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Place du maŕechal de Lattre de Tassigny, 75775 Paris cedex 16, France

{arbelaez, cohen}@ceremade.dauphine.fr

Abstract

We address the issue of low-level segmentation for vector-
valued images, focusing on color images. The proposed ap-
proach relies on the formulation of the problem as a gen-
eralized Voronoi tessellation of the image domain. In this
context, the issue is transferred to the definition of an appro-
priated pseudo-metric and the selection of a set of sources.
Two types of pseudo-metrics are considered; the first one is
based on energy minimizing paths and the second is asso-
ciated to the families of nested partitions of the image do-
main. We discuss specific applications of our approach to
pre-segmentation, edge detection and hierarchical segmen-
tation on color images.

1 Introduction

Spatial tessellations were first studied by Dirichlet [12] and
Voronoi [32], who formalized the idea of partitioning the
space by considering a set ofsource pointsand then assign-
ing every point to the closest source. Since its early introduc-
tion, the Voronoi tessellation has found application in a wide
range of disciplines [2, 29]. In this paper, we consider an ex-
tension of this notion to pseudo-metric spaces and we study
its application to the segmentation of vector-valued images.

Image segmentation is a fundamental issue in computer
vision. Its great complexity lies in the fact that structuring
visual information intomeaningful regionsrequires a layer
of semantic understanding of the image content. However,
a first task is the extraction of the image structure provided
by the interaction between low-level cues. The present pa-
per addresses the segmentation issue at this pre-cognitive
stage of perception for vector-valued images, emphasizing
the case of color images. For this purpose, the problem is
formulated as a generalized Voronoi tessellation of the im-
age domain.

In this framework, the segmentation issue is transferred
to the definition of a relevant pseudo-metric from the image
data and the selection of a set of sources. We consider two
main types of pseudo-metrics and we study their application
to address the segmentation issue at two different levels of
analysis of the image.

The first application is a pre-segmentation method, which

we call theextrema mosaic. The pseudo-metrics considered
in this part are based on the study of energy minimizing paths
and their use is often appropriated for a local level of analy-
sis of the image. Specifically, we introduce a pseudo-metric,
thepath variation, that is a generalization of the one dimen-
sional total variation for vector-valued functions of multiple
variables. Its application provides a natural reconstruction of
the image that offers a balance between content conservation
and simplification.

In the second part, the type of pseudo-metrics considered
are the ultrametrics. These pseudo-metrics are useful for
a global level of analysis, since their definition amounts to
constructing a stratified hierarchy of partitions of the image
domain. Starting from the pre-segmented image, we define
a ultrametric that expresses a notion of global contrast in the
image. Then, using this measure of contrast, we propose a
new model of edges for color images, which we call theex-
trema edges. Our approach guarantees that a threshold in
this edge map supplies a set of closed contours where se-
mantically important characteristics of edges are preserved.
Finally, we use the contrast measure as the base for the defi-
nition of new ultrametrics, where the internal characteristics
of the regions are also taken into consideration.

The rest of the paper is organized as follows. In Section 2,
the mathematical framework is described. Section 3 presents
the path metrics. Section 4 introduces our pre-segmentation
method. In Section 5, we first recall the basics of ultrametric
geometry and then we construct a measure of global contrast.
In Section 6, the new model of edges of color images is pro-
posed. In Section 7, we define ultrametrics for the purpose of
hierarchical segmentation. Finally, Section 8 contains some
concluding remarks.

2 Generalized Voronoi Tessellations

2.1 Definitions

In this section, we present the mathematical framework for
the rest of the paper and we introduce the notations.

Let Ω ⊂ IR2 be a compact connected domain in the plane.
A pseudo-metricon Ω is an applicationψ : Ω × Ω → IR+

satisfying, for anyx, y, z ∈ Ω, the conditions:



1. Reflexivity:ψ(x, x) = 0 .

2. Symmetry:ψ(x, y) = ψ(y, x).

3. Triangle Inequality:ψ(x, y) ≤ ψ(x, z) + ψ(z, y).

Note that the only difference with the definition of a met-
ric is that the usualSeparationaxiom was replaced by the
weaker condition 1. Hence, we consider the equivalence
classeŝx(ψ) = { y ∈ Ω | ψ(x, y) = 0} and we work di-
rectly on the quotient spacêΩ(ψ) = {x̂(ψ)| x ∈ Ω}. Thus,
the projection ofψ on Ω̂(ψ), is, by definition, a metric for
the quotient space. Note that, ifψ is already a metric, then
Ω̂(ψ) coincides with the domain. Additionally, the existence
of geodesics forψ is assumed. In the sequel, the value of
ψ(x, y) will be referred as thedistancebetweenx andy.

The energy induced by a pseudo-metricψ, with respect
to a source points ∈ Ω, is defined as the single variable
applicationψs : Ω → IR+ that measures the distance tos:

ψs(x) = ψ(s, x), ∀x ∈ Ω.

Theenergywith respect to a set of sourcesS = {si}i∈J is
given by the minimal individualenergy:

ψS(x) = inf
si∈S

ψsi(x), ∀x ∈ Ω.

In the presence of multiple sources, a valuable information
is provided by theinfluence zoneof a sourcesi ∈ S, or the
set of points that are closer tosi than to any other source, in
the sense ofψ:

Zi = {x ∈ Ω|ψsi(x) < ψsj (x), ∀sj ∈ S, j 6= i}.
Thus, the influence zone, or thezonefor short, is a connected
subset of the domain. Their union is noted by:

Z(ψ, S) =
⋃

i∈J

Zi.

The complementary set ofZ(ψ, S) is called themedial set
and is denoted byM(ψ, S).

Hence, a pseudo-metricψ and a set of sourcesS deter-
mine a partition of the domainΩ. In the sequel, this partition
will be referred as theVoronoi tessellation, or briefly the
tessellation, and will be denoted by :

Π(ψ, S) = {Zi}i∈J

⋃
{M(ψ, S)}.

Note that every element of atessellationis a union of ele-
ments of the quotient spacêΩ(ψ).

Figure 1 illustrates these definitions with the canonical
Euclidean space and a set of four source points,S =
{s0, s1, s2, s3}. On the left, the Euclideanenergyis shown
and, on the right, thetessellationand the sources. In this
case, sinceψ is a metric, the quotient spacêΩ(ψ) coin-
cides with the domain. Additionally, the medial setM(ψ, S)
(shown in black) corresponds to the well know Voronoi di-
agram. Finally, the influence zones are in this case convex
sets.

Figure 1: Euclideanenergyandtessellation.

Two main differences of our approach with the standard
framework of Voronoi tessellations [2, 29] should neverthe-
less be noted. First, by considering pseudo-metrics we have
access to a larger class of spaces. Last, but not least, since
we are interested in the application of these notions to image
analysis, we discuss the definition of pseudo-metrics that de-
pend on the image.

2.2 Segmentation of Digital Images

Thus, in this context, the image segmentation problem can
be expressed in terms of the definition of a relevant pseudo-
metric and the selection of a set of sources. Nonetheless,
in practice, digital images are subsampled on the discrete
grid. Consequently, important parts of the medial set may
fall in the intergrid space. For the purpose of region based
segmentation, an alternative to surround this problem is to
consider atessellationcomposed only by the zones. Thus,
the elements of the medial set that would fall in the grid are
assigned to one of their neighboring influence zones.

Then, an approximation of the image can be constructed
by the assignation of amodel to represent each influence
zone. The model is determined by the distribution of the im-
age values in the zone and, when it is constant, the valuation
of each zone produces a piecewise constant approximation
of the image, referred in the sequel as amosaic image.

In order to address the segmentation of color images in
this framework, another practical problem is the definition of
a metric on the color space. For this point, the CIE standards
L∗ab andL∗uv [33] were adopted in this paper. These color
representations ought to approximate a perceptually uniform
color space. Though not perfect, their use provides two main
advantages with respect to the basic RGB system: first, a
separation of the color information into one lightness and
two chromatic channels and, second, an approximation of
the metric in the Riemannian color space by the Euclidean
metric.

3 Path Metrics

A first approach for the definition of a pseudo-metric on
an image domain is the study of paths between couples of
points.



A path between two pointsx, y ∈ Ω is an injective con-
tinuous functionγ : [a, b] → Ω such thatγ(a) = x and
γ(b) = y. The image ofγ is then a simple curve inΩ. The
set of paths fromx to y is noted byΓxy and the set of paths
in Ω is noted byΓΩ.

A length structure for Ω [16] is a mape : ΓΩ → IR+ that
satisfies the following conditions:

1. If γ is constant, thene(γ) = 0.

2. If γ is the juxtaposition ofγ1 and γ2, then e(γ) =
e(γ1) + e(γ2).

3. e is invariant under changes of parameterization.

A length structuree can be used to define a pseudo-metric,
which we call thepath metricassociated toe, by considering
the minimal value ofe along all the paths joining two points:

ψ(x, y) = inf
γ∈Γxy

e(γ), ∀x, y ∈ Ω.

A particularly interesting type of path metrics occurs when
e can be expressed as the integral of apotential functionP :
Ω → IR+:

e(γ) =
∫ L

0

P (γ(l)) dl,

wherel denotes the arc-length parameter. In this case,x̂(ψ),
the equivalence class of a pointx, corresponds to the largest
connected set with null potential that containsx. Thus, if the
potential is strictly positive, the quotient spaceΩ̂(ψ) coin-
cides with the domain. The metrics of this type are usually
known asweighted distance transforms. Additionally, the
relation between theenergyand the potential is given in this
case by theeikonal equation[7].

Weighted distances are widely used in computer vision,
where the issue becomes the definition of a relevant poten-
tial from the image data for a particular problem. Examples
of applications include shape from shading [18], continuous
scale morphology [19], shape recovery [22], active contour
models [7], differential morphology [23], tubular shape ex-
traction [10] and perceptual grouping [9].

4 The Path Variation

In this section, we discuss the application of the path met-
ric obtained by considering the variation on the paths as the
length structure.

4.1 Definition

Let [a, b] ⊂ IR be an interval and(X, d) a metric space.
Consider a functionf : [a, b] → X, a finite partition of

[a, b], σ = {t0, ..., tn}, such thata = t0 < t1 < ... < tn = b
and denote byΦ the set of such partitions. Thevariation of
f is defined as the (possibly infinite) number given by the
formula:

v(f) = sup
σ∈Φ

n∑

i=1

d(f(ti), f(ti−1)).

Note that, ifX = IR, thenv(f) corresponds to thetotal vari-
ation of f , the well known functional introduced by Jordan
[17].

In the case of two variable functions, we consider the path
metric induced by the variation, i.e., the minimal variation of
the function on all the paths between two points:

The path variationof a functionu : Ω → X, is defined
as:

V u(x, y) = inf
γ∈Γxy

v(u ◦ γ), ∀x, y ∈ Ω. (1)

Note that, in contrast to the usual notion of total variation for
functions of multiple variables [30], the path variation is de-
fined pointwise. For further details about the path variation
for real-valued functions, the reader is referred to [1]

The componentof u containingx, designates the maxi-
mal connected subset of pointsy ∈ Ω such thatu(y) = u(x).
By definition, the component containingx coincides with the
equivalence clasŝx(V u). Thus, the quotient spacêΩ(V u) is
the space of components of the function. Moreover, for a set
of sourcesS, each element of thetessellationΠ(V u, S) is
a union of components ofu. Hence, the operator that asso-
ciatesΠ(V u, S) to the functionu is connected [31] and its
application simplifies the image while preserving its contour
information. Therefore, the path variation presents a partic-
ular interest for image analysis.

4.2 Implementation for Color Images

For color images, we haveX = IR3, andd corresponds to
the distance in the color space.

In a discrete domain, the choice of a digital connectiv-
ity (usually 4, 6 or 8 connectivity) determines a notion of
component and of vicinity. Thus, the component space of
the functionu can be represented by an adjacency graphG,
where the nodes correspond to discrete components and each
link joins two neighboring components. Since the quotient
spacêΩ(V u) is the space of components, we propose to con-
struct the discrete path variation directly onG.

Hence, in the case of color images, the implementation
of the path variation is reduced to finding a path of mini-
mal cost onG, when the nodes of the graph are weighted by
distance between the two neighboring components. For the
examples presented in this paper, the color difference in the
spacesL∗ab or L∗uv was used. The problem can then be
solved using a greedy algorithm [11, 21]. The complexity
of this straightforward implementation for the path variation
is thenO(Nlog(N)), whereN denotes the total number of
discrete components of the image.

4.3 The Extrema Mosaic

The path variation is an interesting pseudo-metric for a lo-
cal level of analysis of the image. Indeed, since its defini-
tion (1) is based on an sum along the paths, thetessellations
Π(V u, S) are very sensitive to the location of the sources.
Therefore, in order to construct suchtessellations, the set



Figure 2: Original image and extrema mosaic.

of sourcesS must be selected with care. First, the sources
should be physically representative of the image content.
Second, each significant feature should contain at least one
of them. In the case of color images, the lightness extrema
appear as natural candidates for the sources.

The extrema tessellationof an imageu is defined as the
Voronoi tessellationΠ(V u, ext(u)), whereext(u) denotes
the set of extremal components of the lightness channelL∗

of u. A mosaic image determined by thistessellationis
called anextrema mosaicof u.

Figure 2 shows the extrema mosaic of a natural image.
The original image is on the left and the mosaic image, with
the color at the source as the model, is on the right. This ex-
ample illustrates four properties of the method. First, the blur
in the original image is reduced, as can be observed on the
background. This effect is due to the low number of sources
in these regions and the fact that components belonging to
blurred contours and transition zones are not extremal; con-
sequently, they are absorbed by one neighboring zone. Sec-
ond, as shown on the wolves’ fur, the texture information is
preserved in the simplified image because of the high density
of extrema on these regions. Third, the contrast of the image
is enhanced. Finally, note how the contour information is
preserved in the simplified image.

In summary, the choice of the path variation as the pseudo-
metric and the spatial distribution of the sources determine a
tessellationwhere a balance between simplification and con-
tent conservation is obtained. The extrema mosaic is a natu-
ral reconstruction of the image that can be seen as a first level
of abstraction for the image information. Its application as a
parameter-free pre-segmentation method is illustrated in the
next sections.

5 Ultrametrics

When aVoronoi tessellationwith a small number of zones is
required, the sensitivity of the path variation to the location
of the sources may become a drawback. For this reason, in
the sequel, the extrema mosaic is used as the starting point

for the construction of a different type of pseudo-metrics,
called the ultrametrics. These pseudo-metrics are more ap-
propriated for coarse level of analysis of the image, as they
are closely related to the families of nested partitions of the
domain.

5.1 Definitions

In this paragraph, the basic properties of ultrametric geome-
try are recalled.

A ultrametric is a special type of metric for which the
usualTriangle Inequalityis replaced by the stronger relation:

ψ(x, y) ≤ max{ψ(x, z), ψ(z, y))}, ∀x, y, z ∈ Ω. (2)

From a geometric point of view, the previous inequality can
be interpreted as follows: all the triangles in a ultrametric
space are either isosceles or equilateral.

Furthermore, as a consequence of (2), the structure of
neighborhoods differs significantly from the usual Euclidean
space. First, all the points in a ball of centerx and radius
r can be considered as the center. Second, two non-disjoint
ultrametric balls are always concentric. Thus, the set of all
the balls of a fixed radiusr determines a partition of the do-
main. Hence, the sets of ultrametric balls of radiusr, asr in-
creases, produce a family of nested partitions of the domain.
Furthermore, the radii of the balls determine astratification
index for the family of partitions and the resulting structure
is called astratified hierarchy of partitions. Conversely, ev-
ery stratified hierarchy of partitions determines a ultrametric
on the domain. For further details, the reader is referred to
[4].

Therefore, in our case, when thetessellationis determined
by a ultrametric, the previous properties imply that replacing
a sourcesi ∈ S by another points′i ∈ Zi does not modify
the tessellation. Moreover, the problem of selecting a set of
sources can be addressed in this case through the choice of a
radiusr.



Figure 3: Original image and extrema edges.

5.2 A Measure of Contrast for Color Images

In this paragraph, we construct a ultrametric that expresses a
global notion of contrast on a color image. For this purpose,
the bijection with the class of stratified hierarchies is funda-
mental, as it provides a constructive definition for this type
of pseudo-metrics.

Indeed, because of the properties presented in the previous
paragraph, the distance between any two pointsxi ∈ Zi and
xj ∈ Zj in a ultrametrictessellationcan be expressed as a
dissimilarity measure, noted byd, between the zonesZi

andZj . In the discrete space, this remark allows to construct
the pseudo-metric through a region merging strategy.

The idea of progressively merging regions of an initial par-
tition has been used since the early days of computer vision
to address segmentation problems [6]. In general, this type
of methods, often calledbottom-upapproaches, can be im-
plemented efficiently using a region adjacency graph (RAG)
[14]. A RAG is an undirected graph where the nodes corre-
spond to connected regions of the domain. The links encode
the vicinity relation and are weighted by the dissimilarity.

Therefore, in this context, the choice of an initial parti-
tion and the definition of a dissimilarity measure determine
an order for the merging. Then, removing the links of the
RAG for increasing values of the dissimilarity and merging
the corresponding regions produces a family of nested parti-
tions.

Typically, the dissimilarity expresses a notion of resem-
blance between neighboring regions and many examples
have been proposed in the vast literature on the subject. A
simple case is the difference of the average color (or gray
level) in the regions [6, 8, 20], noted byda. However, other
authors consider also factors as the variance and the size of
the regions [3, 27], the orientation and the texture [34].

Nevertheless, it should be noted that, in order to produce a
stratified hierarchy of partitions, the dissimilarity must be in-
creasing with the order of merging. Unfortunately, this con-
dition is seldom satisfied in the examples found in the liter-
ature. When the dissimilarity is not increasing, a stratifica-
tion index for the hierarchy of partitions can still be defined

by considering any increasing function of the merging order.
However, in this case, the resulting ultrametric is no longer
directly related to the dissimilarity.

The goal in this paragraph was to construct a ultramet-
ric expressing the global contrast of the original image. A
natural candidate is the dissimilarityda. This option suffers
nonetheless from two drawbacks: first,da is not increasing
and, second, since its definition uses all the information in
the zones, its value may not reflect the real contrast. As a
consequence, a merging process governed by this dissimi-
larity can create artificial contours when the color inside the
regions varies gradually.

Thus, in our case, the dissimilarity was constructed using
only boundary information and was measured directly on the
initial partition. For the examples presented in this paper, the
dissimilarity, noted bydc, was defined as the average color
difference in the common boundary of the zones, measured
in the extrema mosaic. As a consequence of this choice,dc

is increasing with the merging order and the corresponding
ultrametric, noted byψc, is strongly related to the contrast
information provided by the original image.

A classical example of a stratified hierarchy comes from
the construction of the watershed transform [5]. Intuitively,
this method can be summarized as follows: the image, con-
sidered as a topographical surface, is flooded from its re-
gional minima. The water forms lakes in the valleys and,
when two lakes meet, they are merged. Thus, increasing lev-
els of water produce coarser partitions. When the image is
the modulus of a gradient, the resulting hierarchy is known
as thedynamics[15]. In terms of a region merging process,
the initial partition is composed by the catchment basins of
the minima and the dissimilarity is defined as the height of
the lowest pass point between two adjacent lakes, i.e., the
minimal value of the gradient in the common border of the
regions [26]. Therefore, the dynamics hierarchy also induces
a ultrametric. However, since its definition is based on a gra-
dient image, the result depends on the choice of a the discrete
approximation for the gradient.



Figure 4: Original image, extrema edges and threshold.

6 The Extrema Edges

The perception of discontinuities seems to play a essential
role for the interpretation of visual information in humans.
Consequently, edge detection is a topic of great interest in the
field of computer vision. Many edge models and detection
techniques have been proposed through the years. Typically,
the edge detection process is divided in two steps: a selection
of possible edge points and the estimation of their relevance.
Among the models proposed for the edges, one can cite the
zero-crossings of the Laplacian, the maxima in the gradient
direction and the crest lines of the gradient’s modulus. How-
ever, in spite of their diversity, the strategy in many edge
detection methods consists in a differential approach and the
use of local image information to measure the relevance of
the edge points [13]. In this section, the contrast measureψc

is used to model the edges of color images.

In addition to the features described in Sect. 3, a remark-
able property of the extrema mosaic is the preservation and
enhancement of the contour information. Indeed, thanks to
the use of the path variation, the boundaries of the zones de-
scribe accurately the contours. Therefore, they constitute a
sound set to look for edges in the image.

Once a set of candidates for possible edge points has been
determined, the next problem is their valuation. In order to
address this issue, the following notion presents a particular
interest:

Consider a stratified hierarchy of partitions{Pλ}λ, the
saliencyof a point is defined as the highest indexλ for which
the point belongs to a boundary ofPλ. The valuation of
each point by its saliency determines asaliency image. The
saliency image provides a compact description of the hierar-
chy: a thresholdλ in this image supplies the set of bound-
aries of the corresponding partitionPλ. This approach was

first used in [28] to valuate the watershed lines of a gradient
image on monochrome images.

In our case, the saliency image associated to the con-
trast ultrametricψc was used for the valuation of the edges.
The corresponding saliency image will be called theextrema
edges.

Our model of edges presents the following advantages
with respect to classical edge detectors. First, in order to
well pose differentiation, these methods often perform a lin-
ear smoothing step; nevertheless, blurring implies a loss of
resolution and the displacement of edges. In contrast, the
extrema edges are precisely located and they preserve se-
mantically important characteristics of contours such as cor-
ners and junctions. Second, our valuation method takes into
account global contrast information. Last, but not least,
a threshold in the extrema edges always provides a set of
closed contours.

Figures 3 and 4 illustrate the properties of our edge model.
The extrema edges are displayed with a high contrast repre-
sented by a low intensity. Note that the edges model ac-
curately the contours in the scene and their value translates
effectively the perceived contrast. The right image of Fig. 4
presents the closed contours corresponding to a threshold of
29% of the maximal contrast.

7 Derived Ultrametrics

The previous section showed the application of the ultramet-
ric ψc to the extraction of the contrast information in a color
image. However, contrast is just one among many factors
considered in high-level vision tasks. In this section,ψc is
used as the base to define new ultrametrics. For this purpose,
other perceptually important characteristics of the zones, as
their size, are used to complement the boundary information



Figure 5: From left to right: original images,tessellationsand mosaic images with median color. Top: 15 zones and
α = 0.23 . Bottom: 10 zones andα = 0.3 .

supplied byψc.
Precisely, anattribute, a positive real valued functionA,

is defined for every zone. The attribute is required to be in-
creasing with the inclusion order. In general,A can be calcu-
lated using the internal information of the zone; the simplest
example of an increasing attribute is the area of the zone.
Then, starting fromdc, the dissimilarity associated toψc, a
new dissimilarityd′ can be defined by the formula:

d′(Z1, Z2) = dc(Z1, Z2) ·min{A(Z1),A(Z2)}.

SinceA anddc are increasing,d′ induces a ultrametric where
the internal information is also considered. For the exam-
ples presented in this paper, the attribute was defined as :
A(Z) = A(Z)α, whereA denotes the area of the zoneZ
and the parameterα ≥ 0 weights the balance between con-
trast and area. Thus, for a fixed number of zones, the choice
of α can be seen as the introduction of higher-level informa-
tion, allowing the ultrametric to adapt to the image content.

Figures 5 and 6 show examples of segmentations obtained
with this method. It can be observed that, in spite of the
low number of zones and the simplicity of the attributes used
in the definition of the ultrametric, the main features of the
scene are recovered in the segmentations.

This approach can be seen as an extension of theflooding
hierarchiesfrom morphological segmentation where, during
the watershed flooding, the area, the depth or the volume of
the lakes is measured in order to provide a hierarchy for the
gradient’s minima [25, 26].

8 Conclusion and Perspectives

We formulated the problem of color image segmentation as
a generalized Voronoi tessellation of the image domain.

The examples of pseudo-metrics presented in this paper
can describe accurately the image structure when the scene
is composed by relatively homogeneous objects. However,
in order to apply this pseudo-metrics to the segmentation of
highly textured or noisy images, a pre-processing step should
be considered.

Present work includes the evaluation of the method with
respect to other segmentation algorithms and the definition
of pseudo-metrics where the information about the texture
and the regularity of the contours is also taken into consider-
ation.
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