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Abstract. We address the issue of low-level segmentation of vector-valued images, focusing on the case of color
natural images. The proposed approach relies on the formulation of the problem in the metric framework, as a
Voronoi tessellation of the image domain. In this context, a segmentation is determined by a distance transform and
a set of sites. Our method consists in dividing the segmentation task in two successive sub-tasks: pre-segmentation
and hierarchical representation. We design specific distances for both sub-problems by considering low-level image
attributes and, particularly, color and lightness information. Then, the interpretation of the metric formalism in
terms of boundaries allows the definition of a soft contour map that has the property of producing a set of closed
curves for any threshold. Finally, we evaluate the quality of our results with respect to ground-truth segmentation
data.
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1. Introduction

The metric framework for spatial tessellations was first
formalized by Dirichlet (1850) and Voronoi (1907),
who studied the idea of partitioning the space by con-
sidering a finite set of fixed points, called sites, and
assigning each point to the closest site. The regions
defined by this construction are usually called Voronoi
regions or Voronoi cells and the resulting spatial de-
composition is known as a Voronoi tessellation or
Voronoi diagram. Figure 1 presents an example of this
structure in its original formulation: a rectangle in the
plane is partitioned by measuring the Euclidian dis-
tance between each point and the four sites shown on
the left. In this case, the Voronoi regions are convex
polygons.

Since its early introduction, the Voronoi tessellation
has found application in a wide range of disciplines and
has inspired several generalizations (Aurenhammer
and Klein, 2000; Okabe et al., 2002). In the context of
image analysis, application of this structure includes
compression (Ahuja et al., 1985), texture classification
(Tuceryan and Jain, 1990) and shape representation
(Mayya and Rajan, 1996).

In this paper, we consider an extension of the Voronoi
tessellation to pseudo-metric spaces and we study its
application to the segmentation of vector-valued im-
ages, focusing on color images. Within this frame-
work, segments are defined as Voronoi regions of a
set of sites, relatively to a pseudo-metric. The prob-
lem is thus transferred to the definition of a rele-
vant distance transform from the image data and the
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Figure 1. Set of sites and Euclidian Voronoi tessellation.

selection of a set of sites. Our approach consists in
applying the metric formalism to two successive sub-
tasks of segmentation : pre-segmentation and hierar-
chical representation of color images. For this pur-
pose, we design specific distances by considering two
low-level image attributes, namely color and brightness
information.

We first present a pre-segmentation technique called
the extrema mosaic. The pseudo-metric defined in this
part, the path variation, is a generalization of the one
dimensional total variation for vector-valued functions
of multiple variables. In the case of color images, we
study the Voronoi tessellation obtained by considering
the extrema of the lightness channel of the image as
sites. This method provides a natural reconstruction of
the image that offers a balance between content con-
servation and simplification.

In the second part, we focus only on those tessel-
lations that are invariant when a site is displaced in-
side its Voronoi region. This consideration leads to a
type of pseudo-metrics called ultrametrics. These dis-
tances are useful for a multiscale representation of
the image, as their definition amounts to construct-
ing a stratified hierarchy of partitions of the image
domain. Starting from the pre-segmented image, we
define an ultrametric for color image segmentation.
This distance incorporates boundary and inner region
information.

Finally, we exploit the boundary-based formulation
of the metric formalism to define a soft boundary im-
age, which we call ultrametric contour map (UCM).
Our region-based approach guarantees that a threshold
in this image supplies a set of closed curves. The UCM
are then used to evaluate the quality of our results with
respect to ground-truth human segmentations.

This paper is organized as follows. Section 2 presents
the mathematical framework. Section 3 introduces our
pre-segmentation method. Section 4 is dedicated to hi-
erarchical segmentation and ultrametric contour maps.
Finally, the evaluation of our results is discussed in
Section 5.

2. Voronoi Tessellations

In this section, the classic notion of Voronoi tessellation
is extended to the framework of pseudo-metric spaces.

Definition 1. A pseudo-metric space (Kuratowski,
1966; Kelley, 1975) is a pair (�, ψ) where � is a set and
the application ψ : �2 → IR+ satisfies the following
axioms:

1. ψ(x, x) = 0, ∀x ∈ � .
2. ψ(x, y) = ψ(y, x), ∀x, y ∈ �.
3. ψ(x, y) ≤ ψ(z, x) + ψ(z, y), ∀x, y, z ∈ �.

The number ψ(x, y) is called the distance between
points x and y.

A pseudo-metric space is convex if each pair of points
x, y ∈ � can be joined by a ψ-straight path, i.e.,
a continuous application γ : [a, b] → � such that:
γ (a) = x, γ (b) = y and

∀ t ∈ [a, b], ψ(x, y) = ψ(x, γ (t)) + ψ(γ (t), y).

Definition 2. Let (�, ψ) be a closed convex pseudo-
metric space and S = {s1, . . . , sn} ⊆ � a set of fixed
points called sites.

The Voronoi region, or V-region, of a site si ∈ S is
defined as:

Rsi = {x ∈ �| ψ(x, si )

≤ ψ(x, s j ), ∀ j ∈ {1, . . . , n}, j �= i}.

The Voronoi tessellation, or V-tessellation, of � as-
sociated with ψ and S is the set of Voronoi regions:

�(ψ, S) = {Rs1
, . . . , Rsn }.

Note that Axiom 1 of Definition 1 allows differ-
ent points to be at zero distance in a pseudo-metric
space. By considering the equivalence classes x̂(ψ) =
{ y ∈ �|ψ(x, y) = 0}, one can define a quotient space
�̂(ψ), which is a metric space. Each element of a V-
tessellation is therefore a union of elements in �̂(ψ).
The equivalence classes indicate the level of resolution
of the pseudo-metric, under which the distance is blind.

Two main differences between our approach and
the standard framework of Voronoi tessellations
(Aurenhammer and Klein, 2000; Okabe et al., 2002)
are worth noting. First, by considering pseudo-metrics
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we have access to a class of spaces larger than the metric
spaces. Second, since we aim at applying this structure
to image analysis, the set � corresponds to the domain
of definition of a color image and the pseudo-metrics
we study depend explicitly on the image data.

Hence, in this context, the segmentation of a color
image is determined by the definition of a relevant
pseudo-metric and the selection of a set of sites; the
rest of the paper is dedicated to these issues. However,
as we make no assumption on the image content, we
only consider as set of possible contours the discon-
tinuities of the original image. This property can be
obtained by defining the pseudo-metric ψ such that the
equivalence class of a point x ∈ � coincides with the
connected component of u that contains x . The quo-
tient space �̂(ψ) is then homeomorphic to the space of
components of the image. Moreover, for a set of sites S,
each element of �(ψ, S) is a union of components of
u. Such V-tessellations simplify then the image while
preserving its original contour information.

Finally, in order to address the segmentation of color
images in the metric framework, a practical problem is
the definition of a distance between colors. For this
issue, the C.I.E. standard L∗ab (Wyszecki and Stiles,
1982) is adopted in this paper. This color representa-
tion ought to approximate a perceptually uniform color
space. Though not perfect, it provides two main ad-
vantages with respect to the basic RGB system: first,
the separation of the color information into a lightness
channel L∗ and two chromatic channels a∗ and b∗; sec-
ond, the approximation of the metric in the Riemannian
color space by the Euclidian distance. In the sequel, the
distance in the color space L∗ab is noted δ∗.

3. Pre-segmentation

This section presents an application of the metric for-
malism to the pre-segmentation of color images. For
this purpose, we begin by defining a specific distance.

Let (X, ψ) be a pseudo-metric space. Consider a
finite partition of an interval [a, b], σ = {t0, . . . , tn},
such that a = t0 < t1 < · · · < tn = b and note � the
set of such partitions.

The variation at order p of a function f : [a, b] →
(X, ψ), is given by:

v p( f ) = sup
σ∈�

n∑
i=1

ψ( f (ti ), f (ti−1))p.

If (X, ψ) is the set of real numbers with the usual metric,
then v1( f ) corresponds to the total variation of f , the

well known functional introduced by Jordan. In our
case, (X, ψ) is the color space (L∗ab, δ∗).

For multiple variable functions, we propose to mea-
sure the minimal variation on all the paths between two
points:

The path variation at order p of a function u : � →
(X, ψ), is defined as:

V p
u (x, y) = inf

γ∈	xy

v p(u ◦ γ ), ∀ x, y ∈ �. (1)

where γ is a continuous path between x and y and 	xy

the set of such paths.
Note that, in contrast to the usual notion of total vari-

ation for functions of multiple variables (Rudin et al.,
1992), the path variation is defined for each couple of
points of �. By definition, the equivalence class x̂(V p

u )
coincides with the connected component of u contain-
ing x . A discrete definition of this distance for color
images can be found in Arbeláez and Cohen (2003a).

The path variation is an interesting pseudo-metric
for a local level of analysis, as it quantifies the minimal
variation of color between pixels. In order to apply
this distance to pre-segmentation, we now turn to the
selection of an appropriate set of sites.

The purpose of pre-segmentation is to decompose
the image into local entities that preserve its geomet-
ric structure. Therefore, the spatial distribution of sites
should be physically representative of the image con-
tent and each significant feature should contain at least
one site. In the case of natural images, the lightness ex-
trema satisfy these two properties, as shown in Fig. 2.

Thus, we consider the Voronoi tessellation �(V p
u ,

ext(u)), where ext(u) denotes the set of extremal com-
ponents of the lightness channel L∗ of a color image u.
An extrema mosaic of u is the piecewise constant re-
construction of the image obtained by assigning a color
to each V-region of �(V p

u , ext(u)).
Figure 2 illustrates the method. The central column

presents the sites in black and the extrema mosaics
are shown on the right, with the V-regions depicted
on their mean color. The density of the lightness ex-
trema is high on focused or textured regions and low
in blurred or homogeneous zones. Consequently, the
blur is reduced in the reconstructed images, while the
geometric structure, including notably contour infor-
mation, is preserved.

Hence, the choice of the path variation as the pseudo-
metric and the spatial distribution of the sites determine
a V-tessellation where a balance between simplification
and content conservation is obtained. In the sequel, the
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Figure 2. Form left to right: Original images, sites and extrema mosaics (images in color in the electronic version).

extrema mosaic is used as a pre-segmentation method.
This approach may also be combined with a non-linear
diffusion filtering in order to reduce the number of ex-
trema and regularize the tessellations (Arbeláez and
Cohen, 2003b).

4. Hierarchical Segmentation

In the framework of Voronoi tessellations, segments
are modeled as Voronoi regions. It is then desirable
that displacing the site inside a V-region does not mod-
ify its boundary. Unfortunately, the path variation does
not satisfy this property. The rest of this paper is dedi-
cated to the study of a particular type of pseudo-metrics
exhibiting this invariance requirement.

4.1. Stratified Hierarchies and Ultrametrics

Ultrametrics are a standard tool in data analysis
(Benzécri, 1984). They are often used for clustering
because they determine a particular type of strong hi-
erarchies. These distances are thus naturally suited for
a multiscale representation of the image.

A stratified hierarchy H is the set of regions of a
family of nested partitions, together with a function
st : H → IR, called a stratification index, such that:
∀ a, b ∈ H : a ⊂ b ⇒ st(a) < st(b).

An ultrametric space (�, ψ) is a pseudo-metric
space for which Axiom 3 of Definition 1 is replaced
by the stronger relation: ψ(x, y) ≤ max{ψ(z, x),
ψ(z, y)}.

The geometry of an ultrametric space differs sig-
nificantly from the usual Euclidian case. In particular,
two ultrametric balls can only be disjoint or nested.

Consequently, the set of all the closed balls for a fixed
radius r determines a special type of Voronoi tessel-
lation, noted �(ψ, r ). The set H of all the ultrametric
balls of positive radius is then a stratified hierarchy of
�. A stratification index for H is given by the function
that assigns to each ultrametric ball its radius. Con-
versely, each stratified hierarchy defines an ultrametric
distance.

If a Voronoi tessellation is determined by an ultra-
metric, the previous properties imply that replacing a
site si ∈ S by another point s ′

i in the interior of its
Voronoi region Rsi does not modify the V-tessellation.
These pseudo-metrics satisfy then the invariance re-
quirement mentioned at the beginning of the section.
Moreover, the problem of selecting a set of sites can be
addressed in this case through the choice of a radius r
for the ultrametric V-regions. In the sequel, the ultra-
metrics are normalized in order to assign the value of 1
to the radius of the smallest V-region that contains the
whole domain.

4.2. An Ultrametric for Segmentation

In this subsection, we define a specific ultrametric for
the segmentation of color images. Its construction is
derived from the characterization of this type of dis-
tances as stratified hierarchies.

A family of nested partitions can be constructed by a
graph-based region merging strategy. Such a clustering
approach consists in progressively merging regions of
an initial partition according to a dissimilarity measure,
a real valued function defined for each pair of adjacent
subsets of the domain (Garrido et al., 1998; Forsyth
and Ponce, 2003).
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However, in order to define a stratified hierarchy H,
the dissimilarity d must be compatible with the hierar-
chical order:

a ⊂ a′ ∧ b ⊂ b′ ⇒ d(a, b) < d(a′, b′),

∀ a, a′, b, b′ ∈ H. (2)

In our case, the ultrametric is constructed in two
steps. First, we use the color information to quantify the
contrast between V-regions. For this purpose, a contrast
dissimilarity, noted dc, is defined as:

dc(R1, R2) =
∑

δ∗(u(p1), u(p2))

length(∂(R1, R2))

where ∂(R1, R2) denotes the common boundary of two
connected regions R1 and R2, and the sum is calculated
on all the adjacent pixels of the initial partition such
that p1 ∈ R1 and p2 ∈ R2. Thus, this dissimilarity
measures the average color difference in the common
boundary of the regions, on the extrema mosaic. Note
that dc satisfies Eq. (2).

In order to complement the boundary information
supplied by dc, we measure an internal attribute, a
positive real valued function A, in each V-region. The
attribute is required to be increasing with the inclusion
order. Thus, starting from dc, a new dissimilarity dα is
defined by the formula:

dα(R1, R2) = dc(R1, R2) · min{A(R1),A(R2)}α.

Since A is increasing and dc is compatible with the
hierarchical order, so is dα . The associated ultramet-
ric, noted ϒα , incorporates boundary as well as in-
ternal information of the V-regions. For the examples
presented in this paper, the attribute is the size of the
V-region. The parameter α ≥ 0 weights the balance
between contrast and area. Note that, as for the path
variation, the equivalence class of a point x , x̂(ϒα),
coincides with the connected component of the im-
age that contains x . Thus, the quotient space �̂(ϒα) is
also homeomorphic to the space of components of the
image.

Figure 3 illustrates the influence of α in the ul-
trametric. The central and right images show the V-
tessellations associated to the same normalized radius
r = 0.35, for the ultrametrics ϒ0 and ϒ0.2 respectively.
Since the first distance is determined only by the con-
trast, small and contrasted regions, as the letters, are
extracted. When α = 0.2, these regions are eliminated

from the V-tessellation. Thus, the choice of α allows the
ultrametric to adapt to the image content or a particular
application.

4.3. Ultrametric Contour Maps

Many segmentation approaches provide only binary
boundary maps, while soft edge maps generated by
local edge detectors often require contour completion
techniques in order to obtain closed curves. The for-
mulation of the segmentation problem in the metric
framework and the use of ultrametric distances pro-
vide a natural way to fill this gap. For this purpose, the
following notion is central.

The saliency of a point x in an ultrametric space
(�, ϒ) is defined as the highest radius λ such that x
belongs to a boundary of the V-tessellation �(ϒ, λ).
The valuation of each point by its saliency determines
a real-valued image, called in the sequel a ultramet-
ric contour map (UCM). This single real-valued image
is a compact representation of the ultrametric space: a
threshold in the UCM supplies the set of boundaries
of the corresponding V-tessellation. This idea was first
used in Najman and Schmitt (1996) to valuate the wa-
tershed arcs of a gradient image.

The interest of this soft boundary map is that it com-
bines the strong points of both region-based segmenta-
tion methods and local edge detectors. On one hand, the
saliency of each point is given by the hierarchical struc-
ture and is therefore not restricted to the information of
a local neighborhood. On the other hand, a threshold
of an ultrametric contour map provides by definition
a set of closed curves. Figure 4 shows an example of
UCM, with dark intensities representing high saliency.
For comparison, the right image presents the optimal
threshold of a state of the art local edge detector (Martin
et al., 2004).

5. Evaluation of Results

In order to measure the quality of our results, we used
as ground-truth the Berkeley Segmentation Dataset and
Benchmark (BSDB), a database of images represent-
ing natural scenes, manually segmented by humans
(Martin et al., 2001). A methodology for evaluating the
performance of boundary detectors with this database
was developed in Martin et al. (2004). It is based on
the comparison of detected edge points with respect to
human-marked boundaries, using the Precision-Recall
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Figure 3. From left to right : Original image, tessellations �(ϒ0, 0.35) and �(ϒ0.2, 0.35).

Figure 4. From left to right : Original image, UCM, thresholded UCM and thresholded local edge detector.

Figure 5. From left to right: original images, human segmentations, UCM, thresholded UCM and correspondence with ground-truth (see text).

framework (van Rijsbergen, 1979). Precisely, two
quality descriptors are considered, Recall (R), given by
the fraction of detections among true boundaries and
Precision (P), defined as the fraction of true boundaries

among detections. Measuring these quantities for
different thresholds of a detector on a given set of im-
ages provides a parametric Precision-Recall curve. The
two quantities can be combined in a single descriptor,
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Figure 6. From left to right: Original images, thresholded local detector, thresholded UCM and associated reconstruction (with segments

represented by their mean color).

the F-measure, defined as the harmonic mean of Preci-
sion and Recall: F(P, R) = 2P R/(P + R). The maxi-
mal F-measure on the curve is then used as a summary
statistic for the quality of the detector on the set of
images.

Our system has a number of free parameters, in-
tended to allow its adaptation to a particular applica-
tion or type of images. In the pre-segmentation stage,
these are the order of the path variation, the color
model to represent the V-regions and the number of
iterations of the extrema mosaic. The hierarchical rep-
resentations defined in Section 4 depend also on the
parameter α. Additionally, we consider a weighting
factor between chrominance and lightness in the color
space.

Using the ultrametric contour maps, all the free pa-
rameters were tuned with respect to the set of 200
train images of the BSDB. The optimal threshold of
the UCM provided then the best radius λ for the ul-
trametric V-tessellations �(ϒα, λ). The set of opti-
mal train parameters was next used to evaluate our
method on the independent test set of 100 images of
the BSDB, leading to an overall score of F(0.62, 0.64)
= 0.63.

Figure 5 illustrates the type of description of the
image geometry provided by our ultrametric contour
maps. The results were obtained using the set of op-
timal train parameters and the corresponding opti-
mal threshold. It can be observed that the contours
of the main structures are accurately extracted by the
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UCM. The thresholded UCM show the best overall
compromise between data fidelity and noise for our
system. The right column presents the thresholded
UCM superimposed on the human segmentations. True
positives are depicted in thick black, false positives in
thick blue and missed detections in yellow. Although
the system was tuned by considering only bound-
ary information, note that the segments obtained of-
ten coincide with physical objects or their connected
parts.

The Precision-Recall framework permitted also the
comparison of our method with the local bound-
ary detector proposed by the authors of the BSDB
(Martin et al., 2004) and noted in the sequel MFM.
This approach relies on the measure at each pixel of dis-
continuities in feature channels like brightness, color
and texture, over a range of scales and orientations.
The cues are combined and optimized with respect
to the BSDB. Using the evaluation methodology pre-
viously described, Martin et al. show that the MFM
outperforms all classical edge detection techniques, its
overall score being F(0.62, 0.68) = 0.65 on the test
set.

Hence, for the optimal threshold, our system and the
MFM present a similar amount of noise, while the lat-
ter detects more ground-truth. However, it should be
noted that the two approaches are essentially different,
as illustrated in Fig. 6. The edge points provided by a
thresholded version of a local detector like the MFM
do not necessarily form closed curves. In contrast, our
region-based approach guarantees that any threshold on
the UCM determines a set of closed curves, the bound-
aries of a segmentation. Hence, the lower overall score
is compensated in our case by a higher representation
level, the region instead of the point. Qualitatively, the
MFM often performs better than our UCM in textured
images, while our system is usually superior on images
representing contrasted objects of relatively uniform
color. Since both methods use only low-level image in-
formation, they show poor performances when seman-
tic knowledge is determinant for human segmentation.

Finally, the overall F-measure for the human seg-
mentations, when compared among them, is F(0.90,

0.70) = 0.79 on the test set. This score quantifies the
human performance for the task and serves as the ulti-
mate goal for machine segmentation. The gap between
the two tested methods and human performance is
mainly due to Precision (almost 0.3). Thus, efforts
should be put on reducing the fraction of false positives
in the segmentation results. In our case, future work

includes the definition of pseudo-metrics for which the
texture information is also taken into consideration.

References

Ahuja, N., An, B., and Schachter, B. 1985. Image representation

using Voronoi tessellation. CVGIP, 29(3):286–295.
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