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Abstract. This paper presents different ways to use the Doppler Tissue
Imaging (DTI) in order to determine deformation of the cardiac wall. As
an extra information added to the ultrasound images, the DTI gives the
velocity in the direction of the sensor. We first show a way to track
points along the cardiac wall in a M-Mode image (1D+t). This is based
on energy minimization similar to a deformable grid. We then extend
the ideas to finding the deformation field in a sequence of 2D images
(2D+t). This is based on energy minimization including spatio-temporal
regularization and a priori constraints.
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1 Introduction

Doppler Tissue Imaging (DTI) is a recent technique which provides a partial
information about the myocardial wall velocities. This is the velocity of the tis-
sues in the direction of the sensor. This new data is represented by a colour
added to the conventional ultrasound image. Two types of these images are used
by the cardiologists. First 2D images as in figure 1l.a. are usually employed in
ultrasound imaging. But the extra data which is collected during the acquisition
implies a reduction of the temporal resolution compared to classical ultrasound.
We cannot have more than a hundred images per second. M-Mode images (Fig-
ure 1.b) can give a better temporal resolution by reducing the studied area. They
are obtained by choosing a 1D segment on the image and watching its evolu-
tion through time. Since there is only one dimension the temporal resolution is
increased to about 500 frames per second. In this work, we used sequences of
images of left ventricle of human hearts.

Previously, M-mode images have been studied in [1] in order to track the car-
diac wall with a variant of active contours. The contour C(t) = (¢, f(t)) deforms
to minimize E(f) = fOT wi| FE) P + wal f' ) > + Pedge(C(t)) + Poetocity (C(t))dt.
P.qge and Pyejocity are potentials which attract respectively C(¢) to the edge and
1'(#) close to the velocity measured by the DTI. [1] shows the advantage of using
DTI in addition to the edge information.

We will use different variational methods to study the deformation of the
heart in M-mode and afterwards 2D DTI images.



(a) 2D Ultrasound Im- (b) M-Mode Ultrasound
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Fig. 1. DTI Images.

Fig. 2. Initialization of the steepest gradient descent.

2 Tracking the Wall through M-Mode Images

We now want to track several points through the cardiac wall on the M-Mode
image I(t,z), making use of the velocity given by the DTI image vpri(t, 2).
Points are chosen for the initial time ¢ = 0 along a hand given segment. They
are regularly spaced on this vertical segment as seen on the left of figure 2.

Let {Ci(t) = (t,yi(t))}1<i<n be the curves which perform the tracking
of these points. If the points we want to follow are close enough, the curves
{C1,...,Cn} must be consistent with one another. In order to improve the
tracking, we will consider the set of curves {Ci,...,Cn} as an active net:
(y(t, s) = ys(t))s,t where only the second coordinate y(¢,s) can vary. The active
nets, or deformable grids, are defined in [2] and [3]. The net deforms according
to the minimization of an energy. Our energy consists of three terms.

1. A regularization term as in [2].
2 2 2, 2 2 2 2 2
Ereg(y) = [[a(3 + L) +p(5L +25L + 54 )dtds
This term will be the one enabling interaction between successive curves. The

first derivatives make the net contracts (which should be avoided by choosing
a small) and the second derivatives enforce smoothness and rigidity.



(a) After a few iterations of steepest (b) Result of the tracking.
gradient descent.

Fig. 3. Steepest gradient descent.

2. An external term which attracts the derivative close to the given velocity
measured by the DTI This is an extension in two dimensions of [1].
Evelocity ff Bt UDTI t y(t S))thds

3. The last terrn is also an external term. We assume that the gray level is
nearly constant along and around each curve.

Egray(y) = [[ Zk__2 (t,y(t,s) + k) — I(0,y(0, s) + k)?dsdt
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(a) Optical Flow. Close up. (b) Velocity field obtained by
Bottom of the lateral wall. our method on the same case.

Fig. 4. Comparison between optical flow and the velocity field we obtained. In these
images, the sensor is above and on the right of the pictures.

We used both DTI and gray scale conventional ultrasound in this energy.
The net y is obtained by the minimization of E(y) = E,eq(y) + pEgray(y) +
AEyeiocity (y) where X and p are postive constants. g must be chosen small be-
cause Fg.q,y is very sensitive to noise. We proceed as in [1] and [4] and use a
steepest gradient descent, the discretization was done by finite differences. This
gives in matrix form (Id + 7A)Y"*! = Y™ + 7F(Y™) where Y is the discrete
version of y and A is a sparse square matrix. To avoid a large matrix inversion,
we can approximate (Id+7A)~! & Id—7A for 7 small enough. We then apply a
SOR algorithm [5]. The energy can have many local minima. Therefore we must



use an initialization close to the solution. For this purpose, we choose an integra-
tion of the velocity measured by the DTT: y(t + 1, s) = y(¢,s) + vpr1(t,y(t, s))dt
(figure 2) where dt is the time step. These curves, which are the direct interpreta-
tion of the DTT velocity do not provide an accurate tracking of the wall. We can
see that some curves leave the wall during the tracking. The hypothesis about
the gray level is not exact in the case of ultrasound images. Nevertheless figure 3
shows how this term of the energy tends to correct the tracking processed using
only DTI. Figure 3.b presents a final result. We have compared these curves
to manually traced curves by the cardiologist. We notice that the set of curves
folow precisely the deformation of the cardiac wall. This automatic tracking has
been of much help for cardiolgists in order to study various use of DTI images

[6], [7]-

Fig. 5. Velocity field with the simplest method.

3 Deformation Field in a 2D Image Sequence

3.1 Presentation

Our next interest is the study of 2D image sequences. The difficulties raised are
the low temporal resolution and the incomplete DTT information. The DTT only
measures the velocity in the direction of the sensor. Moreover the acquisition
of the sequence instead of a single image implies a lower spatial resolution. Our
motivation is to be able to diagnose a pathology with the help of DTT ultrasound
images. For that purpose, we are mostly interested in recovering a complete
deformation field.



Fig. 6. Close up on figure 5.

3.2 Recovering the Velocity Field

The DTI sequence contains two types of information: the velocity vpry(z,y,t)
in the direction of the sensor measured by the DTI and the conventional ultra-
sound sequence I(z,y,t). We will use this second information to complete the
first one. From the grayscale conventional ultrasound sequence, we can calculate
the optical flow [8], [11], [9] and [10]. The optical flow is the distribution of ap-
parent velocity of motion of brightness patterns in an image. The determination
of the optical flow is based on the hypothesis that the brightness of a point
I(z(t),y(t),t) is constant through time. Using the chain rule for differentiation

Al dz 4 810y | &I _ _ Oz — oy
we see that 37 57 +3y 5 + 5 = 0. If welet u = and v = we have a

ot at
ar

linear equation in the two unknows v and v : Iyu+ Iyv + I; = 0, where I, = 5,
I, = % and I; = %. This is called the constraint of the optical flow. It does
not deﬁune a unique solution. Our solution is inspired by the Horn and Schunck’s
method and will take advantage of the knowledge of the DTI information. The

field we are looking for will satisfy three constraints:

1. The optical flow constraint.
2. The agreement with the DTI velocity.
3. A regularity constraint.

These properties are obtained as follows: we look for a vector field (u,v) which
minimizes

E(u,v) = // (xprru+ yprrv — vprr)? + a(||Vul||? + ||Vol]?)+
17,
B(Iyu + Iy + I)*dxdy

where a and f are positive constants, {2 is the image domain, (xprr,ypTI)
denotes the direction of the sensor and vpry denotes the norm of the velocity
measured by the DTI. We minimize this energy with a steepest gradient descent.
We used a discretization by finite differences with an explicite scheme. We give
an example in the figure 5. All the examples were obtained on the same image
taken during the systole. The results are satisfying compared with simple optical
flow (figure 4). We get a more regular field without increasing the diffusion. We
observe that the velocity field mainly represents a motion of contraction. But
this field is still very noisy.



Fig. 7. Velocity field with a spatio-temporal regularization.

We can improve the results by using the idea of [11]. It consists of using a
spatio-temporal regularization instead of a spatial regularization. It leads us to
process the whole sequence simultaneously by minimizing the following energy:

E(u,0) = / / / (@prru+ yprro — vprr)? +a(|[Vall? + [ Vol?)
02x[0;T]

+B(Leu + Ly + L) dedydt.

The rest of the algorithm is the same. An example of result is shown if figure 7.
As in [11], the result is much more coherent and complete.

In order to improve results, we set soft constraints from a priori information
about the heart deformation. In this type of image, the deformation is a contrac-
tion. Its center is the center of the heart. We then imposed a radiality constraint
on the energy. Let O = (20, yo) be the center and radiuses R; and R» define
a ring around the myocardium wall: C(O, Ry, Rs) = {(z,y), R1 < d(0,(z,y)) <
Rp}. We add a term to the energy of the form [io.1[ o0, g, gy (u-(x — @0) —
v.(y — yo))?dzdydt. We obtain figure 9. We can see the result of the constraint
on the direction of the field but we could lose information while giving too much
a priori information. The choice of adding this constraint or not is dependent on
the application.

We checked the validity of our results by deforming an image with the velocity
field and comparing to the following image, both visually and with a quadratic
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Fig. 8. Close up on figure 7.

norm. This comparison gave good results, but, since we calculate a smooth field,
it is not an quantitative evaluation of the quality of the velocity field. In future
work, we will analyse the deformation field by the way of segmentation and
classification algorithms. Then we will compare these analysis with other medical
datas. That is how we will be able to check this deformation field estimation.

4 Conclusion
We have presented different ways to use the Doppler Tissue Imaging (DTI) in

order to determine deformation of the cardiac wall. We first showed a way to
track points along the cardiac wall in a M-Mode image (1D+t), based on a
deformable grid energy minimization. We then showed how to estimate the de-
formation field in a sequence of 2D images (2D+t), based on energy minimization
including spatio-temporal regularization and a priori constraints. Future work
includes analyzing the deformation of the cardiac wall and finding pathology
starting from the deformation field method we described in this paper.
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