w106>4pdsdr /;)5;<w016><pdsdr+2/aar (111?6><pdsdr

8? %v ik 8%
+/0ﬁ <w2'°ﬁ> pdsdr + /{; o2 <w0,2w> pdsdr = — /;] V P(v)pdsdr

where the function v depends on t, s and 7. We remark that the variable ¢t does not depend on s

and 7, thus we can separate them (for more details see [6]). The Green’s formula yields:

d v dp v Oy 8%v F%p
a/ vgadsdr+/ wlo—g—dsdrﬁ-/ u,01-——§—dsd +2/ w”@s@rac@rd sdr
9% 8%
+/w20523fddr+/w02812)32dd7‘— /VP(v)pd.sdr

18
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Let us set:

) /‘ Jdu Bv Ou Qv 9%*u 0% ; 0%y 0% 4 0%u 0%*v
= —_— _ —_— e - — ——— Wy =5 =
a(u,v a o ds Os + wor dr Or w20 Os? Os? v OsOr dsdr 029r2 Jp2

and

L(w) = —/ VP udsdr
N

This leads to a new formulation of the problem: given vy € L%(Q) and VP ¢ L%(0, T, LQ(_Q)),

find a function v € L%(0,T, H{Q))nCY(0,T, LY Q)) satisfying:

v(0) = vo(s,7) (24)

w;; € L®(Q) and w,; j(s) > a >0
Since the variables s, r and t are independent, we can solve equation (24) in two steps: first solve

the static equation: find v & HZ(1) such that

a(v,p) = L(p) Y€ H(Q) (25)

where L is not supposed to depend on v (we remind the reader that there exists a unique solution to
this equation, since the bilinear form a(g, ) is symmetric and positive definite as long as w; ; > 0),

and then solve the evolution equation (24). This yields the equation (15).

B.2 Tessellation of Q@ and the basis functions

Given the numbers of discretization points in the two axes of parametrization Ny, N, > 1, we
set hy = Nﬁ’ h, = N,—l:T and consider a uniforin subdivision of 2 of step size h, and A,

composed of the nodes a; ; = (zi,y;) = (¢hs,jh,) 0< i< N,—-1, 0<j <N, -1 Thus

N,-1,N.-1 N.-1,N.-1
Q=1[0,1)x[0,1] = U K;;= U [Bhe (G4 V)R, X [Ghe, (5 + 1)R,]
: 1,7=0 i,7=0
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Since the higher derivatives order appearing in the equation (1) are of the fourth order, the
finite element space Vj, must satisfy V, C C! © H(Q) (see for details [6]). For this purpose the

space HZ(Q) is approximated with the Bogner - Fox - Schmit elements [6] defined by:

¢ The rectangles K

ij, defined by the vertices ¢, 1 < k < 4.

o The set Py, of polynomials containing the basis functions:

PKfi = Q3(R2) = {pu p(8,7’) = Z 7a1a25a17‘az }

ai<3, 1<i<?

2
o The set Tk, = {p(ck), 8p<9(;:k)’ 8p(9(6k)’ 3817%%) 1<k< 4} which allows to define in a

r sor

unique way the basis functions over each rectangles K;;

The subspace V}, is then defined by:
Vi = {v € CI(Q), YiK,; € Q3(K,‘j)}

where @ (I) is the vector space of the restrictions to an interval I C R? of the polynomials whose
degree is less than k for each variable, and vy is the restriction of the function v to the subset /.
The basis functions of the finite element subspace V), are ¢;;, ¥;;, ni; and (;; defined in a unique

way over each rectangle K;; by:

eijlar) = i %P;‘i(akz) = a‘p,'”(au) = %%%(akz) = 0
Boaw) = bgus Pilen) = Z(aw) = Fh(aw) = 0 (20)
%l(akl) = bijei mijlam) = Qg—;‘(akz) = %%,L(akl) = 0
Sli(am) = yan Gilaw) = F(aw) = Fi(aw) = 0

where:

1 fi=kandj=1
6ijkt =
0 otherwise
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Thus Vv, € V, we have the identity:

Ne-LN--1 S, Hvn 02uy,
ve= > wn(a)en + (e + (e + 5 5(a0)G
1,7=0

providing a continuous representation of the solution over the space 2.
Equations (26) gives the expressions of the basis functions ¢;j;, ¥;;, 73; and {;;. This leads
to analytical expressions which are too long to be reported here. Instead, we give a graphical

representation of them (Figure 1).

B.3 Discrete problem and linear system

Rewriting the discrete problem associated to equation (25) with the basis functions, gives us the

four equations: V2,7 =0,...,N, -1, N, -1

a(vn, ¢i;) = L(pij)
a(vn, ¥i;) = L(vij)

(27)
a(vh, mi5) = L(mi;)

a(vn, Gi;) = L((i5)

and, using the identity (12): V¢,5=0,...,N, -1, N, -1

N-— ,Nr— v
k,i:(} Y un(ar)a(ers 0i;) + B (ar)a(er, i) + B (ar)a(en, i) + 375‘: axr)a(ew, Gij) = L(wij)

Zkz_l et vh{ar)a(¥r, i) + 8”, (akt)a(rt, ¥is) + %”;.“(akt Ja(¥riy miz) + 3,—3‘,‘ arr)a(r, Gi;) = L(¥ij)

~1.N,-
Zk, Y on(ar)a(mu, @) + Z (am)a(nu, i) + G2 (aw)a(ni, mi;) + 3—5“ art)a(nu, Giz) = L(mi;)

Zu_l Nt v (ap)al(Cur, i) + %‘%(akz) a($kt, ¥ij) + %";"(au) a(Cris Mij) + E,—,ﬁ(au) (Crts Gig) = L(Gij)
28)

—_—

2
Equation (28) is a linear system where the unknowns are vp(aw), %v—’fl(akl), %%(akl) and g?}é%(ak[).

S

Finally the solution of the discrete problem associated to (25) leads to a solution of a linear
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system: A-V = L, where: A = (fiij)ijzo,....Na-LNr—l is a tridiagonal blocs array:

a(pij, ort)  alpij i) alwi, ma)  alwij, Ger)
- a(Vij, prt)  a(ij, ¥r)  al®i;, mer)  a(Wij, Cu)

a(nij, ort)  alnij,¥r)  a(mij, met)  almis, Cet)

a(Cijoort)  al(Ciovnt)  alCij,m)  a(Gijy Crt)

the fi;j array elements depend on the elasticity and rigidity coefficients.
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Figure 1: Representation of the four basis functions ¢, ¥, 7 and (.
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Figure 3: Here we show how the deformable surface (in grey) can reconstruct a deteriored edges

b

while having a 3D homogeneity. In this example a 2D model cannot reconstruct the lost edges even

if we use a 3D potential
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Figure 4: Some cross sections of the initial surface given by the user

Figure 5: The corresponding cross sections of the solution
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Figure 6: A wire-frame representation of the vertebra
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Figure 7: Represent

Figure 8: Representation of some cross sections of the surface obtained by the algorithm
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N

Figure 9: Another example, where the initial condition was similar to the one in the previous

example
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Figure 10: Two wire-frame representations of the surfaces corresponding to the previous examples
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Figure 12: Here we give a further exemple where we use a deformable surface constrained by

N

3
¥

—— Y

boundaries conditions {cylinder type) to segment the inside cavity of the left ventricle. The cross
sections of the surface (in grey) are given here with the contour image to show the accurate

localization of the surface.

Figure 13: A representation of the inside surface of the left ventricle
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