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Abstract. Contrast-enhanced ultrasound (CEUS) is a valuable imaging
modality as it allows a visualization of the vascularization and comple-
ments the anatomical information provided by conventional ultrasound
(US). However, in such images classical segmentation algorithms may be
hindered by the noise, the limited field of view or shadowing effects. In
this paper, we propose to use simultaneously the different information
coming from US and CEUS images to address the problem of kidney
segmentation. To that end, we develop a generic framework for joint
co-segmentation and registration and apply it to an ellipsoid estimation
(kidney detection) and a model-based segmentation algorithm (kidney
segmentation). Both methods rely on voxel classification maps, that we
estimate using random forest in an original approach. This results in
a fully automated pipeline for kidney segmentation in US and CEUS
that outperforms state-of-the-art techniques on a clinically representa-
tive dataset.
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1 Introduction

1.1 Clinical Setting

Ultrasound (US) imaging is a popular modality as it is cheap, portable and
safe. Contrast-enhanced ultrasound (CEUS) consists in acquiring a peculiar ul-
trasound image after injecting a contrast agent made of gas-filled microbubbles
in the patient’s blood. Because those bubbles have a different acoustic response
from the tissues, they can be isolated and images showing only the blood flow
can be generated. This modality is particularly interesting when the clinician
wants to assess the functioning of highly vascularized organs such as kidneys.
Yet, analysis of such images can be very challenging and literature on their seg-
mentation is extremely limited.
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In [10], Prevost et al. proposed a method to detect and segment kidneys
in CEUS images. While they provided an automated pipeline, failures were re-
ported in several cases and user interactions were needed to obtain a satisfying
result. Yet beacuse of shadowing effects, pathologies or restricted field of view,
parts of the kidney may be completely invisible in the image. In such cases even
expert users cannot confidently delineate the true boundary of the organ.

In this paper, we propose a way to improve segmentation in CEUS images
by taking another image into account in order to cope with missing information.
Indeed in clinical routine each CEUS acquisition is preceeded by a conventional
US acquisition to locate the kidney, so two images - that show different infor-
mation - are actually available. However, automated kidney segmentation in 3D
US images is also an open issue. Martin-Fernandez et al. [6] tackled this problem
but their method requires a manual initialization. For both US and CEUS seg-
mentation are equally challenging, we propose to address them simultaneously
by performing kidney co-segmentation in the two images.

1.2 Related Work on (Co-)Segmentation and Registration

Co-segmentation often denotes the task of finding an object in each image that
shares the same appearance but not necessarily the same shape [12]. Here we
look for the exactly same organ in two images but with a different appearance.
As simultaneous acquisition of US and CEUS is not possible on current imaging
systems, the two images are in an arbitrary referential and need to be aligned.
However classical iconic registration methods are not adapted as visible struc-
tures, apart from the kidney itself, are completely different in US and CEUS.
Co-segmentation shall therefore help registration, just as registration helps co-
segmentation. This calls for a method that jointly performs these two tasks (see
Figure 1).

Although segmentation and registration are often seen as two separate prob-
lems, several approaches have already been proposed to tackle them simulta-
neously. Most of them rely on an iconic registration guiding the segmentation
(e.g. [13, 9, 5]). Yet they assume that the segmentation is known in one of the
image, which is not the case in our application of co-segmentation. Moreover,
as stated before, CEUS/US intensity-based registration is bound to fail since
visible structures does not correspond to each other. Instead of registering the
images themselves, Wyatt et al. [14] developped a MAP formulation to perform
registration on label maps resulting from a segmentation step. However no shape
model is enforced and noise can degrade the results. In [15], Yezzi et al. intro-
duced a variational framework that consists in a feature-based registration in
which the features are actually the segmenting active contours.

In this paper, we aim at extending both the kidney detection and segmenta-
tion in a CEUS image presented in [10] to a couple of CEUS and US images. To
that end, we develop a generic joint co-segmentation and registration framework
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Fig. 1. Joint co-segmentation and registration. Given two different non-aligned images
of the same object, the proposed method aims at segmenting this object in both images
as well as estimating a rigid registering transformation between them.

inspired by [15]. This results in a fully automated pipeline to obtain both an im-
proved kidney segmentation in CEUS and US images and a registration of them.

The article is structured as follows. Section 2 describes the generic framework
and its application to two consecutive algorithms. They both rely on an appear-
ance characterization of the kidney in ultrasound images that is learnt using
random forest in an original structured way (Section 3). Results of the pro-
posed co-segmentation method on a challenging clinical dataset are presented in
Section 4. Finally, Section 5 provides some discussion and concludes the paper.

2 Joint Co-Segmentation and Registration

2.1 Generic Implicit Variational Framework

Segmentation consist in finding an optimal two-phase (inside and outside) par-
titioning of a given image I : Ω → R+. In implicit methods, this partitioning is
defined using the sign of an implicit function φ : Ω → R. As in any variational
approach, φ is sought as the minimum of an energy E. In the following, we will
focus on energies of the following generic form

EI(φ) =

∫
Ω

f(φ(x)) rI(x) dx +R(φ) (1)

where f is a real-valued function and rI(x) denotes a pointwise score on whether
x looks like an interior or exterior voxel in the image I. This is a classical setting
in which the segmenting implicit function φ must achieve a trade-off between an
image-based term and a regularization term.
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We are interested in the case where a couple of images I1 : Ω1 → R and
I2 : Ω2 → R of the same object are available. If those images were perfectly
aligned, the energy in Eq (1) can be straightforwardly generalized to perform
co-segmentation :

EI1,I2(φ) =

∫
Ω1

f(φ(x)) (rI1(x) + rI2(x)) dx +R(φ) . (2)

Unfortunately, such an assumption rarely holds in medical applications unless
the two images are acquired simultaneously (as in PET-CT imaging [3]). A more
realistic hypothesis is to assume that the target object, segmented by φ, is not
deformed between the two acquisitions, but only undergoes an unknown rigid
transformation Gr. The co-segmentation energy thus reads

EI1,I2(φ,Gr) =

∫
Ω1

f(φ(x)) rI1(x) dx+

∫
Ω2

f(φ◦Gr(x)) rI2(x) dx+R(φ) . (3)

Note that, after a variable substitution, it can be equivalently written

EI1,I2(φ,Gr) =

∫
Ω1

f(φ(x)) (rI1(x) + rI2 ◦ G−1r (x)) dx +R(φ) . (4)

Minimizing EI1,I2 can be therefore be interpreted as performing both segmen-
tation (via φ) and rigid registration (via Gr) simultaneously. This generalizes a
more classical approach (e.g. [1]) where the images are first aligned in a prepro-
cessing step, and then used in the sense of Eq (2).

In the following, we apply this framework to (i) a robust ellipsoid detection
[10] and (ii) implicit template deformation [8] to build a completely automated
workflow for kidney segmentation in US and CEUS images. Note that the kidney,
which is surrounded by a tough fibrous renal capsule, is a rigid organ. The
hypothesis of non-deformation is therefore completely justified.

2.2 Robust Ellipsoid Co-Detection

Authors of [10] proposed to detect the kidney in CEUS images as an ellipsoid.
For that purpose, they developed a variational framework to achieve fast and
robust ellipsoid detection.

Any ellipsoid can be implictly represented by a function φc,M : Ω → R such

that φc,M(x) = 1 − (x− c)
TM (x− c), where c ∈ R3 denotes the ellipsoid

center and M is a symmetric positive-definite matrix. The ellipsoid interior is
then the zero superlevel set of φc,M. Given a probability map p : Ω → [0, 1]
defined at each pixel, the detection is sought as the smallest ellipsoid that in-
cludes most of the pixels x with high probability p(x). To limit the influence of
possible false positives pixels, a weighting function w : Ω → [0, 1] acting on p is
simultaneously estimated. The variational problem can then be written as
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min
c,M,w

Ed(c,M, w) =−
∫
Ω

φc,M(x) p(x) w(x) dx (5)

+ µ.

(∫
Ω

p(x) w(x) dx

)
. log

(
Vol(M)

|Ω|

)
with Vol(M) =

4π

3

√
detM−1 the ellipsoid volume.

Such a setting falls into the framework described in Eq (1) :

– with f = Id and r = −pw in the image-based term. r is then highly negative
at voxels that have a high probability and are not outliers. To minimize the
energy, such pixels must be inside the ellipsoid i.e. where φ is positive.

– with R(φc,M) = R(M) = µ.
∫
Ω
pw. log

(
Vol(M)
|Ω|

)
as a regularization term

that penalizes the volume of the ellipsoid. The rationale behind the logarithm
is statistical: the energy in Eq (5) is closely related to maximum likelihood
estimation of a Gaussian distribution. The purpose of the factor

∫
Ω
pw is

to normalize the contribution of such a term, while µ denotes a trade-off
parameter. Its optimal value can be computed ( 1

4 in 2D and 1
5 in 3D) by

considering the ideal case where p ≡ 1 (resp. 0) inside (resp. outside) the
ellipsoid.

Expanding this algorithm to another image with a given probability p2 re-
quires the introduction of another weighting function w2. Following Eq (3), we
can now define the co-detection energy as

Ecod(c,M, w1/2,Gr) =−
∫
Ω

φ(x) p1(x) w1(x) dx −
∫
Ω

φ ◦ Gr(x) p2(x) w2(x) dx

+ µ

(∫
Ω

p1w1 + p2w2

)
log

(
Vol(M)

|Ω|

)
with Vol(M) =

4π

3

√
detM−1 the ellipsoid volume. (6)

To facilitate the resolution of such a problem, Gr - as a rigid transforma-
tion - can be decomposed into a rotation and a translation. We can therefore
equivalently write the energy as a function of the ellipsoid center c2 in the second
image and the rotation matrix R :

Ecod(c1, c2, w1/2, R,M) =−
∫
Ω

φc1,M(x) p1(x) w1(x) dx (7)

−
∫
Ω

φc2,RTMR(x) p2(x) w2(x) dx

+ µ

(∫
Ω

p1w1 + p2w2

)
log

(
Vol(M)

|Ω|

)
Minimization of such energy is similar to the classical ellipsoid detection, and

is done in an alternate three-step process:
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1. The statistical interpretation still holds for the ellipsoids centers and matrix:
minimizers c∗1 and c∗2 are weighted centroids while M∗ is related to the
weighted covariance matrix of pixels coming from both images.

2. The unknown R accounts for the possible rotation between the two images
and can be parametrized by a vector of angles Θ ∈ R3. A gradient descent
is peformed at each iteration to minimize the energy with respect to Θ.

3. The weights w1 and w2 are finally updated as indicator functions (up to a
slight dilation) of the current ellipsoid estimates.

The complete minimization process is summarized in Algorithm 1. Compu-
tational efficiency is maintained : closed-form solutions are available (except for
R) and the algorithm, though iterative, usually converges in very few iterations.

Algorithm 1: Robust ellipsoid co-detection algorithm

initialization ∀ x ∈ Ω, w1(x)← 1, w2(x)← 1
repeat

// Estimation of centers c1 and c2 and matrix M
c1 ← 1∫

Ω p1w1

∫
Ω
p1(x) w1(x) x dx

c2 ← 1∫
Ω p2w2

∫
Ω
p2(x) w2(x) x dx

M−1 ← 2

µ
∫
Ω
p1w1 + p2w2

(∫
Ω

p1(x) w1(x) (x− c1) (x− c1)T dx

+

∫
Ω

p2(x) w2(x) R (x− c2) (x− c2)T RT dx
)

// Update of the rotation matrix R
repeat

R(Θ)← R (Θ −∆t ∇ΘEd(Θ))
until convergence;

// Update of the weighting functions w1 and w2 for each x ∈ Ω
if (x− c)TM (x− c) ≤ 1− µ log

(
Vol(M)
|Ω|

)
then

w1(x)← 1 else w1(x)← 0

if (x− c2)T RTMR (x− c2) ≤ 1− µ log
(
Vol(M)
|Ω|

)
then

w2(x)← 1 else w2(x)← 0

until convergence;

Figure 2 shows an example of ellipse co-detection in stnthetic images, where
the probability of belonging to the target object is the image intensity. The
simultaneous use of both images allows a great improvement on the ellipse esti-
mations.
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Fig. 2. Ellipse detection on two synthetic images. Left: original image with ground
truth (green). Center: independent ellipse detection on each image (red). Right: pro-
posed method for co-detection (blue).

2.3 Co-Segmentation via Implicit Template Deformation

The previously detected ellipsoid is not a precise segmentation of the kidney,
but can be used as an initialization for a more elaborate segmentation method,
namely template deformation [11, 8].

Template deformation is a model-based segmentation framework that repre-
sents the segmented object as a deformed initial function (called the template).
In an implicit setting [8], this segmentation is represented by the zero-level set
of a function φ : Ω → R defined as φ = φ0 ◦ψ, where φ0 is the implicit template
and the transformation ψ : Ω → Ω becomes the unknown of the problem. ψ is
sought as a minimum of the following energy

Es(ψ) =

∫
Ω

H(φ0 ◦ ψ) r(x) dx +R(ψ) . (8)

where H is the Heaviside function (i.e. H(x) = 1 if x > 0, otherwise 0)
and r an image-based term negative (resp. positive) at pixels likely to be inside
(resp. outside) the target object. The template φ0 acts as a shape prior and the
transformation ψ that φ0 undergoes is penalized via R. In order to define this
regularization term, this transformation is decomposed as ψ = L ◦ G where

– G is a global transformation that accounts for the pose and scale of the
segmentation. It is defined through a vector of parameters (typically in R7

for a 3D similarity);
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– L is a non-rigid local deformation, expressed using a displacement field u
such that L(x) = x + (u ∗ Kσ)(x). Kσ is a Gaussian kernel that provides
built-in smoothness.

This decomposition allows R to be pose-invariant and constrains only the
non-rigid deformation : R(ψ) = R(L) =

∫
Ω
‖L − Id‖2 =

∫
Ω
‖u ∗Kσ‖2. Penaliz-

ing the magnitude of the displacement field prevents the segmentation to deviate
too much from the initial shape prior.

It is clear from Eq (8) that implicit template deformation is part of the
framework defined in Eq (1) with f = H. We can therefore extend it to co-
segmentation by considering the following energy :

Ecos(L,G,Gr) =

∫
Ω

H(φ0 ◦ L ◦ G) r1(x) dx

+

∫
Ω

H(φ0 ◦ L ◦ G ◦ Gr) r2(x) dx +
λ

2
‖L − Id‖22 . (9)

In our application, the template φ0 is defined as the implicit representa-
tion of the detected ellipsoid φc1,M. G and L are initially set to the identity
while Gr is initialized with the previously estimated registering transformation:
Gr(x) = R (x + c1 − c2). The energy Ecos is then minimized with respect to
the parameters of G, Gr and each component of the vector field u, through a
classical gradient descent.

3 Learning Kidney Appearance using Random Forests

CEUS = easy probability (intensity of the image)

But extremely difficult to define a probability in US : high variability of ap-
pearance in US images, no standardization intensities, saturation (see Figure 3)
However one common thing in appearance : 2 structures in the kidney : parenchyma
+ sinus We will exploit this structural information in our learning strategy (via
random forests)

Fig. 3. Samples of US images from the database showing the extreme variability of
kidney appearance. The structure of the kidney (sinus as a bright area surrounded by
a darker parenchyma) is however consistant.



Title running 9

Related work :
[7, 4] : entangled forests / context-sensitive (with regression)
[2] joint regression and classification using SDF
[16] tissue specific segmentation

4 Experiments and Validation

Our test database is composed of 60 couples of US and CEUS volumes acquired
from 40 different patients. This set is clinically representative as different ul-
trasound probes were used, with different fields of view, on both diseased and
healthy kidneys. The volumes size was 512× 510× 256 voxels with varying spa-
tial resolutions (0.25× 0.25× 0.55 mm in average). The CEUS acquisitions have
been performed a few seconds after injection of 2.4 mL of Sonovue (Bracco,
Italy) contrast agent. Kidney segmentation made by an expert was available for
each image as a ground truth.

The proposed method was implemented in C++ and the average overall
computational time was X seconds on a standard computer (Intel Core i5 2.67
Ghz, 4GB RAM).

5 Conclusion
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