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Place du maréchal de Lattre de Tassigny,

75775 Paris cedex 16, France
arbelaez@ceremade.dauphine.fr, cohen@ceremade.dauphine.fr

Abstract. We study a notion of variation for real valued two variable
functions called the path variation and we discuss its application as a
low-level image segmentation method. For this purpose, we characterize
the path variation as an energy in the framework of minimal paths. In
this context, the definition of an energy and the selection of a set of
source points determine a partition of the image domain. The problem
of choosing a relevant set of sources is addressed through a nonlinear
diffusion filtering.

1 Introduction

The notion of variation or total variation for functions of one real variable was
introduced by C. Jordan [12] as early as in 1881. This functional has found appli-
cation in various branches of mathematics [17, 18], particularly, in the definition
of the Stieltjes integral. In the regular framework, the variation of a function
f : [0, L] → IR can be written as [11]:

v(f) =
∫ L

0

|f ′(s)| ds . (1)

Several definitions of the variation have been proposed for functions of multiple
variables; if u : Ω ⊂ IR2 → IR is a smooth function, a natural generalization of
(1) consists in replacing the derivative by the gradient:

V (u) =
∫

Ω

‖∇u(x)‖ dx . (2)

In the context of image analysis, the general version of (2), allowing disconti-
nuities in the function, was first considered by Osher and Rudin [19, 21]. In the
last decade, the representation of an image as the sum of one term of bounded
variation and one term due to noise has been widely adopted. Methods based on
the minimization of the total variation have been successfully applied for image
restoration and denoising purposes [22, 5, 3, 9].

In this paper, we study a notion of variation for real valued functions of
two variables that, in contrast to the usual total variation, is defined pointwise.
Precisely, we define the path variation between two points of the domain as



2

the minimal total variation of the function on all the paths that join them.
Furthermore, we propose a discrete interpretation of the path variation and we
discuss its application as a low-level segmentation tool.

Image segmentation is a fundamental issue in the field of computer vision.
Its great complexity may be understood by the fact that partitioning an image
domain into ”meaningful” regions requires a level of interpretation of the image
information. Therefore, the introduction of prior knowledge seems unavoidable
in the segmentation process. However, a first pre-cognitive task is the extraction
of the image structure provided by low-level cues.

In order to apply the path variation to the segmentation of monochrome
images, we characterize this notion as an energy in the framework of minimal
paths. In this context, an energy determines a partition of the image domain by
considering the influence zones of a set of source points.

Then, we address the problem of selecting a set of sources that represent ac-
curately the image structure. For this purpose, we consider the intensity extrema
of a scale-space representation of the image.

This paper is organized as follows: the basic definitions of the minimal paths
approach are given in Sect. 2. The path variation is presented in Sect. 3. In Sect.
4, we discuss the choice of a set of source points.

2 Definitions

This introductory section presents the general framework for the rest of the
paper. Basic definitions are recalled and the notations settled.

2.1 Minimal Paths

Let Ω ⊂ IR2 be a compact connected domain in the plane and x, y ∈ Ω two
points. A path from x to y designates an injective C1 function γ : [0, L] → Ω
such that γ(0) = x and γ(L) = y. The image of γ is then a rectifiable simple
curve in the domain. The path is parameterized by the arclength parameter s,
i.e: ‖γ̇(s)‖ = 1, ∀s ∈ [0, L] and L represents the Euclidean length of the path.
The set of paths from x to y is noted by Γxy.

Definition 1. The surface of minimal action, or energy, of a potential
function P : Ω × S1 → IR+, with respect to a source point x0 ∈ Ω, evaluated at
x, is defined as

E0(x) = inf
γ∈Γx0x

∫ L

0

P (γ(s), γ̇(s)) ds .

When P depends only on the position γ(·) and is strictly positive, the field of
geometrical optics provides the following physical interpretation of the energy:
the potential P : Ω → IR+ represents a refractive field of indices of an optical
medium and E0, called the eikonal in this context, supplies the optical length
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of the light rays. Then, the relation between the energy and the potential can
be expressed by the Eikonal Equation:

‖∇E0(x)‖ = P (x) , (3)

with boundary condition E0(x0) = 0.
In this particular case, the computation of the energy can be performed using
Sethian’s Fast Marching method [23, 7]. Noticing that the information is prop-
agating outwards from the sources, the Fast Marching uses an up-wind scheme
to construct a correct approximation of the viscosity solution of (3).

Energy minimizing paths have been used to address several problems in the
field of computer vision, where the potential is generally defined as a function of
the image. Examples include the global minimum for active contour models [7],
shape from shading [13], continuous scale morphology [14], virtual endoscopy [8]
and perceptual grouping [6].

2.2 Energy Partitions

The energy with respect to a set of sources S = {xi}i∈J is defined as the minimal
individual energy:

ES(x) = inf
i∈J

Ei(x) .

In the presence of multiple sources, a valuable information is provided by the
interaction in the domain of a source xi with the other elements of S, which is
expressed through its influence zone:

Zi = {x ∈ Ω|Ei(x) < Ej(x), ∀j ∈ J, j 6= i} .

Thus, the influence zone, or briefly the zone, is a connected subset of the domain,
completely determined by the energy and the rest of the sources. Their union is
noted by:

Z(E,S) =
⋃

i∈J

Zi .

The medial set is defined as the complementary set of Z(E,S):

M(E,S) = {x ∈ Ω | ∃ i, j ∈ J, i 6= j : ES(x) = Ei(x) = Ej(x)} .

Definition 2. The energy partition of a domain Ω with respect to an energy
E and a set of sources S, is defined as:

Π(E, S) = Z(E, S)
⋃

M(E,S) .

As a first example, if the potential is constant, e.g. P ≡ 1, then the energy
at x,

G0(x) = inf
γ∈Γx0x

∫ L

0

ds ,
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becomes the geodesic distance to the source, or the Euclidean length of the
shortest path between x0 and x. Moreover, if the domain is convex, then G0

coincides with the usual Euclidean distance to x0. If a set of sources S = {xi}i∈J

is considered, then the medial set M(G,S) corresponds to the Voronoi diagram
and the zones Z(G,S) to the Voronoi cells.

2.3 Mosaic Images

Therefore, in this context, the image segmentation problem is transferred to the
definition of an energy from the image data and the selection of a set of sources.
Nevertheless, in practice, digital images are subsampled on the discrete grid.
Consequently, important parts of the medial set often fall in the intergrid space.
For region based segmentation purposes, an alternative to surround this problem
is to consider an energy partition composed only by zones. Thus, the elements
of the medial set that would fall exactly in the grid are assigned to one of their
neighboring influence zones.

Then, an approximation of the image can be constructed by the assignation
of a model to represent each influence zone. The model is determined by the dis-
tribution of the image values on the zone; simple models are the mean or median
value on the influence zone and source’s level. When the model is constant, the
valuation of each zone by its model produces a piecewise constant approximation
of the image, referred in the sequel as a mosaic image.

3 The Path Variation

In the usual approach for the application of minimal paths to image analysis,
a large part of the problem consists in the design of a relevant potential for a
specific situation and type of images. However, we adopt a different perspective
and use the framework of the previous section for the study of a particular
energy, whose definition depends only on geometric properties of the image.

3.1 Continuous Domain

Jordan introduced the notion of variation for functions of one real variable as
follows [12]:
Let f : [0, L] → IR be a function, σ = {s0, ..., sn} a finite partition of [0, L] such
that 0 = s0 < s1 < ... < sn = L and Φ the set of such partitions.
The total variation of f is defined as the (possible infinite) number given by the
formula:

v(f) = sup
σ∈Φ

n∑

i=1

|f(si)− f(si−1)| .

Hence, for two variable functions, we consider the minimal total variation on
all the paths that join two points of the domain [1]:
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Definition 3. The path variation of a function u : Ω ⊂ IR2 → IR with respect
to a source point x0 ∈ Ω, evaluated at x, is defined as

V0(u)(x) = inf
γ∈Γx0x

v(u ◦ γ) .

Definition 4. The space of functions of bounded path variation of Ω, noted
by BPV (Ω) is defined by

BPV (Ω) = {u : Ω → IR | ∀x0, x ∈ Ω, ∃ γ̂ ∈ Γx0x : V0(u)(x) = v(u ◦ γ̂) < ∞} .

In the sequel, we suppose that u has bounded path variation. Note that, if
u ∈ BPV (Ω), then the path variation of u between any couple of points is not
only required to be finite but also to be realized by a path. Hence, Def. 4 supposes
the existence of geodesics for V . This assumption seems reasonable for digital
images; however, it should be noted that the geodesics of the path variation are
generally not unique:

A path γ ∈ Γxy is said to be monotone for u if u◦γ is a monotone function. By
definition, if a path is monotone for u, then it is a geodesic for V (u). Conversely,
every geodesic for V (u) is a concatenation of monotone paths.

In the regular framework, the path variation can be characterized as an
energy, in the sense of Def. 1 :

Proposition 1. If u ∈ C1(Ω)
⋂

BPV (Ω), then the path variation V0(u) is the
surface of minimal action of the potential P = |Dγ̇u|, the absolute value of the
directional derivative of u in the tangent direction of the path.

Proof. If f ∈ C1([0, L]), then the total variation can be expressed in terms of its
derivative [11] by the formula:

v(f) =
∫ L

0

|f ′(s)| ds .

Thus, if u is a continuously differentiable function, Def 3. can be reformulated
as:

V0(u)(x) = inf
γ∈Γx0x

∫ L

0

|∂(u ◦ γ)
∂s

(s)| ds .

Hence, we obtain the following expression for the path variation:

V0(u)(x) = inf
γ∈Γx0x

∫ L

0

|D ·
γ
u(γ(s))| ds .

ut
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Fig. 1. Simple example: graphs of u and V0(u).

The intuitive interpretation of the path variation is illustrated in Fig. 1:
consider a particle moving along the graph of the function depicted on the left
and starting at the source x0. Then, as shown on the right, the value of V0(u),
evaluated at x, represents the minimal sum of ascents and descents to be travelled
to reach the point x.

The path variation expresses the same geometric notion as the linear varia-
tion, introduced in [15], though in a different formulation, as a part of a geometric
theory for functions of two variables.

The component of u containing x, noted by Kx, designates the maximal con-
nected subset of Ω such that u(y) = u(x), ∀y ∈ Kx. The level of a component
K is noted by u(K) and the set of components of u is noted by Tu. The compo-
nents of a continuous function are closed and pairwise disjoint subsets of Ω. For
continuously differentiable functions, the components of the nonsingular levels
(i.e.: levels t such that 0 /∈ ∇u(u−1(t))) coincide with the level lines of u and can
be described as Jordan curves.

The importance of the components for the path variation is expressed by the
following proposition, whose proof is an immediate consequence of Def. 3.

Proposition 2. The path variation acts on the component space Tu:

∀x, y ∈ Ω, Kx = Ky ⇒ ∀x0, V0(u)(x) = V0(u)(y) .

Therefore, each component of V0(u) is a union of components of u. Furthermore,
for a set of sources S, each element of Π(V (u), S) is a union of components of
the function. Thus, since the energy partitions induced by the path variation
preserve this geometric structure of the function, V (u) presents a particular
interest for image analysis. Additionally, the energy partitions induced by the
path variation are invariant under linear contrast changes.

Figure 2 illustrates the application of the path variation on two different
test functions. On the top row, a smooth function, given by the simple formula
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Fig. 2. Energy partitions of the path variation for two different test functions (see
text).

u(x) = c‖x − x0‖. The set of sources S = {x0, x1}, is composed by the upper
left and the lower right corners of the domain. From left to right, we can observe
the graph of u, the graph of VS(u) and the energy partition Π(V (u), S). In this
case, the components of the function are nested and the medial set M(V (u), S),
shown in black, corresponds to the component whose level is the average of the
sources’ levels.

In contrast, the function on the bottom-left of Fig. 2 is piecewise constant;
the corresponding gray levels were set to 0 for the black, 254 for the white and
127 for the gray. The two images on the middle show, in black, the level sets
[u ≥ 200] and [u ≤ 100] respectively. Finally, bottom-right displays the energy
partition obtained by taking the two gray components as sources. Notice that
the component spaces of the two functions have different topologies. As a conse-
quence, in the second example, even if the boundaries of the zones are composed
by pieces of level lines, none of the squares determined by the energy partition
is a level line of the function.

3.2 Discrete Domain

In this paragraph, we propose a discrete interpretation for the path variation.
Thus, we consider that the image u has been sampled on a uniform grid. A first
remark is that, since the potential of the path variation in Prop. 1 depends not
only on the position but also on the path direction, the Fast Marching method
cannot be used for its implementation.

Nevertheless, in a discrete domain, the component structure of a function
can be represented by an adjacency graph G, where the nodes correspond to
discrete components and the links join neighboring components. Thus, G is the
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equivalent of Tu in the discrete space. Since V acts on the components of the
function, we propose to construct the discrete path variation directly on G.

A path on G joining the components of two points p and q is a set γ =
{K0, ...,Kn} such that Kp = K0, Kn = Kq, Ki and Ki−1 are neighbors, ∀ i =
1, ..., n . The set of such paths is noted by ΓG

pq. Each element of ΓG
pq corresponds

then to a class of discrete paths between p and q.
Thus, the expression of the discrete path variation of u at a point q with

respect to the source p becomes

Vp(u)(q) = min
γ∈Γ G

pq

n∑

i=1

|u(Ki)− u(Ki−1)| .

Hence, the calculation of Vp(u) is reduced to finding the path of minimal cost
on a graph. This classical problem can be solved using a greedy algorithm [10, 16].
The complexity of this straightforward implementation for the path variation is
then O(Nlog(N)), where N is the total number of discrete components of the
image. Furthermore, if u takes integer values, the sorting step in the update of
the narrow band can be suppressed and the complexity is reduced to O(N).

4 Sources Selection

In order to use a surface of minimal action to address image segmentation prob-
lems, the choice of the sources is a critical issue. Indeed, since Def. 1 is based
on an integration along the paths, the partitions determined by this type of en-
ergies are very sensitive to the location of the sources. Furthermore, replacing
a source xi ∈ S by another point x′i ∈ Zi usually modifies the corresponding
energy partition.

Therefore, the set of sources must be physically representative of the image
content. Ideally, for region based segmentation purposes, each zone should corre-
spond to a meaningful feature in the image and their boundaries should coincide
with the contours of the objects.

A first option is to address the problem interactively. In this case, a human
operator decides which are the meaningful features in the image and the path
variation is used to determine their contours. Thus, with this approach, the
choice of the sources can be seen as the moment where semantic information
is introduced in the segmentation process. This idea was also used in the well
known markers method related to the watershed transform [2].

Figure 3 displays, on the left, a set S, composed by 25 hand-placed sources
for the cameraman test image. The source points, represented by white disks for
better visualization, were chosen to provide a general description of the image,
while including perceptually important details such as the face, the camera or the
building on the background. On the right, we can observe the energy partition
Π(V (u), S). Note how the boundaries of the zones model accurately the contour
information and, particularly, semantically important characteristics of edges
such as corners and junctions.
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Fig. 3. Example of hand-placed sources and corresponding energy partition.

4.1 The Extrema Partition

A different problem is the choice of a set of sources without the intervention
of a human operator. Figure 4 exemplifies this issue on the smooth image u on
top-left. An acceptable segmentation of this ”scene” should be composed by four
approximately circular regions on a gray background. A solution is to consider
the extrema of the four peaks as sources for the ”features” and the border of
the domain as the source representing the background. The image on top-right
shows the set of sources, S, and the corresponding energy partition. On bottom-
left, we can observe the graph of the energy VS(u). Finally, on bottom-right, we
observe the corresponding mosaic image, when the zone model is intensity at
the source.

Therefore, in the regular framework, the image extrema appear as natural
candidates for the sources. The energy partition induced by the path variation
and the set of extremal components, Π(V (u), ext(u)), will be called the extrema
partition of the image u and the corresponding mosaic image, the extrema mo-
saic.

In real images, the choice of the path variation as the energy and the spatial
distribution of the intensity extrema provide a compromise between content
conservation and simplification in the extrema mosaic. This piecewise constant
approximation of the image can be seen as a decomposition in elemental zones
or as a first abstraction of the image information. The extrema mosaic may
be used as a parameter-free presegmentation, where the contour information is
preserved.

In certain cases, it may prove useful to repeat the process and construct the
extrema mosaic of an extrema mosaic. However, an excessive iteration destroys
the physical meaning of the intensity extrema and often results in an alteration
of the original image structure.
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Fig. 4. Top: original image and energy partition. Bottom: graph of the energy and
mosaic image.

Figure 5 shows an example where the extrema mosaic was applied two times
on a natural image. The ratio between the number of components in the original
image and the final number of zones is in this case 42.35. On the left, we can
observe the original image and, on the right, the second extrema mosaic. This
image illustrates two properties of the extrema partition. First, an enhancement
of the contrast information, as can be seen on the butterfly’s wings. Second, a
reduction of the blur in the background, caused by the absorption of blurred
contours and transition components by neighboring zones.

4.2 Nonlinear Diffusion Filtering

Frequently, the presence of textures and noise in natural images produces a
large number of extrema in the intensity. Consequently, the extrema partition
is often composed by a great quantity of small zones. The question is then how
to reduce the number of extrema while preserving the image structure. In [25],
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Fig. 5. Original image and extrema mosaic.

the authors proposed to preprocess the image with methods based on partial
differential equations, in order to improve the watershed segmentation. In this
paragraph, we discuss the use of a scale-space representation of the image to
select the sources for our approach.

Thus, we consider the regularized version [4, 24] of the classical approach
proposed by Perona and Malik [20]. In this method, a filtered image ut = u(x, t)
is constructed as a solution of the nonlinear diffusion equation:

∂u

∂t
= div(g(|∇(Gσ ∗ u)|2)∇u) , (4)

where Gσ denotes a Gaussian kernel of variance σ and g(·) is a positive
diffusivity function. Reflecting boundary conditions are considered and the initial
state u0 = u(x, 0) coincides with the original image.

For the examples presented, we used the diffusivity :

g(s) =

{
1, if s ≤ 0
1− exp

(
−3.315
(s/κ)4

)
, if s > 0

where κ is the contrast parameter that regulates the selective smoothing
process. This diffusivity was reported in [26] to lead to better results than the
original functions in [20].

The main properties of nonlinear diffusion filtering are illustrated in Fig. 6.
The initial image u0 was the extrema mosaic of the cameraman, shown on the
left. The parameters of the diffusion were σ = 1 and κ = 30. The filtered im-
age ut, shown on the right, corresponds to the scale t = 180. In this method,
intraregional smoothing is preferred to interregional smoothing. Thus, homoge-
neous regions are smoothed in the filtered image ut, while the edge information
is enhanced.

Therefore, the number of extrema in the filtered image, noted by ext(ut),
decreases rapidly when the scale is augmented. These properties make of ext(ut)
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Fig. 6. Example of nonlinear diffusion filtering (see text).

an interesting candidate for the set of sources of our energy partitions. Two
choices are then possible, either consider the extrema partition of the filtered
image, Π(V (ut), ext(ut)), or go back to the initial image u0 and construct the
partition Π(V (u0), ext(ut)).

Figure 7 illustrates this method for the choice of the sources, with the example
of Fig. 6. The number of extremal components decreased from 8412 in the original
image to 261 in the smoothed image. Top-left shows the extrema mosaic of ut

and top-right displays the mosaic image of Π(V (u0), ext(ut)). Notice how both
energy partitions, shown on the bottom row, preserve the image structure, in
spite of the reduction in the number of sources. The main difference lies in
the regularization of the zones in the filtered image with respect to the zones
obtained with the initial image.

In summary, the use of nonlinear diffusion produces in general a represen-
tative set the sources. However, an excessive filtering destroys the contour in-
formation. Thus, this method requires the tuning of the diffusion parameters.
Finally, note that even homogeneous regions like the sky in Fig. 7 contain several
extrema after the filtering.

The comparison between the results of Fig. 7 and the partition obtained with
hand-placed sources in Fig. 3 suggests that other approaches for the choice of
the sources may lead to better results.

Alternatively, our approach can be seen as a parameter-free method to con-
struct a partition with a small number of regions, starting from an image filtered
by nonlinear diffusion.
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Fig. 7. Sources selection by nonlinear diffusion (see text).

5 Conclusion and Perspectives

In this paper, we discussed the application of the path variation to the segmenta-
tion of monochrome images. It should be noted that the use of the path variation
for the construction of an energy partition assumes a certain homogeneity of the
objects represented in the image. Therefore, in order to apply this approach to
highly textured or noisy images, a pre-processing step should be considered.

Finally, present work includes the generalization of our approach to vector-
valued images and the definition of alternative methods for the selection of the
sources.
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