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Place du Maréchal de Lattre de Tassigny, 75775 Paris, France

julien.mille@univ-tours.fr

Abstract. In this paper, we present a region-based deformable cylinder
model, extending the work on classical region-based active contours and
gradient-based ribbon snakes. Defined by a central curve playing the role
of the medial axis and a variable thickness, the model is endowed with a
region-dependent term.This energy follows the narrow band principle, in
order to handle local region properties while overcoming limitations of
classical edge-based models. The energy is subsequently transformed and
derived in order to allow implementation on a polygonal line deformed
with gradient descent. The model is used to extract path-like objects in
medical and aerial images.

1 Introduction

In order to segment objects with respect to region homogeneity criterion, a large
family of region-based active contour models has been developed over the last
decade. Extending the initial boundary-based snake by Kass et al [1], region-
based active contours exhibit desirable property of holding global features about
the region of interest [2]. Parametric implementations include the anticipating
snake [3], the statistical snake [4] and the mixed model of [5] whereas implicit
contours based on the level set framework include the active contours without
edges [6], region descriptors [7] and the geodesic active regions [8].

The problem of recovering narrow structures using deformable models was
addressed for instance in [9] in the context of cortex segmentation. The rib-
bon snake model [10] [11] [12], inspired by the work in [13], was developed for
road extraction in aerial images. A different kind of model was proposed re-
cently for vessels in [14]. By its geometrically constrained formulation, the ribbon
snake model is well suited to extract path-like objects. Initial ribbon snakes are
boundary-based, since they attach the model by means of a gradient-dependent
term integrated over the contour. In presence of images suffering from noise and
lack of salient boundaries between neighbouring structures, embedding a region
term in the energy functional allows to describe homogeneity over the whole
shape.
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As a result, we extend the ribbon snake, which is actually a 2D generalized
cylinder (GC), to region-based segmentation. Our GC is made up of a central
planar curve, acting as a medial axis, and a variable thickness. This defines a
band over which a region energy is formulated. Region-based active contours
usually consider both inner and outer statistics [6]. Similarly, we use the narrow
band principle [15] to define outer regions. The GC is subsequently deformed by
coupled evolution of the curve and the thickness guided by energy minimization.
When dealing with region integrals, the combined use of Green-Riemann theo-
rem and calculus of variations enables to derive the Euler-Lagrange equations.
Moreover, the minimal path approach of Cohen and Kimmel [16] provides a re-
liable initialization for the GC, preventing it from being trapped in erroneous
local minima.

The paper is organized as follows. Section 2 presents the 2D deformable GC,
describing its geometrical formulation and its associated energies. The model has
a particular shape, which allows transformation of the region integral leading to
a suitable form for polygonal implementation. Section 3 spends detailing the
transformation of the integrals encountered in the region energy and its mathe-
matical derivations leading to the Euler-Lagrange equations. Section 4 deals with
the discretization and implementation on a polygonal curve. It also presents our
utilization of the minimal path approach. Eventually, section 5 presents the ex-
perimental results obtained on medical and aerial images.

2 The deformable generalized cylinder

We first recall the basics of active contours which we will rely on. The continuous
active contour model is represented as a plane curve Γ with position vector c:

Γ : Ω −→ R
2

u �−→ c(u) = (x(u), y(u))T (1)

where x and y are continuously differentiable with respect to the arbitrary
parameter u (different from arc length s) varying in the normalized domain
Ω = [0, 1]. Segmentation of an object of interest is performed by finding the
curve minimizing an energy functional E, which has the general form:

E(Γ ) =
∫

Ω

L(u, x, x′, x′′, y, y′, y′′)du (2)

where L is usually made up of internal terms regularizing the curve and external
terms attaching the curve to the image data. If the curve is a local minimizer of E,
the associated Euler-Lagrange equation is verified. This implies the variational
derivative of E with respect to c, which may be split over coordinates x and y
using calculus of variations:⎧⎪⎪⎨

⎪⎪⎩
δE

δx
=
∂L
∂x

− d

du

∂L
∂x′

+
d2

du2

∂L
∂x′′

δE

δy
=
∂L
∂y

− d

du

∂L
∂y′

+
d2

du2

∂L
∂y′′

(3)
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According to eq. 2 and 3, it is convenient to compute the variational derivative
of E when it holds only boundary integrals. This is the case with traditional
gradient-based snakes [1]. However, the increasing use of region terms inspired
by the Mumford-Shah functional [17] has proven to overcome the limitations of
uniquely gradient-based models, especially when dealing with data sets suffer-
ing from noise and lack of contrast. When dealing with region integrals, more
advanced mathematical tools should be used, like Green-Riemann theorem to
convert domain integrals into boundary integrals [2][18][19], or the shape gradi-
ent method [20][21]. When using implicit contours [22], a more practical approach
consists in handling E(ψ) instead of E(Γ ), where Γ is the zero level set of ψ.
The Euler-Lagrange equation of E with respect to ψ is then easily determined,
like in the Chan-Vese model [6].

The deformable GC presented in this paper is region-based. Whether they
are implemented using parametric contours or level sets, usual region-based de-
formable models are represented as closed curves, splitting the image plane into
inner and outer domains. Unlike these, the GC is based on an open curve Γ and
a positive real-valued thickness function B : Ω → R. The coupled curve and

Γ

Γ[B]

Γ[B+Bout]

Γ[−B]

Γ[−B−Bout]

Bin

Bout1

Bout2

c(0)

c(1)

Fig. 1. Inner and outer bands for region energy

thickness define an inner band-shaped region Bin, whose medial axis is Γ and
width is 2B, as depicted in fig. 1. Region Bin is bounded by curves Γ[B] and
Γ[−B], whose respective position vectors are defined as follows:

c[B](u) = c(u) +B(u)n(u)
c[−B](u) = c(u) −B(u)n(u) (4)

where n is the oriented unit normal of Γ . One may notice that Γ[B] and Γ[−B]

would be parallel curves of Γ (also known as ”offset curves” [23]) if B was
constant. The goal is to make both curve Γ and thickness B evolve in order to
match a homogeneity criterion over Bin. Obviously, Γ[B] and Γ[−B] implicitly
follow the evolution of Γ and remain ”symmetric” with respect to Γ , which
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implies a strong geometrical and topological constraint on the region. Thus,
the deformable GC is dedicated to the extraction of thin shapes, like vascular
structures in medical data or roads in aerial images.

The evolution of medial axis and thickness consists in determining for each
boundary point c[B](u) (and similarly c[−B](u)) whether it should move forward
or backward. This decision is easier to make when an outer region is also con-
sidered, in the extent that image features at c[B](u) can be compared to the
image statistics of both inner and outer regions. The deformable model divides
the image into the objet of interest and the background, which contains usually
many other objects and is therefore non-uniform. In many cases, we believe that
the background is uniform only in the vicinity of the object, i.e. in narrow bands
both sides apart of the ribbon. Following the principle in [15], we define two
outer bands Bout1 and Bout2. We introduce a constant band thickness Bout, so
that Bout1 is bounded by curves Γ[B] and Γ[B+Bout], as shown in fig. 1. Similarly,
Bout2 is bounded by Γ[−B] and Γ[−B−Bout].

Rigorously, since Γ is an open curve, position vector c is not differentiable at
end-points c(0) and c(1), making their tangent and normal vectors undefined.
From a practical point of view, we may assume that Γ is a portion of a longer
curve. As regards implementation, this requires careful discretization of deriva-
tives using finite differences. An important property resulting from the definition
in eq. 4 is that the velocity of boundary curves depends on the curvature of Γ .
We denote � the length element of curve Γ , i.e. the magnitude of its velocity
vector, and κ the curvature:

κ =
c′ × c′′

‖c′‖3 =
x′y′′ − x′′y′

�3

where ′ means differentiation with respect to u. The velocity vector of curve Γ[B]

is expressed as a function of the velocity vector of Γ , as well as its curvature and
normal. Using the identity n′ = − κc′, we have:

c[B]
′ = c′ +B′n +Bn′ = (1 −Bκ)c′ +B′n (5)

To the GC, we associate the energy functional E, weighted sum of the internal
energy Esmooth and the external region energy Eregion:

E(Γ,B) = ωEsmooth(Γ,B) + (1 − ω)Eregion(Γ,B) (6)

The user-provided coefficient ω weights the influence of Esmooth over Eregion. It
controls the elastic properties of the GC. Since E depends both on Γ and B, the
GC minimizing E should verify two coupled Euler-Lagrange equations:

δE

δc
= 0

δE

δB
= 0 (7)

The internal energy is the first-order regularizing term:

Esmooth(Γ,B) =
∫

Ω

∥∥∥∥dcdu
∥∥∥∥

2

+
(
dB

du

)2

du (8)
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Minimizing this energy encourages a regular curve and a smoothly varying band
thickness. We can reasonably assume that if Γ and B are smooth, then so will
be all resulting parallel curves of Γ . We define a region energy over the bands,
following the work in [15]:

Eregion(Γ,B) =
∫∫
Bin

gin(x)dx +
∫∫
Bout1

gout1(x)dx +
∫∫
Bout2

gout2(x)dx (9)

where functions gin, gout1 and gout2 hold some uniformity criterion with respect
to image data I, depending on the application. Details are given in section 4. For
the moment, they should be thought of as functions penalizing non-homogeneity,
the most intuitive one for grayscale images being the intensity variance, as pro-
posed by Chan and Vese [6].

An important issue is that, as expressed in eq. 9, Eregion does not depend
explicitly on position vector c nor band thickness B, making impossible the
derivation leading to the Euler-Lagrange equation. In what follows, we express
Eregion in a suitable form implying possible derivation and implementation on
a parameterized curve discretized as a polygon. From now on, we will use the
general notation J(f,R) to represent the integral of function f over any regionR.

3 Derivation of region energy

In this section, we show that the domain integrals appearing in eq. 9 can be ex-
pressed as functions of c and B. The proof is based on Green-Riemann theorem,
stating that for every region R, if (P (x, y), Q(x, y)) is a continuously differen-
tiable R

2 → R
2 vector field, then:∫∫

R

∂Q

∂x
− ∂P

∂y
dxdy =

∫
∂R

Pdx+Qdy

In order to apply the theorem on J(f,R), we choose P and Q as follows:

Q(x, y) =
1
2

∫ x

−∞
f(t, y)dt P (x, y) = −1

2

∫ y

−∞
f(x, t)dt

The theorem expects that ∂R should be at least piecewise smooth. Let us
consider the more general case of a region R bounded by portions of curves Γ1

and Γ2 and line segments [c1(u0)c2(u0)] and [c1(u1)c2(u1)], as depicted in fig. 2.
Starting from c1(u0) and travelling along ∂R in a counter-clockwise direction,
the integral of f over R is expressed using Green’s theorem:

J(f,R) =
∫ u1

u0

x1
′P (c1) + y1

′Q(c1)du +
∫ 1

0

x3
′P (c3) + y3

′Q(c3)du

+
∫ u0

u1

x2
′P (c2) + y2

′Q(c2)du +
∫ 1

0

x4
′P (c4) + y4

′Q(c4)du
(10)
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R

c2(u0)

c1(u0)

c1(u1)

c2(u1)

Γ1

Γ2

Fig. 2. Region R bounded by two portions of curves Γ1 and Γ2. Arrows indicate
counter-clockwise direction for Green’s theorem

where position vectors c3 = (x3, y3)T and c4 = (x4, y4)T are parameterizations
of line segments [c1(u1)c2(u1)] and [c2(u0)c1(u0)], respectively:

c3(u) = (1 − u)c1(u1) + uc2(u1) c4(u) = (1 − u)c2(u0) + uc1(u0)

Considering a family of curves {Γα}0≤α≤1 interpolating from Γ1 to Γ2, we have:

c1 − c2 =
∫ 1

0

d

dα
{(1 − α)c2 + αc1} dα

The joint use of the previous relation and integration by parts in eq. 10 enables
to express J(f,R) directly as a function of f , c1 and c2:

J(f,R) =
∫ u1

u0

∫ 1

0

f((1 − α)c2 + αc1)(c1 − c2) × ((1 − α)c2
′ + αc1

′)dαdu (11)

This expression is intuitively understood since (1−α)c2 +αc1 sweeps all curves
between Γ1 and Γ2 as α varies from 0 to 1. The cross product corresponds to the
area of the infinitesimal quadrilaterals spanned by c1−c2 and (1 − α)c2

′ + α c1
′.

We apply this result on our GC to calculate J(f,Bin), replacing Γ1 and Γ2 with
Γ[B] and Γ[−B], respectively. Introducing a variable thickness b = B(2α− 1), we
obtain:

J(f,Bin) =
∫

Ω

∫ B

−B

f(c + bn)�(1 − bκ)dbdu (12)

A similar development is applied on bands Bout1 and Bout2, where b varies in
the intervals [B(u), B(u) +Bout] and [−B(u) −Bout,−B(u)], respectively:

J(f,Bout1) =
∫

Ω

∫ B(u)+Bout

B(u)

f(c + bn)
∥∥∥∥dcdu

∥∥∥∥ (1 − bκ)dbdu

J(f,Bout2) =
∫

Ω

∫ −B(u)

−B(u)−Bout

f(c + bn)
∥∥∥∥dcdu

∥∥∥∥ (1 − bκ)dbdu
(13)

The goal of these formulas is twofold. They allow to express explicitly Eregion

according to Γ and B, enabling the calculation of the variational derivatives.
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Moreover, they allow computation of J(f,Bin) if Γ is discretized as a polygonal
line, without using a flood-filling algorithm to determine inner pixels. In order to
build a gradient descent scheme, we now perform the derivation of the energies,
keeping eq. 3 in mind. The differentiations of Esmooth are straigthforward:

δEsmooth

δc
= −2

d2c
du2

δEsmooth

δB
= −2

d2B

du2 (14)

Regarding the region energy, the variational derivative with respect to c is:

δEregion

δc
=
δJ(gin,Bin)

δc
+
δJ(gout1,Bout1)

δc
+
δJ(gout2,Bout2)

δc

and similarly for B. We found more practical to compute these derivatives over
the form given by Green’s theorem in eq. 10. Since c(0) and c(1) are static, they
do not intervene in the derivative expression. Hence, we write:

δJ(f,Bin)
δc

=
δJ1

δc
− δJ2

δc

J1 =
∫

Ω

x[B]
′P (c[B]) + y[B]

′Q(c[B])du

J2 =
∫

Ω

x[−B]
′P (c[−B]) + y[−B]

′Q(c[−B])du

We find that δJ1/δc has both normal and tangential components:

δJ1

δc
= f(c[B])

(
�(Bκ− 1) − BB′�′

�2
+
B′2 +BB′′

�

)
n

+ BB′ ((1 −Bκ)∇f(c[B]) · t +B′∇f(c[B]) · n
)
n

+ f(c[B])B′(1 −Bκ)t

(15)

The derivative δJ2/δc is trivially obtained from eq. 15, replacing B with −B. In
the implementation part, the tangential component may be ignored, according
to the principle of geodesic active contours [24], stating that the curve geometry
is only affected by normal displacement whereas tangential motion only affects
parameterization. We use a polygonal discretization which is resampled after
each deformation step. Resampling keeps vertices almost evenly spaced along the
curve and hence compensates the absence of tangential motion. The derivative
with respect to B is obtained from eq. 12, which does not depends on B′ nor
B′′. Hence:

δJ(f,Bin)
δB

=
∂

∂B

{∫ B

−B

f(c + bn)
∥∥∥∥dcdu

∥∥∥∥ (1 − bκ)db

}

= �(f(c[B])(1 −Bκ) + f(c[−B])(1 +Bκ))

In the same way, the derivatives of J(gout1,Bout1) and J(gout2,Bout2) are calcu-
lated by replacing band thicknesses appropriately, according to eq. 13.
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4 Implementation

4.1 Polygonal implementation

The curve is discretized as a polygonal line made up of n linked vertices {p1, ...,pn}.
Functions gin, gout1 and gout2 use global features such as area or mean inten-
sity. Computed over Bin, these global quantities are computed according to the
following template formula, which is a discrete implementation of eq. 12:

J(f,Bin) ≈
n∑

i=1

Bi∑
b=−Bi

f(pi + bni)�i(1 − bκi) (16)

where Bi, �i, ni and κi are the discretized band thickness, length element, cur-
vature and normal at vertex pi, using finite differences. The same computations
are performed over regions Bout1 and Bout2 by discretizing eq. 13. Vertex co-
ordinates and corresponding thicknesses are iteratively modified using gradient
descent of eq 7:

p(t+1)
i = p(t)

i −Δt δE/δc|c=pi

B
(t+1)
i = B

(t)
i −Δt δE/δB|B=Bi

(17)

The evolution of the discrete GC is sumarized by the following steps, repeated
until a steady state is reached:

– Move all vertices according to eq. 17a
– Update normal vectors, areas and mean intensities
– Modify all thicknesses according to eq. 17b
– Resample the curve
– Update normal vectors, areas and mean intensities

4.2 Initialization by minimal path

Curve points c(0) and c(1), represented by vertices p1 and pn respectively, are
given by the user. They remain motionless in our approach, in the sense that the
user clicks the desired end-points of the shape. Given these, the simplest way
to initialize the medial curve would be a straight line. As is, the GC is sensitive
to the initial location, as the energy is minimized through gradient descent. A
straight line is problematic as soon as the region of interest is highly curved. The
minimal path approach by Cohen and Kimmel [16] provides a reliable initializa-
tion for the central curve regardless of the shape geometry. Based on the fast
marching algorithm [25][26], this approach finds the minimal path C∗ between
the two end-points, given a potential-dependent metric:

C∗ = argmin
C

{∫ 1

0

(w + P (C(s)))ds
}

s.t.
{C(0) = c(0)
C(1) = c(1)

where s is the arc length parameter, w is a regularizing term weighting the
length and P is the potential. A global search is performed, avoiding wrong
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local minima. We use the generated path as the initial guess for curve Γ , so
that Γ (0) = C∗. The polygonal line [p1,p2, ...pn] is generated by downsampling
the path (≈ a vertex every three pixels). The best path between the two end-
points should be uniform and its mean intensity should be close to the one of
the end-points. Hence, we chose the following potential:

P (x) =
(
I(x) − I(c(0)) + I(c(1))

2

)2

+ ‖∇I(x)‖2

For RGB colour images, we use an extension of this potential, based on normal-
ized RGB intensities. The end-points are intendedly kept static, so that a global
minimum with respect to our criterion may be determined. Moreover, providing
the end-points is an intuitive way of indicating the target path-like structure.

5 Experiments

We tested the proposed method on a set of images containing path-like objects
of interest. First, we applied the deformable ribbon on vascular structures in
grayscale medical images, mainly MRI data and angiograms. On these images
in particular, we used the minimal variance principle by Chan and Vese [6]:

gin(x) = (I(x) − μ(Bin))2

gout1(x) = (I(x) − μ(Bout1))
2 gout2(x) = (I(x) − μ(Bout2))

2

where μ is the mean intensity of a given region, computed according to eq. 16.
We considered a mean value for each outer region, although their respective
average intensities were rather close. An important issue raised by the narrow
band region energy is the similarity between inner and outer statistics that may
arise when the GC, including outer bands, is initialized inside a uniform region.
In such cases, we found necessary to add a bias, acting like a balloon force
[27], in order to increase B in proportion to the similarity between inner and
outer means. Secondly, we tested the ribbon method on aerial images, in order
to extract portions of rivers. On color images, we used homogeneity measures
based on chromaticity, i.e. normalized RGB components. Letting Ir, Ig and Ib
be the red, green and blue intensities of a given pixel, the normalized red and
green components are:

Ir =
Ir

Ir + Ig + Ib
Ig =

Ig
Ir + Ig + Ib

The homogeneity measure is based on the variance of intensity features, inde-
pendently considered:

gin(x) =
(
Ir(x) − μr(Bin)

)2
+

(
Ig(x) − μg(Bin)

)2

where μr and μg are the average normalized red and green intensities of the
corresponding region. gout1 and gout2 are expressed in a similar way. We found
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this measure to be more efficient than the L2 distance in RGB space. Indeed,
normalized RGB is less sensitive to changes in illumination than can arise in a
visually homogeneous region.

Comparison with edge-based model. The edge-based GC is obtained energy
used inspired by the ribbon snake model of[10] and [11]. is obtained by replacing
the region energy with a linear combination of edge and balloon energies:

Eedge(Γ,B) =
∫

Ω

k(c[B]) + k(c[−B]) du

Eballoon(Γ,B) =
∫

Ω

∫ B

−B

�(1 − bκ) dbdu = 2
∫

Ω

B� du

where k is an edge-detecting function (e.g. k(x) = −‖∇I(x)‖ for grayscale
images). The balloon energy is the area of the inner band, so that a negative
weight ωballoon makes the GC inflate (it is obtained from eq. 12 with f = 1).
The descent direction were chosen as follows (note that we neglect the influence
of Γ on the balloon energy):

δEedge

δc
≈ ∇k(c[B]) + ∇k(c[−B])

δEedge

δB
= (∇k(c[B]) −∇k(c[−B])) · n

δEballoon

δB
= 2�

Results are shown in fig. 3. For each image, column (a) holds the original image.
Column (b) depicts the initial configuration of the GC, used both for region and
edge-based evolution. Columns (c) and (d) represents the final states of the GC,
with region and edge energies respectively. In all tests, the GC exhibited strong
topological and geometrical prior, preventing it from flowing into neighbouring
narrow structures having more or less the same intensity/colour than the de-
sired shape. Consequently, the deformable GC is suitable for applications where
strong prior knowledge about the shape and position of the target is available.
We found our region-based GC to be less sensitive to initial location, as the
edge-based energy makes the GC collapse to one side in some parts (increasing
the balloon weight makes the band overpass the contours in other parts).

The constant outer band thickness Bout, the initial thickness B(0) and the
internal energy weight ω are important parameters. We found that values ranging
from 4 to 50 were suitable for Bout. A too small thickness may make the outer
region statistics irrelevant and cause the GC boundary curves to pass through
the actual boundaries, whereas the advantage of the narrow band principle is
lost if the thickness is too high. The initial inner thickness B(0) was typically
set to 4 pixels as well. For ω, values ranging from 0.4 to 0.7 were sufficient
to maintain boundary curves smooth. Segmentation process on a 1000 × 720
RGB image (shown on the last column of fig. 3) took approximately 1.5s with
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C++ implementation running on an Intel Core 2 Duo 2GHz PC (including the
computational cost due to the construction of the minimal path).

(a) (b) (c) (d)

Fig. 3. Segmentation of angiograms and aerial images ( c©GoogleEarth 2008): original
image (a), initial GC (b), final region-based GC (c) and final edge-based GC (d)
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6 Conclusion and perspectives

In this paper, we presented a region-based deformable GC model, extending the
work on classical region-based active contours and gradient-based ribbon snakes.
Defined by a central curve playing the role of the medial axis and a variable thick-
ness, the GC was endowed with a region-dependent energy following the narrow
band principle. This energy was subsequently transformed and derived in order
to allow implementation on a polygonal line deformed with gradient descent.
The model proved to be efficient for recovering tubular objects, exhibiting geo-
metrically constrained behaviour.

We may consider further investigations on this work. The deformable GC may
be extended to three-dimensional space. The first 3D extension would consist in
a space curve surrounded with a variable thickness, as in [28], which would be
dependent on both curve parameter and angle, in order to model a deformable
tube. The second 3D extension would consist in a surface homeomorphic to a
plane endowed with a position-dependent thickness, which would be used to
extract sheet-like structures. Again, substantial work has to be performed on
the mathematical derivation and implementation of a suitable region energy on
these 3D structures.
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