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Abstract— This paper deals with the 3D reconstruction of
sparse data in X-ray rotational imaging. Due to the cardiac
motion, the number of available projections for this recon-
struction is equal to four, which leads to a strongly under-
sampled reconstruction problem. We address thus this illness
problem through a regularized iterative method. The whole
algorithm is divided into two steps. Firstly, a minimal path
segmentation step extracts artery tree boundaries. Secondly, a
MAP reconstruction comparing L0-norm and L1-norm priors
is applied on this extracted coronary tree. The reconstruction
optimization process relies on a separable paraboloidal (SPS)
algorithm. Some preliminary results are provided on simulated
rotational angiograms.

Index Terms— reconstruction, Maximum a posteriori (MAP),
minimal path, non-local active contours, X-ray rotational coro-
nary angiography

I. INTRODUCTION
Rotational X-ray imaging devices provide a new way to

explore the possibly existing artery pathologies enhanced
after injection of a dye product, the complete range of projec-
tions (80 up to 150), giving a pseudo 3-D view of the coro-
nary tree with all the structures moving all together. However
the challenge remains today the 3D coronary reconstruction
that will provide the ground for a platform dedicated to the
planning and execution of percutaneous coronary interven-
tions. Due to the rotation of the source detector system, all
the structures are moving and their features (including the
most basic one, the intensity, e.g the attenuation) are varying
over time and space. The object of interest, the coronary
tree, is patient dependent (changes in its branching structure,
complex-shaped vessels), has low nonstationary contrast and
crossings, superimpositions in the image sequence planes
represent additional difficulties to deal with. The coronary
motions, determined by the myocardium contraction, can
not be reduced to rigid transformations: strong deformations
occur with slow and fast phases and movement inversions.

Y. Hu, G. Yang and L. Luo are with the Laboratory of Image Science
and Technology, SoutEast University, Nanjing, China

A. Oukili, J.C. Nunes, and C. Toumoulin are with the French Na-
tional Institute for Health and Medical Research (INSERM), U1099,
Rennes F-35000, France, and with the Laboratoire Traitement du Signal
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Different approaches have been proposed for this recon-
struction depending on whether we consider the set of avail-
able projections or only the one acquired at the same phase
of the cardiac cycle [1]. In the first option, the 3D+T motion
is first estimated throughout the cardiac cycle to perform a
motion compensated tomographic reconstruction at a given
instant of the cardiac cycle using all the available projections
[2]. The construction of this motion model generally relies
on modeling techniques to extend the information to the
time domain and is most often estimated from extracted 2D
centerlines [3]. In the second option, the reconstruction is
carried out from a limited number of views (typically 4 - 6
projections), corresponding to a single cardiac phase selected
by ECG-gating. This reconstruction can be obtained by solv-
ing a static tomographic inverse problem. But the low number
of projections leading to a severe angular undersampling,
prior information is often introduced to improve the quality
and accuracy of this reconstruction [4]. Other methods still
make use of the epipolar geometry constraints and feature
matching techniques to find corresponding structures in each
view and recover their geometry [5].

We address here this illness problem considering back-
ground subtracted projections so that a vessel only 3D recon-
struction can be performed, introducing thus a sparse repre-
sentation of the data in the space domain. The reconstruction
procedure goes through a preliminary segmentation stage and
a lp norm regularization (p < 2) within a statistical MAP
reconstruction algorithm. These two methods are described
in Section II. Preliminary results are given in Section III on
simulated data.

II. METHOD

The segmentation algorithm takes benefit of both min-
imal path and level set evolution methods to extract the
coronary tree on each projection of the sequence. Then,
the background is estimated to build background subtracted
images and deal with sparse data. We address respectively,
for comparison, the l0 and l1 norm regularizations within a
maximum a posterior (MAP) estimation. The optimization
process relies on a separable paraboloidal surrogate (SPS)
algorithm which was introduced by Erdogan et al. for PET
image reconstruction under Poisson statistics [6] and later for
MSCT reconstruction [7]. SPS functions are applied here in
the frame of a gaussian distribution data model.



A. Proposed segmentation method

The minimal path technique introduced by Cohen and
Kimmel [10] has been extensively used for the extraction
of tree or tubular tree structures. This approach has several
advantages such as finding global minima, fast computation,
easy implementation, and more powerful incorporation of
user input. On the other hand, level set evolution techniques
have a nice advantage, which is that they capture and
represent the boundary of object directly, not just some
path running through their interior as in the minimal path
approach. Recently, an active contour model [12] was pro-
posed in the level set framework, which constrains the local
homogeneity of image features. This is crucial to overcome
the difficulty of segmentation due to image inhomogeneity
that is often seen in medical images.

1) Minimal Paths: The minimal path technique character-
izes a boundary extraction approach that globally minimizes
a geodesic active contour energy between two user supplied
end points. The model is formulated as

min
γ∈Ax0,x

{
E(γ) =

∫ L

0

w + P (γ(s))ds =

∫ L

0

P̃ (γ(s))ds
}

where Ax0,x is the set of all paths linking x0 and x, s
represents the arc-length, and w > 0 is a constant imposing
regularity on the curve. P > 0 is a potential cost function
computed from the image, which takes lower values on the
interesting features of the image.

To compute the solution associated with the source point
x0 of this problem, a Hamiltonian approach was proposed
in [10]. This finds the geodesic weighted distance U0 by
solving the Eikonal equation: ∥∇U0(x)∥ = P̃ (x), ∀x ∈ Ω,
with U0(x0) = 0. Then, the minimal path γ can be retrieved
with a simple gradient descent on U0 from x to x0, by solving
the ordinary differential equation: dγ(s)

ds = −∇U0(γ(s)) with
γ(0) = x. To solve the Eikonal equation, one can use the
Fast Marching algorithm [10] due to its lower complexity.

2) Non-local Active Contours: The non-local active con-
tours model [12] aims at finding a contour that represents
the boundary of object of interest, and minimizes the energy
incorporated with a level set function ϕ : Ω → R,

F (ϕ) =

∫
Ω

∫
Ω

ρ(H(ϕ(x)),H(ϕ(y)))K(x, y)dxdy + γL(ϕ)

where K(x, y) = Gσ(x − y)d(px, py) with Ga(t) =

e−∥t∥2/2a2

, a patch px around the pixel x and a metric
d(·, ·) ≥ 0 that accounts for the similarity between patches,
and where L(ϕ) =

∫
Ω
∥∇H(ϕ(x))∥dx. H is a smoothed

Heaviside function, and ρ is an indicator function such
that ρ(u, v) = 1 if u = v, 0 otherwise (e.g. ρ(u, v) =
uv+(1−u)(1−v)). The parameter σ > 0 controls the scale of
the local homogeneity one requires for the segmented object.
The second term enforces the smoothness of the contour, thus
γ > 0 is a regularization parameter.

The solution of the minimization problem is computed by
solving the evolution equation for an artificial time t ≥ 0:
∂ϕ(t,x)

∂t = −∇F (ϕ(t, x)) with ϕ(0, x) = ϕ0(x). See [12] for
more details.

3) Proposed Segmentation Algorithm: In the proposed
algorithm, the minimal path technique is first used for an
initial estimation of the tubular tree structure. The non-local
active contours model is then performed, to make a level set
function constructed from the minimal paths move towards
the boundary. Thus, the segmentation algorithm is as follows:
• (Estimation step) Given x0 and end points {xi}ki=1,

• Compute minimal paths γx0,xi (i = 1, ..., k).
• Compute an initial level set function ϕ0 as a signed

distance function along the minimal paths.
• (Correction step) Solve the non-local segmentation model
starting with the initial level set function ϕ(0, ·) = ϕ0.

B. 3D reconstruction stage

Rotational imaging provides a sequence of 2D projections
acquired under continuous rotation of the C-arm. The ac-
quisition trajectory is limited to a circular arc with a fixed
caudo-cranial angulation. Let consider Y = {Y1, Y2, ..., YL}
to be the projection images acquired at primary angles
θ = {θ1, θ2, ..., θL}, L being the number of considered
rotation angles. If we assume the cardiac motion is relatively
regular and periodical, then through ECG gating, we can
choose a set of projections Y s, which corresponds to the
same 3D heart motion (i.e the same cardiac phase s). The
3D coronary tree fs at a given instant s of the cardiac
cycle, will be reconstructed from a very few number of
projections, which renders the problem strongly ill-posed.
We will further simplify the notation by using Y instead
of Y s for conciseness. Projections Y are non-subtracted i.e
they include both the background tissues and the coronary
tree enhanced with the contrast agent. Thus, the expectation
of the measurement E(Y ) can be written under the following
form:

Ȳi = Ȳbi exp (−[A.f ]i) (1)

with [Af ]i =
∑

j aijfj (j = 1, ..., J , i = 1, ..., I) and
(J, I) being the voxel and pixel numbers in the volume
and on the detector plane respectively. A is the cone beam
projection operator, aij denotes the contribution of voxel j
in the computation of pixel i, and Ybi is the ith element of
the background tissues Yb. The logarithm application on eq.
1 provides a new image that only contains the structure of
interest: ḡi = [A.f ]i with ḡi = − log Ȳi

Ȳbi

. The data are thus
supposed to follow a Gaussian distribution model:

P (gi|f) =
1

σi
√
2π

exp

(
−1

2

(
gi − gi
σi

)2
)

(2)

1) MAP model: According to the Bayesian theory, the
estimate of the unknown object f is computed as a function
which maximizes the posterior density P (f |g) and is given
by:

f̂(g) = arg min
f≥0

(− logP (g|f)− logP (f |β)) (3)

The log-likelihood function logP (g|f) = L(g|f) is:

L(g|f) = −1

2
(g − ĝ)

T
Σ−1(g − ĝ)

T − const (4)



where ĝ = Af and Σ is the covariance matrix:
Σ = diag{σi}2 with σ2

i = max(σ2
min, log (ĝ)). The

prior function has the form of a Gibbs distribution
P (f |β) = exp (−βR(f))

Z(β) , Z(β) being a scaling constant. Thus,
logP (f |β) = −βR(f) with:

R(f) =

J∑
j=1

∑
k∈Nj

ωjkψ(fj − fk) (5)

where Nj defines the neighborhood of the jth voxel, and
ωjk is a positive value that expresses the interaction degree
in clique kj. ψ(t) is a symmetric function that penalizes the
pairwise differences between neighbouring voxels. Various
kinds of potential function ψ have been proposed in the
literature that are l2 norm [4], l1 norm [3] and l0 norm
[4]. We compare 2 of these priors: l0 norm and l1 norm
respectively defined by: ψ(t) = |sgn(t)| and ψ(t) = |t|.
The l0 norm is non convex and not continuous around zero.
This brings some difficulty for the optimization. A way
for solving it is to go through surrogate Functions. Any
function satisfying: limρ→0 ψ(t, ρ) = |sgn(t)| can be taken
as surrogates, such as ψ(t, ρ) = 2

π arctan |t|
ρ .

2) Optimization: The key of the SPS method is to find
a decomposition of the objective function into a simple
quadratic form that simplifies its optimization, guaranties
a faster global convergence and reduces the computational
time [5]. We define: L(ĝ) =

∑
i Li(ĝi) =

∑
i
(gi−ĝi)

2

2σi
2 .

Then L̃j(fj , f̂) =
∑

i Li(gi, ĝi). The voxel based quadratic
likelihood function is then given by Q̃j(fj) = L̃j(f̂) +

L̇j(fj)(fj−f̂j)− 1
2dj(fj − f̂j)

2
with L̇j(fj) =

∑
i aijL̇i(ĝi)

and dj =
∑

i aij
2σi

2. In the case of the non convex prior, we

apply an update into 2 steps: fjk+1,1 = max(0, fj
k − Q̇k

j

Q̈k
j

)

and fjk+1,2 = max(0, fj
k+1,1 + β ∂R(f)

∂fj
).

III. RESULTS

Evaluations have been carried out on simulated data ob-
tained from a 3D dynamic sequence acquired on a 64-slice
GE LightSpeed CT scan [9]. A sequence of 20 3D binary
coronary trees was built corresponding to 20 different cardiac
phases. A C-arm rotational R-X coronary angiography was
then simulated using the Siemens Axiom System imaging
protocol. The detector plane (200mm)2 was uniformly sam-
pled into 512 pixels. Reconstructions were performed within
a volume of (110mm)3, 80 projections of the 3D binary tree
were generated, uniformly spaced over the range RAO 90◦ to
LAO 90◦. 4 cardiac cycles were considered, this means that
a volume (associated with a phase s of the cardiac cycle)
was projected 4 times during the acquisition, according to
different viewpoints. The projection operator A has been
computed according to [8]. We used then the method of
low order polynomials approximation to build background
tissues images from the CT scan datasets. Fig. 1 displays
four simulated projections Y s, s being the phase 0 and the
projection angles RA0 90◦, RAO 30◦, LAO 30◦ and LAO
90◦.

Fig. 1. Simulated projections at phase 0. Projection angles are respectively
(RA0 90◦, RAO 30◦, LAO 30◦ and LAO 90◦).

Fig. 2. Segmentation results. (1st) original image, (2nd-4th) minimal paths,
resulting curves of NLAC, extracted vessels. Blue and green points represent
a starting point and end points respectively.

A. Segmentation results

The fig. 2 presents segmentation results of the algorithm
described in II-A. For the potential P , we computed an
enhanced image f0 = Gb∗f−f with b = 10, which cleaned
the original image f by subtracting the smoothly varying
background. We used P̃ (x) = w + |f0(x) − maxxf0(x)|
with w = 0.001. For the non-local active contours, we used
the L2 distance d based on the image f with patches of size
3× 3 pixels, Gσ of size 15× 15 pixels with σ = 1000, and
we set γ = 40. The curve evolution method could correct
erroneously segmented (or missing) parts that are initially
estimated by the minimal path technique.

B. Reconstruction results

Background images Yb were then estimated by subtracting
the segmented images (fig. 3) from original projections Y
and applying an inpainting method on Yb to interpolate the
missing background data (at the coronary tree location). The
background segmented images g are then obtained by the
logarithmic subtraction (log Yb − log Y ).

The hyperparameter β = 0.002 for l0 norm, β = 0.0005
and for l1 norm. We applied a relaxation scheme to estimate
the optimal value ρ in the l0 norm prior computation. Fig.
4 displays the 3D coronary reconstruction obtained from
background segmented images. The reconstruction quality
is evaluated using DICE overlap criterion. This criterion is
equal to 0.42 for both l0 and l1 norms. For comparison, we
performed the reconstruction of ideal coronary trees directly



Fig. 3. Segmented images g for the four projections of the phase 0 of the
cardiac cycle.

obtained from the 3D reference sequence and got a DICE
of 0.99 for l0 norm and 0.97 for l1 norm. This result shows
that the reconstruction algorithm is highly dependent on the
segmentation-based background estimation.

Fig. 4. Coronary tree reconstruction from the 4 projections depicted in the
fig. 1. First line: reconstruction from the ideal tree (left: with l0 norm, right:
with l1 norm). Second line: reconstruction from the background segmented
images (left: with l0 norm, right: with l1 norm).

IV. CONCLUSION

The coronary artery tree reconstruction from a very few
number of projections appears to be a very strong ill-posed
problem. Indeed the cardiac motion leads to a severe angular
undersampling. Moreover, we restricted the projection num-
ber to four for the static reconstruction in order to position
ourself in situation of clinical routine where the acquisition is

made over a period of 4 seconds. We proposed to solve this
problem by simplifying the image contents with a prelimi-
nary segmentation stage, which is based on minimal paths
and non local active contours to build background subtracted
projections. We compared then l0 and l1 norm regularizations
within a statistical MAP reconstruction algorithm to deal
with the spatial sparsity of the data. Evaluations have been
performed by means of a realistic phantom representing an
arterial tree extracted from a sequence of MDCT datasets in
order to get a ground truth. Preliminary results make appear
that the reconstruction algorithm is very sensitive to the
quality of the segmentation and the background estimation.
Our further objective will thus be to improve the background
estimation as well as to work on a new prior that will better
discriminate the coronary/background structures during the
reconstruction process.
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