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Abstract. Global region-based active contours, like the Chan-Vese
model, often make strong assumptions on the intensity distributions
of the searched object and background, preventing their use in natu-
ral images. We introduce a more flexible local region energy achieving a
trade-off between local features of gradient-like terms and global region
features 1. Relying on the theory of parallel curves, we define our region
term using constant length lines normal to the contour. Mathematical
derivations are performed on an explicit curve, leading to a form allow-
ing efficient implementation on a parametric snake. However, we provide
implementations on both explicit and implicit contours.

1 Introduction

Active contours, whether parametric [1] or level-set based [2], were initially
attached to data by means of edge-based terms. The increasing use of region
terms inspired by the Mumford-Shah functional [3][4] has proven to overcome
limitations of gradient-based only models, especially when dealing with data
sets suffering from noise and lack of contrast between neighboring structures.
Early work including the mixed model of Cohen et al [5] and the active region
model by Ivins and Porrill [6] introduced the use of region terms in the evolution
of parametric snakes. On the other hand, many papers have dealt with region-
based approaches using the level set framework, including the active contours
without edges by Chan and Vese [7], the deformable regions by Jehan-Besson et

al [8] and the geodesic active regions by Paragios and Deriche [9], benefiting of
adaptive topology at the expense of computational cost. Classical region-based
deformable models segment images according to statistical data computed over
the object of interest and the background. Image partitions should be uniform
in terms of pixel intensities or higher level features like texture descriptors [9].
Considering for instance the Chan-Vese model [7], the region term penalizes the
curve splitting the image into heterogeneous regions, using intensity variances.
It is devoted by essence to the segmentation of uniform objects and backgrounds.

1 This work was partially supported by ANR grant MESANGE ANR-08-BLAN-0198
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Such an ideal case is rarely encountered in most of computer vision
applications, as the background usually contains various structures, which
differ in their overall intensities or textures. In this context, the multiphase
approach [10] allows to partition the image into more than two regions,
provided that the number of partitions is known. When one wishes to extract
a particular object from the background without any prior knowledge about
the number of actual regions, strict homogeneity is not desirable property
for the background. In order to account for spatially varying intensity, local
statistics in region-based segmentation have emerged recently [11][12][13][14].
Basically, these methods express the data term as a sum of local region
energies computed over neighborhoods of pixels inside and outside the evolving
curve. We believe these approaches have the drawback of not formulating
the region energy fully explicitly in terms of the curve, which only leads
to a level set implementation. However, many applications benefit from ex-
plicit implementations of active contours, including low computational cost and
topological control. This justifies the use of an explicit mathematical framework.

We introduce a local normal-based region energy handling configurations in
which the outer neighborhood of the object is piecewise uniform. Unlike other
region terms, whether local or global, this new type of combination allows to
handle the common case where one seeks for a uniform object in a heterogeneous
background. We formulate it as the intensity variance over the inner region and
finite length lines along outward normals to the curve. The theory of parallel
curves [15][16] leads to an explicit formulation of our energy, which is suitable for
mathematical derivation and implementation on parametric contours. In order
to allow gradient descent afterwards, we determine the variational derivative of
the region energy thanks to calculus of variations. Then, we deal with numerical
implementation on both parametric snakes and level sets. Finally, experiments
are carried out on medical data and natural color images. The tests present the
advantages of our new data term over an edge term, a global region term as well
as a recent local region-based approach [12].

2 Local normal-based region energy

2.1 Active contour model

Given a simple closed curve Γ with position vector c(u) = [x(u) y(u)]T with u ∈
Ω = [0, 1], segmentation is performed by finding the curve minimizing a weighted
sum of smoothness term and our local normal-based region (LNBR) energy:

E[Γ ] = ωEsmooth[Γ ] + (1 − ω)ELNBR[Γ ] (1)

where the user-provided ω weights the significance of the smoothness term,
which can be classicaly written with squared magnitudes of first and second
order derivatives. Curve Γ splits the image domain D into an inner region RI

and an outer region RO. Instead of formulating our data term on RI and RO, we
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use the narrow band principle, which has proven its efficiency in the evolution
of level sets [2]. Hence, in addition to the inner region RI, instead of dealing
with the entire image domain, we consider an outer band BO in the vicinity
of Γ , as depicted in fig. 1.

Γ

Γ[B]

BO

RI

Fig. 1. Inner region and outer band for LNBR energy

The purpose of the LNBR energy is to handle cases where the inner region is
homogeneous and the background is locally homogeneous in the outer band. For
now, we express the outer term using a local descriptor depending on current
position x:

ELNBR[Γ ] =

∫∫

RI

(I(x)−µI)
2dx +

∫∫

BO

(I(x)−µ(BO,x))2dx (2)

In what follows, we explain how ELNBR can be explicitly formulated in terms of
curve Γ .

2.2 Parallel curve

Let B be the band thickness, constant along Γ . The theoretical background of
our narrow band framework is based on parallel curves [15][16]. The curve Γ[B]

is called a parallel curve of Γ , as its position vector c[B] is defined by:

c[B](u) = c(u) −Bn(u) (3)

where n is the unit inward normal. Hereafter, we will use the index [B] to
denote all quantities related to the parallel curve. The definition in eq. (3) is
suitable to our narrow band formulation, in the sense that BO is bounded by Γ
and Γ[B]. Afterwards, we denote RI[B] the dilated inner region bounded by Γ[B].

Given length element ‖cu‖ and curvature κ, an important property resulting
from the definition in eq. (3) is that the velocity vector of the parallel curve can
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be expressed as a function of the velocity vector of Γ , as well as its curvature
and normal. Using the identity nu= − κcu, we have:

c[B]u
= cu −Bnu = (1 +Bκ)cu (4)

and the corresponding length element is
∥

∥c[B]u

∥

∥ = |1+Bκ| ‖cu‖, which implies
a constraint on the maximal curvature of curve Γ . We should assume that Γ
is smooth enough so that κ(u) > −1/B, ∀u ∈ Ω, so that curve Γ[B] does not
exhibit singularities. This has an impact on explicit numerical implementation,
which is discussed in section 3.1.

We rely on the principle of parallel curve to transform region integrals over BO.
Introducing a variable thickness b and using Green’s theorem to convert region
integrals into boundary integrals, it can be shown that:

∫∫

BO

f(x)dx =

∫

Ω

∫ B

0

f(c − bn) ‖cu‖ (1 + bκ)dbdu (5)

2.3 Transformation and derivation of LNBR energy

We provide the final expression of the LNBR term as it is implemented, in
contrast with the temporary form of eq. (2). We now assume that piecewise uni-
formity over the outer band is verified if intensity is uniform along line segments
in the direction normal to the object boundary. We first calculate the average
intensity along the outward local normal line of length B at a given contour
point. We use the same curvature-dependent weighting than in eq. (5), leading
to:

µLN(u) =
2

B(2 +Bκ)

∫ B

0

I(c − bn)(1 + bκ)db (6)

where I(x) ∈ [0, 1] is the image intensity. The LNBR energy should penalize
non-uniformity over the whole inner region and over all normal lines. Thus, we
write:

ELNBR[Γ ] =

∫∫

RI

(I(x)−µI)
2dx+

∫

Ω

‖cu‖

∫ B

0

(I(c−bn)−µLN(u))2(1+bκ)dbdu (7)

where µI is the average intensity of inner region RI. To some extent, the
outer band BO is split into infinitesimal trapezoids with parallel sides ‖cu‖
and ‖cu‖ (1+Bκ). This principle is represented on the discretized curve in fig. 2.
The LNBR energy has the following first variation (details of derivation are
provided in the appendix):

δELNBR

δΓ
≈ ‖cu‖

[

−(I(c)−µI)
2 − (1+Bκ)(I(c[B])−µLN)2 + (I(c)−µLN)2

]

n

(8)
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The derivative holds the term (I(c)−µLN)2 − (I(c)−µI)
2, which is clearly in

accordance with the region-based segmentation principle. Indeed, the sign of
the above quantity depends on the likeness of the current point’s intensity with
respect to µI or µLN. If I(c) is closer to µI than µLN, the contour will locally
expand, as it would be the case with a region growing approach. The deriva-
tive holds an additional curvature-dependent term which effect is discussed in
section 3.1.

pi

pi+1

pi−Bni

pi+1−Bni+1

ℓi

ℓi(1+Bκi)

ni

ni+1

Fig. 2. Neighboring vertices with corresponding points on the discrete parallel curve

3 Numerical implementation

3.1 Explicit representation

Implementation on an explicit curve is pertinent when speed and topology preser-
vation is a major concern. The contour is discretized as a closed polygonal line
made up of a set of n vertices, denoted pi = [xi yi]

T . Their coordinates are
iteratively modified using gradient descent of eq. (1):

p
(t+1)
i = p

(t)
i +∆tf(pi) (9)

where f(pi) is the force vector depending on the discretization of the energy
derivative at a given vertex pi. In addition to the squared differences be-
tween I(c) and the average intensities, the variational derivative in eq. (8) also
contains a curvature-based term depending on the intensity at point c[B]. Actu-
ally, this term turns out to go against the region growing or shrinking principle,
as it opposes the other terms depending on I(c). As stated in [17], the usual
energy gradient may not be systematically the best direction to take, which
justifies our choice to remove side effect terms. The region force is:

fLNBR(pi) =
[

(I(pi)−µI)
2 − (I(pi)−µLN(pi))

2
]

ni (10)
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Given ℓi, ni and κi the finite differences discretizations of length element, nor-
mal and curvature at vertex pi, the average intensity along the normal line is
implemented as:

µLN(pi) = B

(

1 +
κi(B + 1)

2

) b=B
∑

b=1

(1 + bκi)I(pi − bni)

Fig. 2 depicts two neighboring vertices on a locally convex polygon, with cor-
responding length elements and points on the parallel polygon. There are two
complementary techniques to address the regularity condition κi > −1/B. The
first one is to prevent vertices from making sharp angles with their neighbors,
so that κi is well bounded. Moreover, the case of a negative length element can
be handled. Hence, ℓi(1+bκi) is actually computed as max(0, ℓi(1+bκi)).

In a particular case, the formulation of fLNBR presents a shortcoming. Indeed,
the magnitude of fLNBR is low when µI and µLN are similar. This situation
also arises in local region-based methods [12][13] when the curve, including the
outer neighborhood, is initialized inside a uniform area. However, we expect the
contour to grow if the intensity at the current vertex matches the inner region
features, whatever the value of µLN. Thus, we introduce a bias acting like a
balloon force [18] which expands the boundary in the normal direction:

fbias(pi) = −α(1 − (µI − µLN(pi))
2)ni (11)

with α ∈ [0, 1]. Forces fLNBR and fbias are summed up, so that the bias is
predominant when mean intensities are close. Consequently, we do not loose
the convergence ability of global region-based active contours. The region bias
guarantees the contour has a similar capture range as global region-based
contours.

Let us give a note on the implementation of Green’s theorem. Our exper-
iments include a comparison between the LNBR energy and a global region
energy, similar to the data term of the Chan-Vese model. The implementation
of the latter on the explicit polygon raises the difficulty of computing region
integrals. A naive solution consists in using region filling algorithms to deter-
mine inner pixels [6] which would be computationally expensive if performed
after each deformation step. Another solution, which we chose, is based on a
discretization of Green-Riemann theorem. We compute and store the summed
intensities P and Q in the respective directions x and y only once, before defor-
mation is performed. This reduces the algorithmic complexity to O(n), whereas
the LNBR term induces a O(nB) complexity.

3.2 Implicit representation

On the other hand, we provide an implicit implementation of the LNBR energy.
In this case, the contour is the zero level set of ψ : R

2 → R. We define the region
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enclosed by the contour as RI = {x|ψ(x) ≤ 0}. Function ψ evolves according to
the following PDE:

∂ψ

∂t
= F (x) ‖∇ψ(x)‖ ∀x ∈ R

2

where speed function F is to some extent the level set-equivalent of the explicit
energy in eq. (1), i.e. a weighted sum of smoothness and region terms:

F (x) = ωFsmooth(x) + (1 − ω)FLNBR(x)

where the smoothness term is expressed as usual using curvature. Areas and
average intensities on the outer band are easily computed on the level set imple-
mentation, since a circular window of radius B may be considered around each
pixel located on the front.

BO = {x|ψ(x) ≥ 0 and ∃y∈WB(x) s.t. ψ(y) = 0}

Considering the sign of ψ, pixels belonging to BO are easily determined by dilat-
ing the front with circular window WB . As regards the average intensity along
outward normal lines, we rely on the curvature-based formulation of the explicit
curve. In the level set framework, it gives:

µLN(x) =
2

B(2 +Bκψ(x))

∫ B

0

I(x + bnψ(x))(1 + bκψ(x))db

with unit outward normal nψ and curvature κψ:

nψ(x) =
∇ψ(x)

‖∇ψ(x)‖
κψ(x) = div

(

∇ψ(x)

‖∇ψ(x)‖

)

Computed as is, in order for nψ to be actually normal to the front, ψ should
remain a distance function. This implies to update ψ as a signed Euclidean
distance in the neighborhood of the front before estimating normal vectors. From
eq. (7), we write the level set formulation of the LNBR term:

ELNBR[ψ] =

∫∫

D

(1−H(ψ(x)))(I(x)−µI)
2dx

+

∫∫

D

δ(ψ(x))

∫ B

0

(I(x+bnψ(x))−µLN(x))
2
(1+bκψ(x))dbdx

where H and δ are the Heaviside step and Dirac impulse functions. For a point x

located on the front, the corresponding speed is approximated from eq. (10):

FLNBR(x) = (I(x)−µLN(x))2 − (I(x)−µI)
2

Eventually, the reader may note that an equivalent bias technique as the one used
in the explicit implementation (see eq. (11)) is applied in the level set model.
The level set function ψ evolves according to the narrow band technique [2], so
that only pixels located on the front are updated.
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4 Results and discussion

4.1 Concurrent methods

We compare the behavior of explicit and implicit active contours endowed
with different data terms: an edge term [19], a global region term similar to
one of the Chan-Vese model [7] and the uniform modeling energy of Lankton-
Tannenbaum [12]. The goal of our experiments is not to compare explicit and
implicit implementations, since it is well accepted that both exhibit their own
advantages. We intend to show the interest of the LNBR energy whatever im-
plementation is used. In the edge-based model, the region force is replaced by an
edge force resulting from the differentiation of the image gradient magnitude:

fedge(pi) = ∇‖∇Gσ ∗ I(pi)‖ − αni

where α weights an additional balloon force [18] increasing the capture range
and consequently allowing the snake to be initialized far from the target bound-
aries. The gradient magnitude is computed on data convolved with first-order
derivative of gaussian Gσ, where scale σ is empirically chosen to yield the most
significant edges. A similar speed term Fedge is implemented in the level set con-
tour. As stated by their authors, the Chan-Vese (CV) and Lankton-Tannenbaum
(LT) models directly rely on an implicit formulation of the curve. We give their
corresponding region speed terms:

Fglobal(x) = (I(x)−µI)
2 − (I(x)−µO)2

FLT(x) =

∫∫

WB(x)

δ(ψ(y))(I(y)−µI(x))2 − (I(y)−µO(x))2dy

where µI(x) is the local inner average intensity over the ball of radius B
centered at x, and similarly for the local outer average intensity µO(x). One
may note that in the initial paper by Chan and Vese, the region term is
asymmetric, as inner and outer terms are independently weighted, so that the
variance minimization may be favoured inside or outside. However, we chose
to use a symmetric term, as it is commonly the case with region-based active
contours. Incidentally, future experiments could be done using asymmetry on all
compared region terms. Moreover, the localized term of Lankton-Tannenbaum
suffers from a weak capture range, since the front cannot evolve if inner and
outer local means are similar. Thus, we also embedded into this energy the bias
force of eq. (11). We used the same curvature-based regularization term for all
tested approaches.

For all datasets, the model was initialized as a small circle fully or partially
inside the area of interest, far from the target boundaries. Results are shown in
fig. 3. Explicit contours are drawn in red whereas implicit ones appear in blue.
For all experiments, the regularization weight ω was set to 0.5. On noisy data, we
found that contours with lower ω were prone to boundary leaking. In addition,
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insufficient regularization makes level set implementations leave spurious isolated
pixels inside and outside the inner region. Conversely, values above 0.8 turn out
to prevent the surface from propagating into narrow structures. Experiments are
carried on grayscale and color images as well. For the latter ones, we should point
out that the minimal variance principle is easily extended to vector quantities.
Let us consider the vector-valued image I and average intensities mI and mLN.
In the inner term, the integrand becomes ‖I−mI‖

2
and similarly for the outer

term. The synthetic image in row 3, made up of color ellipses corrupted with
gaussian noise, was segmented using RGB values. The natural images depicted
in rows 4 to 7 hold nearly color-uniform objects. They were segmented using
the ab components of the perceptually uniform CIE Lab color space. Neglecting
the brightness L makes color statistics insensitive to illumination changes in
visually uniform regions, allowing to handle highlights and shadows properly.

4.2 A note on the choice of the band thickness

The band thickness B is an important parameter of our method and should be
discussed. Apart from its impact on the algorithmic complexity - computing av-
erage intensities along normal lines takes at least O(nB) operations - it controls
the trade-off between local and global features around the object. If B = 1,
the region energy is as local as an edge term. The main image property having
an effect on the minimal band thickness is the edges sharpness. Indeed, the de-
formable curve needs a larger band as the boundaries of the target object are
fuzzy. To put this phenomenon into evidence, we applied the active contour on
an increasingly blurred image. Bands thinner than the minimal one caused the
contour to flow into neighboring structures. The original image was segmented
with B = 2. For subsequent images, increasing the band turned out to be nec-
essary. As the blur level of the last image in the sequence is rarely encountered
in the applications we aim at, B = 10 was a suitable value in our experiments.

4.3 Segmentation results

Since we are looking for perceptually homogeneous objects, segmentation
quality can be assessed visually. One can reasonably admit that the target
object corresponds to the area containing the major part of the initial region.
Gradient-based deformable models fail on images where noise and low contrast
between neighboring objects prevent the extraction of reliable edges. Except
for the last image in fig. 3, we could not find a suitable balloon weight
preventing the contour from being trapped in spurious noisy edges inside
the shape while stopping on the actual boundaries. Indeed, the edge-based
energy is inefficient when the sharpness of boundaries decreases, as the contour
may pass through the actual edges and stop on false ones simultaneously.
In order to keep a critical eye on our approach, we draw the attention on
the equivalence between the global and local region energies in particular images.
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Row 2 and 4 depict typical configurations where there is no particular
benefit in using localized region energies. In the MRI short-axis view of the
human heart, the background is not uniform but still significantly darker than
the bright left ventricle. Thus, the global region speed manages to make the
front stabilize on the actual boundaries. The background of image 4 is obviously
color-uniform as well. However, in other images containing various objects
surrounding the structure of interest, the global region term captures all areas
considered as different from the background. By definition, any two-phase
segmentation model may fail at recovering a particular object when it is
surrounded by many different objects, except in very particular cases such as
a bright object surrounded by several dark objects. This phenomenon is well
illustrated in row 3. Due to the averaging performed over the outer region, the
global region approach turns out to split the image with respect to the blue
component, since it is the dominant color in the background and it is absent of
all areas in the inner region. Row 1 is a particular case in which the contour
endowed with the global region-based active contour does not manage to grow,
as inner and outer average intensities are not sufficiently different.

In the extent of our experiments, the Lankton-Tannenbaum method turns
out to somewhat more sensitive to initialization than the LNBR active contour.
In row 2, an inner dark papillary muscle is partially included in the initial region,
which results in its incorporation into the final inner region. Since the Lankton-
Tannenbaum energy only implies uniformity over balls centered at boundary
pixels, it tends to flow into outer parts and leave some inner parts, as shown
in rows 4, 5 and 6. The LNBR energy performs better at segmenting uniform
objects. As a final remark, computational times imputed to the explicit contour
fall between 0.5s and 1s on images of average size 512 × 512, with a C++
implementation running on an Intel Core 2 Duo 2GHz with 1Gb RAM. On the
same images, we found the level-set implementations 3 to 4 times slower.

5 Conclusion

We have presented in this paper a local region-based method for deformable
contours, relying on the assumption of a piecewise uniform background in the
vicinity of the target object. The approach is based on a novel region term im-
plying average intensities along lines in the outward direction normal to the
curve. Based on the theory of parallel curves, a mathematical development was
carried out in order to express the region energy in a form allowing natural imple-
mentation on explicit models. The local normal-based region energy managed
to overcome the drawbacks of deformable models relying exclusively on edge
terms or global region terms. We provided explicit and level-set based imple-
mentations. Very promising results were obtained in grayscale and color images.
Further investigations will be performed in embedding local region terms into
more geometrically constrained models. We also plan to extend the model to
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Initial Edge Global region Lankton-
Tannenbaum

LNBR

Fig. 3. Segmentation results on medical and natural color images. Starting from com-
mon initializations shown in column 1, the LNBR term is compared with three other
energies (edge energy, global region energy and local uniform modeling energy of
Lankton-Tannenbaum). The image in row 4 was taken from the Berkeley Segmentation
Dataset [20]
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temporal segmentation, in order to track evolving objects in videos, and to tex-
tured images.

A Calculus of variations

A.1 Derivative of parallel curve-based term

In classical active contours, curve Γ is a local minimizer of the functional

E [Γ ] =

∫

Ω

L(c, cu, cuu) du

when the following variational derivative vanishes:

δE [Γ ]

δΓ
=
∂L

∂c
−

d

du

{

∂L

∂cu

}

+
d2

du2

{

∂L

∂cuu

}

(12)

Considering now a functional expressed on the parallel curve,

E ′[Γ[B]] =

∫

Ω

L′(c[B], c[B]u
)du,

determining directly the derivative of E ′[Γ[B]] with respect to Γ leads to tedious
calculations. Instead, we find more practical to determine δE ′[Γ[B]]/δΓ[B] first,
and then relate it to δE ′[Γ[B]]/δΓ using the following general expression:

δE ′

δΓ
= (1+Bκ)

〈

δE ′

δΓ[B]
, t

〉

t + (1−Bκ)

〈

δE ′

δΓ[B]
,n

〉

n

+
B‖cu‖u
‖cu‖

2

〈

δE ′

δΓ[B]
, t

〉

n −
B

‖cu‖

〈

d

du

{

δE ′

δΓ[B]

}

, t

〉

n

(13)

where 〈, 〉 is the L2 inner product and t is the unit tangent vector. To some
extent, we designed the expression in eq. (13) as a chain rule for parallel curve-
based energies. Hereafter, we use it to determine the derivative of the LNBR
term.

A.2 Derivative of region terms

We now need to express derivatives of general region terms over RI and BO.
Region terms are transformed into boundary integrals using Green’s theorem.
In this way, inners terms are differentiated according to the following template
formula (the detailed derivation may be found for example in the appendix
of [21]):

δ

δΓ

{
∫∫

RI

f(x)dx

}

= −‖cu‖ f(c)n (14)
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Integrals over BO are more conveniently differentiated when expressed with in-
tegrals over RI and its dilated counterpart RI[B]. Since BO = RI[B]\RI, we have:

δ

δΓ

{
∫∫

BO

f(x)dx

}

=
δ

δΓ

{
∫∫

RI[B]

f(x)dx

}

−
δ

δΓ

{
∫∫

RI

f(x)dx

}

(15)

From eq. (14), we have:

δ

δΓ[B]

{
∫∫

RI[B]

f(x)dx

}

= −‖cu‖ (1 +Bκ)f(c[B])n

which is intuitively obtained by substituting Γ with Γ[B]. In eq. (13), we re-
place δE[B]/δΓ[B] with the previous result. Since 〈n, t〉 = 0, the derivative even-
tually reduces to:

δ

δΓ

{
∫∫

RI[B]

f(x)dx

}

= −‖cu‖ (1 +Bκ)f(c[B])n (16)

A.3 Derivative of LNBR energy

To determine the derivative of ELNBR, we consider eqs (14), (15) and (16) and
instantiate f with (I − µI)

2 or (I − µLN)2 where appropriate. We approximate
the derivative of the outer term of the LNBR energy from the derivative of the
general integral J(f,BO). Doing this, average intensities µI and µLN are assumed
to be curve-independent. This is actually a shortcut since they do obviously
depend on Γ (see eq. (6)). However, one may note that a similar derivation is
made in the work by Chan-Vese [7], where average intensities µI and µO are
initially formulated as variables and, by means of gradient descent, are actually
assigned to average intensities. Finally, we have:

δELNBR

δΓ
≈ ‖cu‖

[

−(I(c)−µI)
2 − (1+Bκ)(I(c[B])−µLN)2 + (I(c)−µLN)2

]

n

(17)
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