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ABSTRACT

A new method of reconstructing three-dimensional (3D) tabu
structures from cone-beam projections is proposed in thgep
Minimal path method is applied to detect 2D tubular struesuin
the cone-beam projections. The extracted 2D informatierfused
to design a weight function over the 3D volume so that minipzh

method can be applied again to extract centerlines of 3Dldaubu

structures. The validity of the proposed weight functiolieseon

the sparsity of 3D images containing tubular structurese pfo-

cedure of estimating the radius of 3D tube from 2D projecien
also described. The proposed method requires neither luese-
reconstruction, nor tree matching, one of which is usuatiyassary
in the existing reconstruction methods. The method is robus
small motions between different projections.

Index Terms— Tubular structures, cone-beam, minimal path

1. INTRODUCTION

Reconstruction of three dimensional (3D) tubular struegufrom

multiple cone-beam projections has important applicatiormedi-

cal image analysis. For example, the extraction of 3D cagoaa

teries in the analysis of X-ray coronary angiographies §bjd the
intracerebral vascular reconstruction in neurosurgeaatipe [2],

are both concerned with reconstructing 3D blood vesseis trone-
beam projections. Using a digital flat panel, cone-beameptigns
are usually obtained in a rotational acquisition mode wiiked step
in rotational angle. A few projections can be selected froenthole

sequence for the reconstruction task. For example, in eoyaarter-
ies reconstruction, the projections corresponding todneescardiac
time are selected such that a static 3D reconstruction isilples
Motion estimation can be performed after the static recangons

at different cardiac time are obtained. We are mainly camegvith

static reconstruction from a few projections in this paperthe issue
of motion estimation will not be discussed, although it ie af the

main tasks in quantitative coronary analysis.

The existing reconstruction methods can be classified imto t
categories according to whether it requires 3D volume rsitoo-
tion or not. Methods in the first category usually perform eon
beam image reconstruction, then apply 3D segmentationttaatx
the tubular structures [3]. For general 3D cone-beam reaois
tion, most common non-iterative algorithms are based or#uoi-
projection formula proposed by Feldkamp [4]. Although fiiteé
back-projection reconstruction is faster than iterata@nstruction,
the resulted images usually contain sever artifacts dudeaver
simplified line-integral model. Iterative cone-beam restoinctions
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claim better reconstruction quality, but suffer from highnguta-
tional cost. After 3D volume is reconstructed, tubular stines can
be extracted using minimal path method [5]. Li and Yezzi psgal
to represent 3D tubular structure as a 4D curve to incorpaeatius
information such that a global minimizing 4D path can be a-com
plete solution to the reconstruction task [6]. The methbdsdo not
require 3D cone-beam reconstruction usually first perfobBrs2g-
mentation in each projection to extract 2D centerlines, {erform
tree matching over the trees from different projectionetmnstruct
3D tubular structures. For example, in [2], Bullitt et al aglssed the
specific problem of reconstruction of 3D curves from a paibf
curves in the presence of error. In [1], Blondel et al perfednmul-
tiocular matching to build correspondences between theedares
of different projections. The approach developed by Jargtbup
also falls into this category [7]. When processing 2D priets,
each pixel is assigned a rank to indicate its likelihood af@énside
a blood vessel. Then 2D ranking functions of different visgvan-
gles are paired to form a weight function of the volume thatssd
in 3D centerline extraction. However, the issue of radiusregtion
is not addressed in Jandt's work.

In this paper, we present a reconstruction method, whialaetst
both the centerlines and radii of 3D tubular structures. mie¢hod
does not require cone-beam reconstruction, so it belontigeteec-
ond category discussed above. 2D centerlines in each pojere
first extracted using minimal path method. Then the distanap
corresponding to the distance between pixels and 2D cémgsris
computed for each projection. A 3D weight function is obéain
by fusing the distance maps of all the projections. Finallyc&nter-
lines are reconstructed from the 3D weight function via miali path
method, and radii at discrete centerline points are estidfabm the
size of 2D tubular structures. Our contribution to the fieldhe in-
troduction of a new weight function for minimal path segnagian,
which exploits the sparsity of tubular structure imagesyel as a
low cost radius estimation procedure.

The remainder of this paper is organized as follows. In $acti
2, minimal path method and tubular structure detectiondasep-
timally oriented flux are briefly reviewed. Section 3 detdils 3D
weight function design and radius estimation. In Sectiothd,ex-
perimental results with simulated coronary data sets aasemted
and discussed. We conclude the paper in Section 5.

2. MINIMAL PATHS AND TUBULAR STRUCTURE
DETECTION

2.1. Minimal Path

Minimal path, also called geodesic, is a path connectinggisg
point and an ending point that minimizes the total cost acdatad
along the path. Lety : [0,1] — Q be a smooth curve, the cost



functional can be regarded as a weighted lengtt ahd expressed

as
L(y) = / W () I (1) (1)

wherey'(¢) is the derivative ofy, andV is a weight function defined

that the desired features can be represented by the mingrcaive.
In case of tubular structure segmentation, the weight fancitl’
should incorporate the information from tubular structdegection.
Such kind of detection aims at detecting the presence oflaubu
structures as well as estimating local orientation andditee struc-

on the domair) that can vary with applications. Using this setting, {Ure- The detectors that have been proposed include Hesasul

the solution to the minimal path proble is a global minimizer of
the weighted length,

~" = argmin L(v) )

VEP(zs,xe)

wherez s andzx. represent the starting and ending points of the path

andP(xs, z.) is the set of all the paths betweepandz..

In computer vision community, minimal path method has bee

applied to image segmentation, especially the centerktraaions
of tubular structures, such as roads and blood vesselshisdsind
of application, weight function is usually designed sucit tine re-
gion inside the tubular structures has a small value reativthe
background or other objects. Therefore the optimizer psefiee
path passing through tubular structures to the solutioas phass
through background.

To solve minimal path problem, minimal distance map associ-
ated with the starting point, must be computed. The minimal dis-

tance mapU,, (z) is a function over the image domafn, whose

value equals the weighted length of the minimal path conmgct

pointsx s andx, i.e.

Uz, (z) = Lemin L(v) 3

filters and optimally oriented flux (OOF). Hessian basedrflteave
difficulties when there are other objects adjacent to theltutstruc-
ture. To overcome this drawback, Law and Chung introduce&,00
which estimated the structure orientation by finding a ptije axis
on which the projected gradient flux is minimized [9]. Theachage
of OOF is that its performance is not disturbed by the adjaobn
Jects. In [6], Li and Yezzi proposed to represent a tubulafese as
the envelope of a family of spheres with continuously chaggien-
r}er points and radii, and developed two different 4D weiginictions
which can ensure the sphere with the desired radius has \egight
than those spheres with inaccurate radii. The 2D centeghti@ac-

tion in our approach has adopted a 2D version of Li and Yezzi's

method, which allows simultaneous extraction of centerind ra-
dius. A drawback of the method is that it requires user inptistart
points and end points of tubular structures. The key poiteai®n
technique [10] can be incorporated to remove the requiréofand
points, but hasn’t been implemented by this time.

3. FROM 2D CONE-BEAM PROJECTIONS TO 3D
WEIGHT FUNCTION

The first step in our approach is to process each cone-beam pro

jection to extract 2D centerlines and estimate local théslsnof the

whereP(z,, x) is the set containing all the possible paths betweerprojected tubular structures. After that, 3D centerlireorestruction

xzs andzx, andz € Q. U, (z) satisfies Eikonal equatioWU,, =
W, which can be solved by different schemes after discrébzat
An efficient non-iterative algorithm for solving the equutiis fast
marching algorithm [8]. We have applied fast marching atbam to
compute minimal distance map in both the 2D and 3D centeglae
tractions. Once the minimal distance map is computed, nahpath
can be obtained by gradient descent starting from the enubing

and radius estimation are done sequentially. As mentionelkc-
tion 1, our weight function for 3D centerline extraction teputed
from centerlines in 2D projections. So the focus of this isecis
to design a 3D weight function using the extracted 2D infdrama
Table 1 lists the notations that will be used in our discusskig. 2
illustrates the physical meanings of these notations.

z.. Fig. 1 shows a 2D cone-beam projection and the 2D centsrline

extracted from it.

s I~

(a) A cone-beam projection (b) Extracted 2D centerlines

Table 1. Notations

Notations Descriptions
x a point in the 3D field of view
Si radiation source location of theth
projection
proj;, thei-th projection operator
3D

centerlines of the 3D tubular structure
y2P 2D centerlines in the-th projection,
equivalent to prgj(v*")
Euclidean distance map associated with
~2D | defined over the-th projection

d2D

i

F|2% 1. A cone-beam projection and the associated 2D centerlines 3.1. Weight Function Design

o

2.2. Tubular Structure Detection

Minimal path method relies on proper design of weight functio
obtain meaningful solution. Based on the information ected from
2D projections, we are interested in forming a 3D weight fiorc
suitable for minimal path method to extract centerlinesdt@oular
structures. Due to the nature of minimal path, the desireidhve

When applying minimal path method to solve image segmeamtati function should have small values inside the tubular stmectand

problem, the difficult task is to design a weight functin such

lowest value on the centerlines.
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Fig. 2. lllustrations of notations.

For each 2D projection image, we first compute the distange ma

associated with the extracted centerlines. Usingittieprojection

as an example, the map is defined as a pixel's Euclidean destan
2D ;

Yi s l.e.

4)

d.2p (proj;(z)) = Jnin, [[proj; (=) — yl|,

where proj represents the-th projection operator, ang?? is the
2D centerline extracted from theth projection.

Based on the distance functidp.» , we propose a weight func-
tion '

W (z) = max(d, 2o (proj;(«))), ©)

for 3D centerline extraction. We claim thét (x) has the following
properties:

1. Vz, W(z) > 0.

2. Vo e P, W(x) =0.

3. The setXy = {z : = ¢ v*PandV (z) = 0} is very small if
the 3D volume containing tubular structures is sparse.
By sparse image, we refer to images where background pireksls
are dominant. For example, in the X-ray coronary angiogyatte
pixels in vessel regions are about 5-10% of all the pixels BDa
projection. In terms of the 3D volume to be reconstructee vibxels
in vessel regions are about 0.04-0.1% of the total numbeoxdls.

Proof

1. This property is inherited from the nature of the distauoe-
tiond 2p .

2. x € y*P = Vi, proj,(z) € v}P = Vi, d 20 (proj;(z)) = 0
= W(z) =0.

3. W(z) = 0 implies that proj(z) € 2P, Vi. If = ¢ +*7,

Fig. 3. Estimation of 3D tubular structure’s radius.

simulated data that we have testeds less thar0.1. It's
also reasonable to assume that the event that(pndpelongs
to v2P is independent to the event that praj) belongs to
*ny, for i # j. Let K be the number of projections used
in reconstruction, the probability that pyep) € 22, Vi

or W(z) = 0 is less thar=®. In other words, the size of
the setXy = {z : = ¢ ¥*Pand¥(x) = 0} is less than
N, - N, - N, -, whereN,, N, andN, are the size of the
three dimensions of the volume.

We use Fig. 2 to illustrate the argument above. Fig. 2 shows tw
3D points,z € v*” andz’ ¢ ~*P. Becauser’ is in the line formed
by S; andz, projj(m’) equals proj(z), and belongs to/f-D, which
impliesdﬁp (proj;(z')) = 0. However, due to the sparsity, is not

in any line formed byS; and a point imy*”. So proj(x’) does not
belong toy?”, which impliesd_ 2 (proj; (")) > 0 andW (a") > 0.

These properties dfi () can assure that it achieves minimum
value alongy®? and larger values out 6f*P, which subsequently
assures the accurate extraction of 3D centerlines of thaaubtruc-
tures in sparse images. The existence of thekgetisually does not
have an impact to the 3D centerline extraction becaXisez v°”.
As long as the starting point provided by the user isyit, the
points in X, will not be extracted by the minimal path solver. In
real practice, a small positive constaris added tdV (z) to prevent
loops in the path.

3.2. Radius Estimation

We estimate the radii of 3D tubular structure from the raxfiracted

in 2D projections. Fig. 3 shows the general relationshipveen

the thickness of the 3D tubular structure and the radiusso2d
projections. S is the location of radiation source. For a pointn

the 3D centerline®”, its projection projz) is on the 2D centerline
~*P . A and B are two boundary points that form a segment passing

proj,(z) € 72", Vi is an event that is unlikely to occur due through profz) and perpendicular tg>”. The three pointsS, A
to the sparsity of the image, especially when the number ofind B, define a plane that intersects the 3D tube.

projections used in reconstruction is larger than 2. For a

pointz ¢ ~°P, the event prgjz) belongs toy?” occurs
if and only if x belongs to the surface formed I8 and

Let the radius of the tube at be r. The distancel(S, z) is
usually much larger than the value of So lineSA and lineSB
bounding the tube at are near parallel. Under the assumption of

~*P. We can assume the probability of this event is lessparallelism, the shortest distance between the two lines epre-
than a small constant for all « due to the sparsity of the sented byD, can be regarded as the diameter of the tube. The value

volume. The value o varies with the level of sparsity. In

of D can be calculated from the location 6f z, A and B. If the



ple metric. Lety*” = {p1,p2,...,pum} be the true centerline and
~* = {v1,v2,...,vk } be the minimal path solution. For each point
m vi € v*, we find its two nearest neighbors4fi” and compute the
C\ distance between; and the line formed by the two nearest neigh-
bors. The resulted distance is regarded as the errgt atv;. The
4 ? error ofy* is obtained by taking average of this error over the whole
/ y curve. It should be noted that curve smoothness, which & ais
' important factor in fidelity quantification, cannot be meaasuwith
this metric.
To test the robustness of the proposed method, randomdransl
tions have been added to the vertical direction of the foojegtions
to simulate the motion caused by imperfect synchronizatiorar-
diac time. A standard Gaussian was sampled and multipligial wi
different values ob to generate different levels of random motions.
Table 2 shows a snapshot of such generated motions in Vettica
rection. Applying the listed motions, we got five minimal fpablu-

i\‘ l’) t{l\g tions corresponding te = 0,0.5, 1, 2,4, separately. The errors of
/

(a) Projection 1 (b) Projection 2

| these solutions are recorded at the bottom of Table 2. Figon® ¢
7 pares one of the 3D centerlines extracted in the experinfenteo4
with the ground truth. As indicated in Table 2, the error & thin-

imal path solution equals 1.9186 pixels whenr= 4. These results
demonstrate that the proposed method is not very sengitismall

(c) Projection 3 (d) Projection 4 motions in vertical direction.

Fig. 4. Cone-beam projections used in reconstruction. Table 2. Simulated different levels of random motions and recon-
struction errors in pixels.

Motions in vertical direction (pixel)

c=0 | oc=0.5 oc=1 o=2 oc=4
} Proj 1 -0.5732 | 0.3273 | -1.1766 | 4.2671
h Proj 2 0.5955 | 0.1746 | 4.3664 | 0.2371

Proj 4 -0.0188 | 0.7258 | 0.2729 | -3.3294
Error | 0.9954| 1.2906 | 1.2866 | 1.3623 | 1.9186

0
0
Proj 3 0 0.5946 | -0.1867 | -0.2728 | -0.3826
0
99

)

(a) Simulated coronary arteries  (b) Extracted centerlines

Fig. 5. Reconstruction of simulated 3D coronary trees.

assumption of parallelism doesn't hotdgan still be estimated via a
general procedure, which involves a little bit more compata

4. RESULTS

We present the results of tubular structure reconstrueiging the
proposed method in this section. The method has been tegted o
simulated data to quantify the accuracy of the results.

To generate the simulated data, blood vessels were cofeiruc i 6 One of the 3D centerlines extracted when = 4. The blue
from binary 3D coronary trees and embedded fi2a x 512 x 332
volume image. Fig. 5 (a) shows the simulated coronary adefihe
volume image was projected to produce a series of cone-beam p
jections of size800 x 800 to simulate rotational angiography. The
projection operator is a distance driven operator. Foujeptions,
with rotational angle a6°, 30°, 60° and90°, have been selected
as the input to the reconstruction algorithm. They are shiowig. 5. CONCLUSION
4. After extracting the 2D centerlines in these projectiahs 3D
weight function is computed and fed to minimal path methodxo In this paper, a new method for static reconstruction of 3fukar
tract 3D centerlines. The result is shown in Fig. 5 (b). structures from cone-beam projections has been presértiedpar-

We quantify the accuracy of minimal path solution using a-sim sity of tubular structures is exploited to design a 3D wefghttion

dots represent the ground truth, while the red line is the mirimal
path solution.



for the extraction of centerlines by minimal path method e Téa-
sibility of the method has been evaluated over simulated gats.
The results show that the method can achieve fairly goodracgu
when the cone-beam projections are disturbed by small moiio
the vertical direction. Current version of the method reegiiboth
start points and end points of the tubular structure as smputthe
future, a minimal path method with key point detection tegha
can be implemented to remove the requirement for end points.
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