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Abstract. The proposed method is related to parametric and geodesic
active contours as well as minimal paths, in the context of image segmen-
tation 1. Our geodesically linked active contour model consists in a set
of vertices connected by paths of minimal cost. This makes up a closed
piecewise defined curve, over which an edge or region energy functional
is formulated. The greedy algorithm is used to move vertices towards a
configuration minimizing the energy functional. This evolution technique
ensures lower sensitivity to erroneous local minima than usual gradient
descent of the energy. Our method intends to take advantage of explicit
active contours, minimal paths and greedy evolution techniques.

1 Introduction

Among well known variational models for image segmentation, active contours
have drawn lively interest since their introduction by Kass et al [1]. Their key
principle is the research of a curve minimizing an energy functional, which mainly
depends on the adequacy of the curve to the target object. Active contours are
implemented either with a parametric curve - in which case they are often re-
ferred to as ’snakes’ - or in an implicit fashion based on the level set frame-
work [2][3]. Early active contour models are mainly parametric and boundary-
based, as the data term of the energy functional is an edge indicator function
integrated along the curve. The Euler-Lagrange equation, determined by calcu-
lus of variations, indicates the minimizing flow to be followed by gradient descent
scheme. These models are dependent of curve parameterization and unable to
adapt their topology. Moreover, gradient descent is sensitive to local minima of
the energy functional. Parameterization invariance is achieved by the geodesic
active contour model [4], which introduces a geometrically intrinsic functional,
whereas topology adaptiveness is provided by the level set implementation.

Significant attempts have been made to decrease the sensitivity to local
minima, based either on the gradient descent direction or on the minimiza-
tion method itself. The balloon force [5] falls into the first category, as it adds
a normal-oriented inflation or retraction component, in order to increase the
capture range of the snake. As regards the evolution process, several heuristics
based on local searches have been proposed as alternatives to gradient descent,
1 This work was partially supported by ANR grant NanoGPSCellulaire ANR-05-
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including dynamic programming [6][7] and the greedy algorithm [8][9]. The lat-
ter, which is subsequently addressed in the paper, considers the energy as a
sum of curve points energies. It basically consists in iteratively moving curve
points to locations minimizing their own energies, these locations belonging to
a search window. On the other hand, the minimal path approach by Cohen and
Kimmel [10], which seeks for a curve of minimal cost between two end-points,
can be used to recover open and closed boundaries. It is closely related to the
geodesic active contour with respect to the functional to be optimized, but has
in addition the main benefit of finding a global minimum efficiently thanks to
the Fast Marching technique [11].

In this paper, we deal with an explicit implementation of active contour, i.e.
a discrete curve defined by control points, or vertices. The described method is
both related to minimal paths and greedy search. Our geodesically linked active
contour model is made up of a set of vertices connected by paths of minimal cost
with respect to a boundary-based metric. We define search windows centered at
each vertex and evolve vertices according to a greedy fashion. Making a given
vertex movable and the other ones still, we consider every geodesically linked
contour passing through the points in the window of the moving vertex. This
last one is finally moved to the location leading to the contour of smallest energy.
The motivation for this work resides in several points. Firstly, the minimal path
approach alone can only find a minimizer of an edge functional, with one or sev-
eral(s) fixed input end-point(s). Conversely, our model is suitable to any energy
functional, which we prove by endowing it with edge-based or different region-
based energies, including the minimal variance of the Chan and Vese model [12].
We believe that describing the curve with geodesics is pertinent whatever the
energy functional is. Indeed, whether the functional holds edge, region and/or
even shape prior terms, the major part of the final curve will be located on more
or less salient edges. In comparison to snakes driven by gradient descent, the
use of search windows significantly reduces sensitivity to erroneous local minima
and energy weights tuning.

2 Background

2.1 Parametric and geodesic active contours

The active contour model is represented as a plane curve Γ with C2 position
vector c(u) = [x(u) y(u)]. Segmentation of an object of interest is performed
by finding the curve minimizing an energy functional E, which has the general
form:

E(Γ ) =
∫ 1

0

L(c, c′, c′′)du (1)

where L is usually made up of internal terms regularizing the curve and external
terms attaching the curve to image data. According to calculus of variations, the
following variational derivative vanishes if the curve is a local minimizer of E:

δE

δΓ
=

∂L
∂c

− d

du

{
∂L
∂c′

}
+

d2

du2

{
∂L
∂c′′

}
(2)
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Curve evolution is usually performed by gradient descent, taking the oppo-
site variational derivative as a descent direction. Given an image I defined
over D ∈ R

2, they use the following edge indicator g, which is a decreasing
function of gradient magnitude:

g(x) =
1

1 + ‖∇Gσ ∗ I(x)‖
where the image is convolved with the derivative of a gaussian of standard devia-
tion σ. The original parametric snake [1] has the following energy and variational
derivative:

Lsnake(c, c′, c′′) =
1
2

(
α ‖c′‖2 + β ‖c′′‖2

)
+ g(c)

δEsnake

δΓ
= −αc′′ + βc′′′′ + ∇g

(3)

The energy functional of the snake is dependent on parameterization. This has
an impact on discretization, since the energy varies in terms of sampling when
the contour is implemented as a polygonal curve. The geodesic active contour
(GAC) [4][13] solves the parameterization issue by introducing an intrinsic en-
ergy functional, weighting the edge indicator by length element ‖c′‖:

LGAC(c, c′, c′′) = g(c) ‖c′‖
δEGAC

δΓ
= (〈∇g,n〉 − κg)n

(4)

where n and κ are the unit inward normal vector and curvature, respectively.
Hence, the flow resulting from the geometric energy also holds a regulariza-
tion term. This model lends itself to level set implementation, allowing topology
changes.

Boundary-based active contours driven by gradient descent, whether para-
metric or geodesic, are relatively blind to neighboring structures. They are prone
to getting trapped in erroneous local minima induced by noise and lack of con-
trast between objects. To increase the capture range of parametric contours, the
balloon model introduced in [5] adds a bias force in the direction normal to the
curve, so that this one can be inflated or deflated towards object boundaries.
In level set implementations, the bias is commonly referred to as the advec-
tion term [3]. However, despite such techniques, gradient descent may still cause
the contour to miss or pass through significant boundaries. The minimal path
method addresses this issue by finding a global minimum of the energy.

2.2 Minimal paths

The minimal path approach by Cohen and Kimmel [10] aims at finding curves of
minimal lengths in a Riemannian space endowed with an heterogeneous isotropic
metric. The length of path C is:

L(C) =
∫ 1

0

P̃ (C(s))ds =
∫ 1

0

P̃ (C(u)) ‖C′(u)‖ du (5)

where s is the arc length. Potential P̃ , which defines the isotropic metric, should
be chosen according to the application. Curves located on image boundaries are
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detected by using an edge-dependent potential P̃ (x) = w+g(x), where w is
a regularizing constant. Hence the cost of C may be rewritten using euclidean
length:

L(C) =
∫ 1

0

(w + g(C(s)))ds = wLeuclidean(C) +
∫ 1

0

g(C(s))ds (6)

With respect to the energy functional to be minimized, the minimal path ap-
proach is similar to the geodesic active contour model, as can be seen in term
LGAC of eq. 4. However, the minimal path has the avantageous difference of
reaching the global minimum of the energy, given two fixed end-points x0 and
x1. Starting from point x0, the minimal action map U0 should be calculated.
It corresponds to the minimal cost integrated along a path starting at x0 and
ending at x:

U0(x) = inf
C

{
L(C)

}
s.t.

{C(0) = x0

C(1) = x

The action map U0 is the viscosity solution of the Eikonal equation:
‖∇U(x)‖ = P̃ (x)

with initial condition U(x0) = 0. This allows U0 to be computed by the Fast
Marching method [11], which is similar in principle to Dijkstra’s graph search
algorithm. Unlike the latter, it does not suffer from metrication errors and is
thus consistent with the continuous problem. Using a binary heap structure
to store candidate pixels, the Fast Marching algorithm computes the minimal
action map in O(N log N) operations, where N is the number of points. Once
the action map has been computed, the geodesic γ, i.e. the path of minimal
action linking a point x1 to x0, is found by back-propagation starting from x1.
Gradient descent of the action map is performed until x0 is reached:

∂γ(u)
∂u

= −∇U0(γ(u))

In its initial formulation, the minimal path method determines an open curve
between two fixed end-points. It is also able to find closed contours by providing
only one point on the final contour and detecting a saddle point on the minimal
action map [10].

2.3 Greedy algorithm

Along with dynamic programming [6][7], greedy methods deal with discrete en-
ergy functionals. The greedy algorithm for active contours, as developed in [8],
seeks for a minimizer of the energy by means of a set of local optimizations. It
is only applicable on explicit implementations, where the contour is represented
as a polygon with n vertices {vi}1≤i≤n. The total energy is considered as a sum
of vertex energies:

E(Γ ) =
n∑

i=1

Evertex(vi)

where Evertex is the discretization of the energy at a given vertex, using finite
differences. Considering the snake term Lsnake of eq. 3, it comes:

Evertex(vi) =
1
2

(
α ‖vi − vi−1‖2 + β ‖vi+1 − 2vi − vi−1‖2

)
+ g(vi) (7)
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Vertices are successively moved in order to minimize their own energies. At each
iteration, a square window of width m is considered around the current vertex.
The energy of the latter is computed at each tested position ṽi in the window.
The vertex is then moved to the position leading to the lowest energy, which is
summarized by the evolution scheme, at iteration t:

v(t+1)
i = argmin

ṽi∈W
(
v

(t)
i

) Evertex(ṽi)

where W(x) is the window centered at point x. The initial greedy algorithm [8]
performs in O(nm2) operations. The window size has an obvious impact on
computational cost, but also on convergence abilities. Indeed, the contour can
capture farther structures as the window is larger. Recently, an evolution strategy
based on an alternation of several windows was proposed in [9] to speed up
evolution. The greedy algorithm is by essence a discrete optimization heuristic.
The formulation of the variational derivative is not used and continuous calculus
of variations is thus not necessary.

3 The geodesically linked active contour

We develop an approach taking advantage of above described methods. Our
geodesically linked active contour is based simultaneously on an explicit imple-
mentation of active contours, minimal paths and the greedy algorithm. Basically,
we deal with an evolving explicit closed curve, allowing initialization inside or
around the target object without providing fixed points. Minimal paths coupled
with a geometric energy functional allows a parameterization-free handling of
the contour. The use of the greedy algorithm, as opposed to gradient descent,
guarentees better robustness to local minima.

3.1 Minimal paths to connect vertices

Let us consider a set of n linked vertices S = {vi}1≤i≤n. We denote as γi(u) =
[xi(u) yi(u)] the geodesic path connecting vi to vi+1:

γi = argmin
C

{
L(C)

}
s.t.

{C(0) = vi

C(1) = vi+1
(8)

where the cost functional L is defined in eq. 5. At every step of the evolution al-
gorithm, the set of geodesics {γi}1≤i≤n describes a closed piecewise differentiable
contour Γ , which euclidean length is:

Leuclidean(Γ ) =
n∑

i=1

∫ 1

0

‖γ′
i(u)‖ du

One may note that a concatenation of geodesics γi is not a geodesic itself, since it
is forced to pass through given points. To some extent, curve Γ may be considered
as a piecewise minimizer of an edge-based functional. If a uniform potential
P̃ (x) = 1 was chosen, the geodesics would become straight lines of equation

γi(u) = (1 − u)vi + uvi+1, u ∈ [0, 1],
in which case Γ would represent a polygon. Fig. 1 depicts geodesically linked
contours with uniform potential and edge-based potential (dark smooth lines
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represent high image gradient areas). As described in section 2.2, path γi is
determined by gradient descent of the minimal action map Ui+1 of origin vi+1.
Given start point vi+1, the Fast Marching algorithm [11] allows to specify one or
several end points (in our case vi) so that propagation can be stopped when vi is
reached. This prevents the whole image from being visited by the Fast Marching
and saves computational time.

(a) (b)

Fig. 1. Vertices linked by geodesics with uniform potential (a) and edge-based potential
(b)

In the case of edge-based segmentation, the interest of describing the evolv-
ing contour with geodesics is obvious. Indeed, in the end of deformation, the
geodesics fit the actual boundaries of the sought object. On the other hand, in
the case of region-based segmentation, image edges are not explicitly searched.
However, we believe that linking vertices with geodesics is relevant for any usual
segmentation criterion. We may assume that the final contour should be par-
tially located on more or less salient boundaries, whatever energy functional is
optimized. In subsequent sections, we formulate three energies independently
implemented on the geodesically linked active contour, namely the edge, region
and narrow band region energies. Before, we recall Green’s theorem, which we
use to convert domain integrals into boundary integrals. For every region R and
real-valued function f over R

2, we have:∫
R

f(x)dx =
∫

∂R

Pdx + Qdy (9)

where [P (x) Q(x)] is a continuously differentiable vector field such that:

Q(x, y) =
1
2

∫ x

−∞
f(t, y)dt P (x, y) = −1

2

∫ y

−∞
f(x, t)dt (10)

The theorem expects that ∂R should be at least piecewise smooth, it is thus
applicable to the geodesically linked active contour. For instance, to express the
area of region Rin enclosed by Γ , we consider eq. 9 with f(x) = 1:

|Rin| =
1
2

n∑
i=1

∫ 1

0

xi(u)y′
i(u) − x′

i(u)yi(u)du

3.2 Edge energy

Boundary-based segmentation is performed by minimizing an edge energy. The
edge indicator function g is integrated along geodesics. In order not to penalize
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lengthy contours, the edge energy is normalized by euclidean length:

Eedge(Γ ) =
1

Leuclidean(Γ )

n∑
i=1

∫ 1

0

g(γi(u)) ‖γi
′(u)‖ du

Note that according to eq. 6, the integral of g along γi equals Ui+1(vi) minus the
euclidean length Leuclidean(γi). Hence, once the action maps have been computed,
the edge indicator does not need to be summed over geodesics again. With the
edge energy alone, if the search space of vertex coordinates is too small, the
contour fails at capturing actual boundaries when initialized far from them. To
increase the capture range, we add an area-dependent term, which minimization
acts like a balloon force [5]:

Eballoon(Γ ) =
|D| − |Rin|

|D|
where |D| is the image area. In that case, the total energy is a weighted sum of
edge and balloon energies.

3.3 Region energy

The increasing use of region terms has proven to overcome limitations of edge-
based only models, especially when dealing with data sets suffering from noise
and lack of contrast between neighboring structures. Classical region-based de-
formable models segment images according to statistical data computed over
the object of interest and the background. Image partitions should be uniform
in terms of pixel intensities or higher level features like texture descriptors. We
rely on the intensity variance, which is close to the two-phase Mumford-Shah
segmentation model by Chan and Vese [12]. The average intensity in the inner
region is expressed using Green’s theorem:

μ(Rin) =
1

|Rin|
∫

Rin

I(x)dx =
1

|Rin|
n∑

i=1

∫ 1

0

x′
iP (γi) + y′

iQ(γi)du

where P and Q are the summed intensities (see template formulas in eq. 10).
Then, the inner intensity variance is:

σ2(Rin) =
1

|Rin|
∫

Rin

(I(x) − μ(Rin))2dx =
1

|Rin|
∫

Rin

I2(x)dx − μ(Rin)2

where the integral of squared intensities may also be expanded according to
Green’s theorem. Corresponding quantities on the outer region may be expressed
using relation ∫

Rout

f(x)dx =
∫
D

f(x)dx −
∫

Rin

f(x)dx

3.4 Narrow band region energy

The ideal case of uniform regions is rarely encountered in real applications, as
the background usually contains structures of various intensities. Hence, strict
homogeneity is not necessarily a desirable property. In order to account for
spatially varying intensity, local statistics in region-based segmentation have
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emerged recently [14] [15]. The narrow band principle, which has proven its
efficiency in the evolution of level sets [3], is used in our approach to formulate
a local region term [16].

Γ

Γ[−B]

Γ[B]

Bout

Bin

Fig. 2. Inner and outer bands for narrow band region energy

Instead of dealing with whole domains Rin and Rout, we consider an inner
band Bin and an outer band Bout in the vicinity of the contour, as depicted in
fig. 2. The narrow band region energy is the intensity variance over the bands:

Eband(Γ ) = σ2(Bin) + σ2(Bout)
Our narrow band region energy is based on parallel curves [17]. We define
curve γ[B]i

as a parallel curve of γi:

γ[B]i
(u) = γi(u) + Bni(u) (11)

where B is the user-defined band thickness, constant along the curve, and ni

is the inward unit normal to geodesic γi. Hereafter, we will use the index [B]
to denote all quantities related to the parallel curve. Bands Bin and Bout are
bounded by parallel curves of the n geodesics γi, respectively γ[B]i

and γ[−B]i
.

We assume that geodesics are smooth enough so that their parallel curves do
not self-intersect nor exhibit singularities. An important property resulting from
the definition in eq. 11 is that the velocity vector of the parallel curve can be
expressed as a function of the velocity vector of the initial curve, as well as its
curvature and normal. Using the identity ni

′=− κiγi
′, we have:

γ[B]i
′ = γi

′ + Bni
′ = (1 − Bκi)γi

′ (12)
By a change of variable, an integral over inner band Bin may be expressed
explicitly in terms of the curve and band thickness:∫

Bin

f(x)dx =
n∑

i=1

∫ 1

0

∫ B

0

f(γi + bni) ‖γ′
i‖ (1 − bκi) db du (13)

We use the template formula in eq. 13 to express the mean and variance of
intensities in the inner band:

μ(Bin) =
1

|Bin|
n∑

i=1

∫ 1

0

∫ B

0

I(γi + bni) ‖γ′
i‖ (1 − bκi) db du

σ2(Bin) =
1

|Bin|
n∑

i=1

∫ 1

0

∫ B

0

(I(γi + bni) − μ(Bin))2 ‖γ′
i‖ (1 − bκi) db du
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and similarly for the outer band, replacing b with −b.

3.5 Evolution with greedy algorithm

Vertices should be moved in order to minimize the selected energy. This is usually
performed with gradient descent of the Euler-Lagrange equation. In our case, it
is difficult to differentiate Eedge, Eregion or Eband with respect to a given ver-
tex vi, since these energies depend on geodesics to vi (see eq. (8)). The greedy
algorithm presented in section 2.3 provides us a way to evolve vertices without
differentiating the energy.

Motion of curve points can always be decomposed into normal and tan-
gential components. While the geometry of the curve is modified by normal
displacements, tangential motion only affects curve parameterization [4]. Since
the distribution of vertices along the contour can be updated with a resampling
technique, we only consider normal displacement in the greedy evolution. We
define a normal-oriented window WN of length m centered at vertex vi:

WN(vi) =
{
vi + knvi

∣∣∣ k ∈
[[
−m

2
,
m

2

]]}

where nvi is the inward unit normal vector, estimated by finite difference using
the second and next-to-last points of geodesics γi and γi+1, respectively. Since
steps between successive points in the window are integers, the window may be
computed using a Bresenham-like algorithm.

Greedy evolution is performed by moving vertex vi to the position in the
window which corresponding geodesically linked contour has the smallest energy.
Let us consider a test position ṽi belonging to the window. The associated
geodesics γ̃i−1 and γ̃i link it to the neighbors of vi, as depicted in fig. 3. The
energy of the corresponding geodesically linked contour

Γ̃ = {γ1, ..., γi−2, γ̃i−1, γ̃i, γi+1, ..., γn}
is computed and compared to the energy of the initial contour Γ . All window
points are tested in this way, so that the evolution scheme at iteration t is:

v(t+1)
i = argmin

ṽi∈WN

(
v

(t)
i

) E(Γ̃ )

where E is one of the previously described energies. If we consider set H =
{1, ..., i− 2} ∪ {i + 1, ...n} holding indices of geodesics not influenced by a mod-
ification on vi, all quantities involved in the energies are written with constant
and variable parts with respect to ṽi. For instance, the area of the tested inner
region is decomposed:∣∣∣R̃in

∣∣∣ =
∑
j∈H

∫ 1

0

xj(u)y′
j(u) − x′

j(u)yj(u) du

+
∫ 1

0

x̃i−1ỹ
′
i−1 − x̃′

i−1ỹi−1 du +
∫ 1

0

x̃iỹ
′
i − x̃′

iỹi du

This implies that the part of energies invariant with respect to ṽi need to be com-
puted only once, before moving vi. Finally, once all vertices have been treated,
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resampling may be performed to maintain consistent distribution of vertices
along the curve.

vi−1

vi+1

vi

ṽi

γ̃i−1

γ̃i

Fig. 3. Geodesics linking neighboring vertices to points in search window

4 Experiments

We tested the geodesically linked active contour with the three different energy
configurations (edge+balloon, region and narrow band region). A comparison
with a parametric snake endowed with the same energies is provided. The snake
was initialized as a small circle inside the area of interest, far from the target
boundaries. Similarly, the initial vertices of our model are sampled on a cir-
cle. Results are shown in fig. 4. The geodesically linked active contour is drawn
with blue edges whereas the parametric contour appears in red. For each row,
columns (a) and (b) represents the initial and final states of the geodesically
linked active contour, respectively. Columns (c) and (d) represent the same states
for the snake.

For all experiments, the regularization weight w was set to 0.25, which
achieved sufficient regularization for all tested images. The size of the window
was m = 50 and the maximal inter-vertex distance for resampling was set to 20.
The image in row 1, which was segmented using the edge energy, depicts the gap-
closing ability of the model. The geodesically linked active contour managed to
pass through false edges and reach actual boundaries. Thanks to the large search
window, it turned out to be rather unsensitive to balloon strength, as values for
coefficient α in the range [0.1, 4] were suitable. On the other hand, the balloon co-
efficient has a strong influence on the gradient descent-driven parametric snake,
which yields difficult parameter tuning. Actually, it was not possible to find a
correct balloon weight allowing to jump false edges while stabilizing on real ones.
The image in row 2, which was segmented using the region energy, depicts a sim-
ilar phenomenon. The geodesically linked contour does not get trapped in small
gaps in the region, which could present an interest for segmentation of partially
occluded objects.

Row 3 depicts a MRI of the heart left ventricle, which was used to put
the narrow band region energy into application. The band thickness B is an
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important parameter. Apart from its impact on the algorithmic complexity -
computing intensity means and variances on the bands takes at least O(nB)
operations - it controls the trade-off between local and global features around
the object. If B = 1, the region energy is as local as an edge term. The main image
property having an effect on the minimal band thickness is the edges sharpness.
Indeed, the deformable curve needs a larger band as the boundaries of the target
object are fuzzy. However, B = 10 was a suitable value in our experiments. Note
that we depict the state of the parametric snake before self-collision. One may
note that an unconstrained region-based level set method would also properly
segment images in row 2 and 3. However, this remark should be moderated by
the fact our model is dedicated to applications where topology preservation is
needed.

(a) (b) (c) (d)
Fig. 4. Segmentation of left ventricle: initialization (a) and final location (b) of the
geodesically linked active contour, initialization (c) and final location (d) of the para-
metric contour

5 Conclusion and perspectives

We proposed the geodesically linked active contour model for image segmenta-
tion. The model lies on an explicitly implemented curve moved by an evolution
method based on minimal paths and a greedy algorithm. Linking curve points
with geodesics solves parameterization issues and allows the contour to fit the
most salient boundaries at every step of deformation. Displacing vertices accord-
ing to a greedy search ensured lower sensitivity to erroneous local minima than
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usual gradient descent of the energy. The model was endowed with edge and
region energies and was validated on a few datasets. Further work may focus on
developing an adaptive search window for greedy evolution. Currently, the win-
dow length is constant whatever the values of energies or the previous positions
of vertices. We believe the algorithm could be improved by adapting the window
length with respect to these properties, in order to avoid visiting positions that
would not seemingly minimize the energy.
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16. Mille, J., Boné, R., Cohen, L.: Region-based 2D deformable generalized cylinder
for narrow structures segmentation. In: European Conference on Computer Vision
(ECCV). Volume 5303 of LNCS., Marseille, France, Springer (2008) 392–404

17. Farouki, R., Neff, C.: Analytic properties of plane offset curves. Computer Aided
Geometric Design 7(1-4) (1990) 83–99


