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Abstract

This paper presents a low-level system for boundary ex-
traction and segmentation of natural images and the eval-
uation of its performance. We study the problem in the
framework of hierarchical classification, where the geomet-
ric structure of an image can be represented by an ultra-
metric contour map, the soft boundary image associated to
a family of nested segmentations. We define generic ultra-
metric distances by integrating local contour cues along the
regions boundaries and combining this information with re-
gion attributes. Then, we evaluate quantitatively our re-
sults with respect to ground-truth segmentation data, prov-
ing that our system outperforms significantly two widely
used hierarchical segmentation techniques, as well as the
state of the art in local edge detection.

1. Introduction

Hierarchical organization is one of the main characteris-
tics of human segmentation. A human subject segments a
natural image by identifying physical objects and marking
their boundaries up to a certain level of detail. If we suppose
that different subjects segmenting a single image perceive
the same objects then, up to variations in the exact localiza-
tion of boundaries, the intersection of their segments deter-
mines the finest level of detail considered. Figure 1 presents
an example, with a natural image and six human segmenta-
tions from [9]. The segmentations are superimposed and the
segments are represented by their mean color.

Segmentation can be thought as a process of grouping vi-
sual information, where the details are grouped into objects,
objects into classes of objects, efc. Thus, starting from the
composite segmentation, the perceptual organization of the
image can be represented by a tree of regions, ordered by
inclusion. The root of the tree is the entire scene, the leaves
are the finest details and each region represents an object at
a certain scale of observation.

In this paper, we study the segmentation problem in the
framework of data classification, where the notions of tree

Figure 1. Natural image and composite human segmentation.

of regions and scale are formalized by the structure of in-
dexed hierarchy or, equivalently, by the definition of an ul-
trametric distance on the image domain. We present a for-
mulation of the problem in terms of contours that allows to
represent an indexed hierarchy of regions as a soft boundary
image called ultrametric contour map.

Since the early days of computer vision, the hierarchical
structure of visual perception has motivated clustering tech-
niques to segmentation [13], where connected regions of
the image domain are classified according to an inter-region
dissimilarity measure. We consider the traditional bottom-
up approach, also called agglomerative clustering, where
the regions of an initial partition are iteratively merged, and
we characterize those dissimilarities that are equivalent to
ultrametric distances.

The key point of hierarchical classification is the defini-
tion of a specific distance for a particular application. We
design ultrametrics for contour extraction by integrating and
combining local edge evidence along the regions bound-
aries and complementing this information with intra-region
attributes.

In order to design a generic segmentation system, all
its degrees of freedom are expressed as parameters, whose
tuning we interpret as the introduction of prior knowledge
about the objects geometry. This information is provided
by a database of human segmentations of natural images
[9]. We optimize our system with respect to this ground-
truth data and evaluate quantitatively our results using the
Precision-Recall framework [8]. With this methodology, we
prove that our system outperforms significantly two meth-



ods of reference in segmentation by clustering, the varia-
tional approach of [7] and the hierarchical watersheds [12].
Furthermore, we show that the performance of our method
is superior to state of the art local edge detectors [8], while
providing a set of closed curves for any threshold.

2. Definitions
2.1. Hierarchical Segmentation

Let Q C R? be the domain of definition of an image,
Py an initial partition of 2 and A € R a scale parameter. A
hierarchical segmentation operator (HSO) is an application
that assigns a partition Py to the couple (Py, A), such that
the following properties are satisfied:

Py =Py, VAL0 9]
Ia ERY Py = {0}, VA > A, 2
A< N = Py C Py 3)

Relations (1) and (2) determine the effective range of
scales of the operator and indicate that the analysis can be
restricted to the interval [0, A;]. The symbol C denotes the
partial order of partitions : P C P’ < Va € P, 3b €
P’ : a C b. Thus, relation (3) sets that partitions at dif-
ferent scales are nested, imposing a hierarchical structure to
the family H = {R C 2|3\ : R € P)}.

By considering the scale where a region appears in H,
one can then define a stratification index, the real valued
application f given by :

f(R) =if{Ae [0, ]| RePr}, VREH (4

The couple (H, f) is called an indexed hierarchy of sub-
sets of {2. It can be represented by a dendrogram, where the
height of a region R is given by f(R). The construction of
(H, f) is equivalent to the definition of a distance between
two elements x, y of Py :

T(z,y) =inf{f(R) |l rt€e RAye RAReH}. (5

The application Y belongs to a special type of distances
called ultrametrics that, in addition to the usual triangle in-
equality, satisfy the stronger relation :

T(z,y) < max{Y(x,z), T(z,9))} (6)

2.2. Ultrametric Contour Maps

We now follow [10] for the definition of a segmentation
in terms of contours in a continuous domain.

A segmentation K of an image u as a finite set of rec-
tifiable Jordan curves, called the contours of K. The re-
gions of K, noted (R;); are the connected components of
Q\ K. Furthermore, we suppose that the contours meet
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Figure 2. From left to right : Family of segmentations defined by
a HSO, UCM and 3D view of UCM.

each other and 02 only at their tips, that each contour sepa-
rates two different regions and that each tip is common to at
least three contours. The contour separating regions I?; and
R; is noted 0;;.

Hence, a segmentation can be equivalently expressed by
its contours K or by the partition P = {R;}; of Q.

Rewriting properties (1) to (3) in terms of contours of
the segmentations leads to the following characterization of
aHSO:

Ky =Ko, VA<0 )
Ky =00, VA >\ (8)
)\S)\/:>K)\2K)\I ®

Relation (7) determines the set of initial contours K and (8)
indicates that all inner contours vanish at finite scale. The
hierarchical structure imposed by (9), called the principle of
strong causality in [10], establishes that the localization of
contours is preserved through the scales.

We can now define the model of contours that will be
considered.

Let Y be the ultrametric distance defined by a HSO. The
ultrametric contour map (UCM) associated to Y is the
application C(T) : Koy — [0, A1] given by:

C(T)(9) = inf{A € [0,\1] | 8 € Ky},¥ 0 € Ko. (10)

The number C(Y)(0) is called the saliency of contour 0.
Note the duality with the regions, the saliency of J being its
scale of disappearance from the hierarchy of contours.

The ultrametric contour map is a representation of a HSO
in a single real-valued image. Figure 2 presents a simple ex-
ample of UCM. By definition, thresholding this soft bound-
ary image at scale A provides a set of closed curves, the
segmentation K.

Nevertheless, note that if the initial partition Py is fixed,
all the UCM weight the elements of the same set K.
Hence, the utility of such a representation is determined by
the distance T, whose value defines the saliency of each
contour. Our objective will be to design ultrametrics such
that the UCM model the boundaries of physical objects in
natural images.



3. Ultramteric Dissimilarities
3.1. Region Merging

The ascending construction of a family of nested par-
titions is one of the earliest approaches to segmentation
[10, 4]. These region merging techniques are principally de-
termined by two elements : the choice of an initial partition
Py and the definition of a dissimilarity measure § between
couples of adjacent regions.

Such a merging process can be implemented efficiently
by using a region adjacency graph (RAG) [14, 6]. A RAG
is an undirected graph where the nodes represent connected
regions of the image domain. The links encode the adja-
cency relation and are weighted by the dissimilarity. The
RAG is initialized with Py and the family of partitions is
obtained by removing the links for increasing values of the
dissimilarity and merging the corresponding nodes.

In the huge literature on the subject, the initial partition
is typically an over-segmentation in very homogeneous re-
gions, e.g. the partition in pixels, in connected components
or the result of a pre-processing. The dissimilarity measure
is defined from the image data. One can for instance con-
sider a piecewise regular approximation of the initial image
and measure the dissimilarity by comparing the approxima-
tions of adjacent regions.

3.2. Defining the Distance

Starting from a family of nested partitions constructed
by a region merging process, one can always define an ul-
trametric distance by considering as stratification index an
increasing function of the merging order. However, in order
to define a meaningful notion of scale, the distance between
any two points in adjacent regions should coincide with the
inter-region dissimilarity ¢§:

T(x,y):5(Ri,Rj),VxeRi,Vy€Rj. (11D

This property is satisfied by setting the value of the dissim-
ilarity at the creation of a region as its stratification index.
However, for an arbitrary dissimilarity, this choice can lead
to the existence of two regions (R, R') € ‘H? such that
R C R but f(R) > f(R'). In terms of contours, this
situation implies the violation of strong causality (9).
Hence, we call § an ultrametric dissimilarity if the cou-
ple (H, f) is an indexed hierarchy, where f is defined by :

for all couples of connected regions (R;, R;) € H?.
One can then prove that a dissimilarity J is ultrametric if
and only if

6(Ri,Rj) S(S(RiURj,R), (13)

where (R;, R;) is a couple of regions that minimizes ¢ and
R is a region connected to ?; U IZ; and belonging to the
partition obtained after the merging of (R;, R;).

In order to stress the fact that ultrametric dissimilarities
define distances in Py, they are noted Y in the sequel.

Working with ultrametric dissimilarities, as those de-
fined in the next section, is important for our application
because it guarantees that the saliency of each contour in
the UCM is exactly the value of the dissimilarity between
the two regions it separates.

4. Ultrametrics for Boundary Extraction

We now turn to the problem of defining specific dis-
tances for the extraction of boundaries in natural images.
For this purpose, our strategy consists in measuring local
contour evidence along the common boundary of regions,
and then complementing this information with internal re-
gion attributes. In order to design a generic low-level sys-
tem, all the degrees of freedom are expressed as parameters.

4.1. A Contrast Ultrametric

We first define a distance that uses the color informa-
tion of the initial image for measuring the contrast between
regions. For this purpose, we represent a color image u
with the L*ab standard [15], an approximation of the per-
ceptually uniform color space. The distance between two
colors in L*ab is usually measured by the Pythagorean for-
mula; however, in order to tolerate variations in the relative
weight of lightness and chrominance, we propose the fol-
lowing distance d* between two colors k& = (I,a,b) and
K= dV):

Ak, k)= =12+ Ea—a)2+ED—V)2. (14)

With this color representation, monochromatic images cor-
respond to the particular case £ = 0 and the usual L*ab
spaceto & = 1.

In order to determine the presence of a boundary, we de-
fine a local contrast measure at a point x € {2 by the for-
mula:

7(u, ) = sup{d”(u(y), u(y)) | Vy,y" € Br(z)}, (15)

where B,.(z) denotes a Euclidian ball of radius r centered
at x.

Our first distance is given by the mean local contrast
along the common boundary of regions:

Zc(ai'>
L(9y5)’

where L(0) denotes the length of the contour 9 and ¥.(9)
is given by :

Y.(R;, Rj) = (16)

.(0) :AT(u7x(s))ds. (17)



The interest of distance Y. is that, being defined on the
initial image wu, the set K of initial contours coincides with
the discontinuities of u. Thus, the associated UCM preserve
the localization of the original boundaries.

4.2. A Boundary Ultrametric

The distance Y. expresses a notion of homogeneity of
objects based only on color uniformity. In order to consider
a larger class of contour cues, we use as input to our system
the result of a local edge detector, noted g. In the exam-
ples presented, we used the detector of [8], that measures
and combines optimally local cues as brightness, color and
texture.

As in the previous paragraph, we consider a mean bound-
ary gradient distance:

¥4(045)

TQ(Ri7Rj) = L(az) )

(18)

where
2,(0) = [ gtats))is (19)

Then, the weighted sum of mean boundary gradient and
mean contrast of the initial image defines our final boundary
ultrametric:

Te(Ri,Rj) = YTo(Ri, R;) + o1 - Ty(Ri, Rj), (20)
where iy > 0.

4.3. Considering Region Attributes

In order to take into account the internal information of
regions in the distance, we measure an attribute on each re-
gion, a function A : P(2) — R, increasing with respect
to the inclusion order : R C R’ < A(R) < A(R').

Thus, starting from (20), we define the following generic
notion of scale for boundary extraction:

Ts(Ri, Rj) = Yp(Ri, R;) - min{A(R;), A(R;)}*,
21)

where a5 > 0. Note that, since the term Y. never vanishes,
the UCM associated to Y g and T g preserve the localization
of the contours of the initial image.

In the experiments presented in this paper, we used as
attribute a linear combination of area and total quadratic er-
ror:

A(R) = /R dz + ag - /R d*(u(z), M(R))*dx  (22)

where a3 > 0 and M (R) denotes the mean color of u on
region RR.

We considered two methods for introducing the internal
information in the distance. The first one is to use directly
the UCM associated to Tg. The second one consists in
pruning the tree of Y p for increasing values of Y g.

4.4. Initial Set of Contours

We have discussed so far the definition of distances
meaningful for our application. We now address the issue
of choosing an appropriated set of initial contours K. For
this purpose, in absence of prior knowledge about the image
content, we do the methodological choice of preserving the
inclusion relation between the discontinuities of the origi-
nal image and K. This amounts to supposing that a con-
nected region where the image is constant cannot belong to
two different objects. This property is satisfied by the pre-
segmentation method we now describe.

The objective of pre-segmentation is to decompose the
image in local entities, more coherent and less numerous
than pixels, while preserving its geometric structure. For
this purpose, we exploit the fact that ultrametric dissimi-
larities define pseudo-metrics on the image domain. Pre-
cisely, we produce an over-segmentation by considering the
extrema of the L* channel in the original image and associ-
ating each point of € to the closest extremum in the sense
of Tg. This construction defines a Voronoi tessellation of
the domain; a pre-segmented image is then obtained by as-
signing a constant color to each region.

Thus, the method produces a reconstruction of the orig-
inal image from the information of its lightness extrema,
that preserves the localization of the original contours. De-
pending on the image, the pre-segmentation can be iterated
a few times without affecting the main geometric structures.
Its degrees of freedom are treated as additional parameters
of our system.

4.5. Examples

Figure 3 illustrates the influence on the output of our sys-
tem of the different types of information considered in the
proposed notion of scale. Lines 2 to 5 present, from left to
right, the UCM, the segmentation given by the optimal scale
of the UCM with respect to human-marked boundaries (see
Section 5.1) and the corresponding reconstruction, where
the segments are represented by their mean color. The dis-
tance Y. of Line 2 measures only the contrast of the original
image. As a consequence, textured regions as the dress are a
source of noise in the UCM. The saliency of these regions is
reduced in the boundary ultrametric Y 5 (Line 3) by choos-
ing a local detector that measures texture homogeneity. The
second example shows the utility of considering internal re-
gion attributes (Line 5) as a complement to plain boundary
information (Line 4). On the one hand, it eliminates small
imperfections of the image. On the other hand, it allows to
control the saliency of structures like the dark dots, whose
size triggers the response of the local detector, but whose
importance may depend on the application.



Figure 3. Examples. Line 1: original images. Lines 2 to 5. From
left to right : UCM, segmentation and reconstruction. From top to
bottom: C(Y¢),C(YB),C(Tr)and C(Ys).

5. Evaluation of Results
5.1. Methodology

Our system combines several types of low-level image
information into a single notion of scale, the saliency of
boundaries in the UCM. We interpret the tuning of its pa-
rameters as the introduction of prior information about the
geometric structure of the image. In order to measure quan-
titatively the pertinence of our approach and compare it to
other methods, the system was optimized using the Berkeley
Segmentation Dataset and Benchmark (BSDB) [1].

In this study, the ground-truth data is provided by a large
database of natural images, manually segmented by human
subjects [9]. A methodology for evaluating the performance
of boundary detection techniques with this database was de-
veloped in [8]. It is based in the comparison of machine-
detected boundaries with respect to human-marked bound-
aries using the Precision-Recall framework, a standard in-
formation retrieval technique. Precisely, two quality mea-
sures are considered, Precision (P), defined as the fraction
of detections that are true boundaries and Recall (R), given
by the fraction of true boundaries that are detected. Thus,
Precision quantifies the amount of noise in the output of the
detector, while Recall quantifies the amount of ground-truth
detected. Measuring these descriptors over a set of images
for different thresholds of the detector provides a parametric
Precision-Recall curve. The two quantities are then com-
bined in a single quality measure, the F-measure, defined
as their harmonic mean:

2PR
P+ R

F(P,R) = (23)
Finally, the maximal F-measure on the curve is used as a
summary statistic for the quality of the detector on the set
of images.

The current public version of the BSDB is divided in two
independent sets of images. A training set of 200 images
and a test set of 100 images. In order to ensure the in-
tegrity of the evaluation, only the images and segmentations
from the training set can be accessed during the optimiza-
tion phase. The algorithm is then benchmarked by using the
optimal training parameters “blindly” on the test set.

5.2. Tested Methods

The BSDB is a standard experimental protocol that al-
lows the comparison of different boundary detection tech-
niques by quantifying their performance with respect to hu-
man vision. Furthermore, since the quality of a detector is
judged exclusively on the accuracy of the contours it pro-
duces, the methodology permits a direct comparison be-
tween local edge detection and region-based segmentation
approaches. Although its use in the segmentation commu-
nity is nowadays widespread, only the former have been



evaluated to our knowledge (see [8]). Estrada and Jep-
son [3] compared recently four region-based segmentation
methods within the same framework. However, it should
be noted that their study uses a different experimental setup
and considers only gray-level images.

Our evaluation work was divided in two parts. First, op-
timizing and benchmarking our system in order to compare
it to already benchmarked local edge detectors. Second, we
benchmarked two methods of reference in hierarchical seg-
mentation and compared their results with ours. The opti-
mization phase was carried out using a steepest ascent in
the F-measure. In all the experiments, we used the imple-
mentations made available by the authors. We now describe
briefly the tested algorithms.

5.2.1 Local Edge Detectors

The state of the art in local boundary detection techniques
is the system proposed in [8, |]. The gradient paradigm
implemented by Martin et al. relies on the measure, at each
pixel, of local discontinuities in feature channels like bright-
ness, color and texture, over a range of scales and orienta-
tions. Local cues are combined and optimized with respect
to the BSDB. Then, using the Precision-Recall framework,
the authors show that their detector, noted in the sequel
MEFM, outperforms all other local edge detection methods.

We used the MFM as a reference of local detection meth-
ods and as an input to our system. Additionally, the Canny
detector, based on an estimation of the gradient magnitude
of brightness and non-maxima suppression, provided the
baseline in classical local approaches. For both methods,
we used the codes distributed with the BSDB with their de-
fault optimized parameters.

5.2.2 Hierarchical Watersheds

As a reference of a hierarchical segmentation operator
based only the information of a gradient image, we used
the work of Najman and Schmitt [12, 2], who study the ul-
trametric contour map associated to the watershed segmen-
tation. To our knowledge, these authors were the first to
consider explicitly the soft contour image associated to a
family of nested segmentations for boundary detection pur-
poses.

This method is based on the construction of the water-
shed by a flooding process. A gradient image, seen as a
topographic surface, is pierced at its minima and progres-
sively immersed in water. The water fills the catchment
basins of the minima and forms lakes. When two lakes
meet, the level of the water (the height of the saddle point)
determines the saliency of the corresponding watershed arc.
Thus, the notion of scale of this technique is an estimation
of the contrast between two regions by the minimal value of
the gradient on their common boundary.

A natural choice for the topographic surface seems to
be the MFM detector. However, following the Canny ap-
proach, the MFM considers only the maxima in the gradient
direction. As a consequence, the final output of the MFM
has often a single regional minimum and, in the presence
of a unique lake, the watershed is empty. Thus, we used as
topographic surface the MFM detector before non-maxima
suppression. This choice has the interest of providing a wa-
tershed for color images, with regular contours and robust
to noise and texture.

5.2.3 Variational Approach

The formulation of the segmentation problem in the varia-
tional framework is one of the most popular approaches of
the recent years. In order to compare our results to a HSO
based exclusively on the information of the original image,
we used the work of Koepfler et al. [7, 10, 5], who propose a
multi-scale approach for the minimization of the piecewise
constant version of the Mumford and Shah functional [11].

This study considers a region merging process, where the
criterion to merge two regions is to decrease the value of the
global energy:

E(K) :/ |[m —u|?de + AL(K) ,  (24)
Q\K

where m denotes the piecewise constant approximation of
the initial image u by the mean color in each region. Hence,
with this approach, the objects in the image are modelled as
regions of homogenous color with short boundaries. The
dissimilarity governing this merging process is given by:

_ Rl |Ry| | M(R:) — M(R;)|
|R;| + |Rj| L(0s5)

dms(Ri, Rj) , (25)

where |R| denotes the area of region R. Thus, 0/ is the
squared absolute difference of the mean color in the re-
gions, combined with two other factors. The first one is
proportional to the harmonic mean of the areas and elimi-
nates small regions from the segmentation. The second one
is the inverse of the boundary length. This information con-
trols the regularity of the result, since, if the other factors of
0y s are identical, the couple of regions with longest com-
mon boundary is merged first. However, note that the dis-
similarity dpsg is not ultrametric. In order to restore strong
causality, we constructed the UCM of this method by super-
imposing the results for increasing values of the parameter
Ain (24).

In order to make the comparison with our system fair, we
used the L*ab space with the weight £ in (14) tuned for this
algorithm. Additionally, we optimized as initial image the
result of the pre-segmentation method described in Section
4.4.
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Figure 4. Evaluation results. Up: our UCM compared to other
clustering techniques. Down: our UCM compared to local edge
detectors

5.3. Results

The results of the evaluation on the test set are presented
in Figure 4. The dotted (green) lines represent the isolevel
lines of the function F'(P, R) defined by (23), with values
on the right. They can be used to situate the Precision-
Recall curves, since the quality of a detector is judged by
considering the image of its curve by F. Thus, the point
with maximal F-measure can be interpreted as the high-
est point of the curve on the surface = = F(P, R), the
objective being the point F'(1,1) = 1. The isolevel line
F(P,R) = 0.79 corresponds to the human consistency on
this set of images, obtained by comparing the human seg-
mentations among them. This line represents the reference
with respect to which the performance of machines for the
task of boundary extraction is measured.

It can be observed that the Precision-Recall curve of
our system (UCM) dominates significantly all the others.
Hence, for a given amount of noise tolerated (fixed Pre-
cision), our UCM detect a greater fraction of true bound-
aries (higher Recall). Conversely, for a required amount of
ground-truth detected (fixed Recall), our results are those
with less noise (higher Precision).

The top panel shows the curves corresponding to the
three HSOs benchmarked. Although the scores of the varia-
tional approach (MS) and the hierarchical watersheds (WS)

are very close, the curve of the former dominates that of
the latter. However, both methods are significantly outper-
formed by our system. The hierarchical watershed exploits
the information of a gradient image, while the variational
approach considers only the original image. The superior-
ity of our UCM comes from the generic combination of both
types of information.

The bottom panel compares our UCM with two local
detectors already benchmarked on the BSDB: the classi-
cal Canny method and the top-ranked MFM. As before, our
curve clearly dominates the two others. Nevertheless, more
than the score, the main improvement of our system with
respect to local detectors is to provide for any scale a set of
closed curves, the contours of a segmentation.

Figures 5 and 6 present some qualitative results, all ob-
tained with the optimal training parameters of each algo-
rithm. In order to make the results completely automatic,
the segmentation shown corresponds to the global optimal
scale on the train set. Note that although our system was
optimized using only boundary information, the segments
obtained coincide often with physical objects or their con-
nected parts.

Figure 6 compares the four tested methods on an exam-
ple. It can be observed that our model of boundaries pro-
vides the best trade-off between accuracy and noise, allow-
ing the extraction of the main geometric structures in the
images. The improvement of our UCM with respect to the
variational approach is in part due to the explicit treatment
of texture of the local detector. The watersheds present the
more regular contours among the tested methods and dis-
play a typical mosaic effect, where the lakes of the topo-
graphic surface are discernable in the contour map. Finally,
the MFM results are shown to illustrate the essential differ-
ence in initial orientation between local and region-based
approaches. The level of representation is the point for the
former and the region for the latter. As a consequence, local
detectors require in many applications a contour completion
post-processing in order to integrate their information into
closed curves.

6. Conclusions

This paper presented the design and evaluation of a novel
boundary extraction system. Its main characteristic is to
rely on the formulation of the problem in the framework of
hierarchical classification, which allows to address region-
based segmentation and edge detection as a single task.

We defined generic ultrametric distances for this spe-
cific application and showed the interest of the approach
followed by evaluating our results with a standard method-
ology. Additionally, we evaluated with the same protocol
two methods of reference in hierarchical segmentation.

Although the introduction of semantic information
seems necessary in order to fill the still large gap with hu-



Figure 5. Results of our system. From left to right : Original im-
ages, automatic segmentation and UCM.

man performance for this task, we are confident that higher-
level approaches can benefit from our low-level representa-
tion of the image boundaries.
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