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Abstract. Dynamic contrast-enhanced computed tomography (DCE-
CT) is a valuable imaging modality to assess tissues properties, partic-
ularly in tumours, by estimating pharmacokinetic parameters from the
evolution of pixels intensities in 3D+t acquisitions. However, this requires
a registration of the whole sequence of volumes, which is challenging es-
pecially when the patient breathes freely. In this paper, we propose a
generic, fast and automatic method to address this problem. As standard
iconic registration methods are not robust to contrast intake, we rather
rely on the segmentation of the organ of interest. This segmentation is
performed jointly with the registration of the sequence within a novel
co-segmentation framework. Our approach is based on implicit template
deformation, that we extend to a co-segmentation algorithm which pro-
vides as outputs both a segmentation of the organ of interest in every
image and stabilising transformations for the whole sequence. The pro-
posed method is validated on 15 datasets acquired from patients with
renal lesions and shows improvement in terms of registration and esti-
mation of pharmacokinetic parameters over the state-of-the-art method.

1 Introduction

1.1 Clinical context

Dynamic contrast-enhanced (DCE) or perfusion imaging consists in acquiring
a time sequence of images after a contrast agent injection. Parametric images
are then generated by fitting at each voxel a pharmacokinetic model to its time-
intensity curve. This technique is particularly used for oncologic applications,
such as renal tumours follow-up, as the estimated parameters yield valuable
information on healthy tissues and lesions [1].

Perfusion images can be acquired by MRI or CT systems. In this paper, we
focus on DCE-CT sequences as it presents several advantages over DCE-MRI [1].
First, there is a linear relation between contrast agent concentration and image
intensities (Hounsfield units), which simplifies pharmacokinetic models fitting.
Second, CT is a cheaper and more widespread modality than MRI. However,
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Fig. 1. Tracking via co-segmentation of the kidney in a sequence of volumes (Ii)i.
The segmentation is performed by template deformation (φ0 ◦ L ◦ G) using the whole
sequence, while stabilising transformations (Gi)i are simultaneously estimated.

this modality generates ionizing radiations that may harm the patient. In or-
der to limit those risks, such acquisitions are performed in a very limited field
of view with a reduced dose and a low framerate. This results in small, low-
resoluted volumes (both in spatially and temporally) that are noisier than static
CT acquisitions (see Figure 1).

To capture the full dynamics of the contrast diffusion, a perfusion proto-
col lasts several minutes. Because of the patient’s breathing, voxels correspond
to different anatomical locations across the sequence. The major challenge in
parameter estimation is therefore to design a robust registration method, that
cannot use temporal consistency because of the low framerate.

1.2 Related work and contributions

Several methods have already been proposed to register DCE sequences. Non-
rigid iconic registration methods [2–4] are computationally demanding and rely
on their similarity criterion. Standard choices such as mutual information are
not effective in DCE-CT sequences [5]. In [6], Bhushan et al. used the pharma-
cokinetic model fitting error as registration criterion for DCE-MR, thus coupling
the two tasks of sequence stabilisation and parameter estimation. However, the
latter is a highly non-convex problem: including additional unknowns (namely
the pharmacokinetic parameters) increases the risk of falling in local minima.

Some methods rather use a segmentation of the organ of interest to guide
the registration [7–9]. Because of contrast diffusion, edge information is indeed
more robust than region-based terms. In [7–9], segmentation and registration
processes are performed sequentially. Yet they are inter-dependent (and equally
challenging in DCE-CT images). In this paper, we propose a method to address
both tasks simultaneously.

To do so, we extend the model-based segmentation algorithm proposed by
Mory et al. [10] (that already proved effective kidney segmentation in CT im-
ages [11]) to a co-segmentation method that uses multiples images. This exten-
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sion was inspired by a paper of Yezzi et al. [12], in which they segment a pair
of CT/MR images with a single shape. However their work was based on ac-
tive contours, while we adapt this approach to a more elaborate segmentation
method and generalize it towards a novel model-based tracking method.

Concerning free-breathing DCE-CT registration, previous work is limited - to
the best of our knowledge - to [5] in which Romain et al. proposed a registration
by block-matching with a modified entropy-based similarity measure. This shall
be considered as the baseline method.

Section 2 describes the segmentation framework and extends it to a tracking
algorithm. In Section 3, we present results in terms of registration accuracy and
parametric images and compare our approach to the baseline method [5]. Finally,
Section 4 provides some discussion and concludes the paper.

2 Registration via kidney co-segmentation

As in [7–9], the proposed registration relies on a kidney segmentation. Our
method is based on implicit template deformation [10], that we extend to a
generic tracking method that simultaneously estimates the shape of the kidney
and its pose in every frame of the sequence.

2.1 Template-based kidney segmentation

Let an initial shape S0 be implicitely represented by a function φ0 : Ω ⊂ R3 → R,
ie φ0 is positive (resp. negative) inside (resp. outside) S0 and S0 = φ−10 (0). A
space transformation ψ : R3 → R3 is determined such that the zero-level set
of the deformed function φ = φ0 ◦ ψ segments the target object in the image
I : Ω → R. The optimal transformation is then defined as the minimum of the
energy

E(ψ) =

∫
Ω

H(φ0 ◦ ψ(x)) r(x) dx + λ d(Id, ψ) . (1)

In the first term, H is the Heaviside function and r is a classification error
function that depends on the image: for each point x, r(x) < 0 (resp. r(x) > 0)
if x is likely to be an interior (resp. exterior) point. The choice of such a function
will be detailed in Section 2.3. The second term d is a regularization penalty
constraining the transformation ψ towards the identity and is weighted by the
parameter λ. The transformation is decomposed as ψ = L ◦ G where

– G is a global transformation, which accounts for the global pose and scale of
the model (e.g. a similarity);

– L is a non-rigid local deformation, expressed using a displacement field u
such that L(x) = x + (u ∗ Kσ)(x). Kσ is a Gaussian kernel that provides
built-in smoothness to such a transformation.

This decomposition allows d to be pose-invariant and to constrain only the non-
rigid deformation : d(Id, ψ) = d(Id,L) = 1

2‖L − Id‖
2
2 = 1

2

∫
Ω
‖u ∗ Kσ‖22. This

L2 penalization on the amplitude of u ∗Kσ prevents large deviations from the
original shape.
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2.2 Tracking and stabilisation by co-segmentation

The previously described approach can be generalized to segment a given ob-
ject in a collection of N images (Ii)i=1..N . Following a similar approach to [12], a
single shape shall segment all images. We introduce for every image Ii a transfor-
mation Gi that we call the pose of the object in this image. The segmentation of
the object in the i-th image is then the zero level-set of the function φ0◦L◦G◦Gi.
In the object’s neighborhood, the transformations (Gi)i=1..N act as stabilisation
transformations from any image to a common reference (see Figure 1). Enforcing
G1 = Id sets this reference as the first image and resolves any possible ambiguity.
Here we assume every Gi to be a global rigid transformation. Indeed the kid-
ney is a rigid organ whose motion across the sequence is mainly due to patient
breathing. Note however that the proposed framework can be easily extended
to any kind of stabilising transformations. We finally define the cosegmentation
energy as a function that now depends on transformations (Gi)i :

E(L,G, (Gi)i) =

N∑
i=1

∫
Ω

H(φ0 ◦ L ◦ G ◦ Gi) . ri +
λ

2
‖L − Id‖22 (2)

where ri is the i-th image-based classification error function. This energy is
minimized with a gradient descent, simultaneously performed on the deformation
field u and the parameters of the transformations G, as well as the whole set
(Gi)i. At the end of the process, we obtain both the kidney shape as the zero
level-set of φ0◦L◦G and the transformations (Gi)i that allow a global registration
of the images.

2.3 Choice of the image-based term

The choice of the image-based term r is paramount for the segmentation. A

common choice is r(x) = log Pext(I(x))
Pint(I(x))

if intensities distributions are known

inside (Pint) and outside (Pext) the target object. However image intensities vary
along the sequence because of contrast agent injection and kidney’s appearance
may change even between two successive acquisitions. It is therefore not robust to
use such intensity models. We rather rely on edge information by only assuming
that in every image Ii of the sequence, the kidney is brighter than its surrounding.
This assumption is based on the fact that kidneys are highly vascularized organs
whose contrast uptake is very early. The selected criterion to be minimized is
the image gradient flux through the segmentation surface in image Ii denoted
Si = (φ0 ◦ L ◦ G ◦ Gi)−1(0) :∫

Si
−
〈
~∇Ii(x) , ~n(x)

〉
dS(x) =

∫
inside Si

−∆Ii(x) dV (x) . (3)

where ∆ denotes the Laplacian operator. The right-hand term in this equation
is obtained by application of divergence theorem. In practice, we only take into
account relevant edges by applying a Gaussian filter on each image before com-
puting its derivatives. The proposed image-based term falls into the described
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framework by setting for each image, ri(x) = −∆(Kσim ∗ Ii)(x). The segmenta-
tions thus included tumors (as they do respond to the contrast) and excluded
cysts (that do not). In both cases however, this does not hinder the registration
since for a given sequence, the same structure is segmented in all frames.

3 Experiments and Results

3.1 Material

The experiments are based on 15 3D+t sequences coming from six different
patients with renal tumours, enrolled in a longitudinal study. The data were
acquired on a Brilliance iCT 256 Philips scanner. For each patient, a dynamic
CT protocol of perfusion was used. 66 volumes were acquired per sequence (48
volumes every 2.5 seconds then 18 volumes every 10 seconds). The patients
were asked to breathe normally during the whole exam. Typical image size was
512 × 512 × 22 voxels with a spatial resolution of 0.68 × 0.68 × 2.5 mm. The
model φ0 was set to an ellipsoid inside the kidney (with one click but we believe
this could be easily automated) in the first frame and all transformations (Gi)i
were initialized to the identity. Our algorithm, implemented in C++, processes
a whole 3D+t sequence in 30 seconds on a standard computer (Intel Core i5 2.67
GHz with 4GB RAM). Such a small computational time is possible because the
registration is driven by the segmentation and thus only requires computations
on the boundary of the segmented organ.

Fig. 2. Crops of coro-
nal and axial slices be-
tween an original se-
quence (top) and the
same sequence regis-
tered with our method
(bottom) along the ac-
quisition times. Note
the stabilisation of the
small blood vessel and
the lesion (arrows).

3.2 Evaluation of registration

An example of a sequence before and after registration is given in Figure 2. We
first assess the quality of the registration by computing error measures on land-
marks. In our application, we are particularly interested in the region near the
renal lesion: the selected landmark was therefore this lesion. For every sequence,
the lesion has been manually segmented in each frame. If the registration were
perfect, the segmentation (after compensation by the motion estimated via the
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Fig. 3. Boxplots of lesions Dice coefficients from original sequences (red), sequences reg-
istered with entropy-based block matching [5] (blue) and the proposed method (green).

kidney) would be stable along the frames. We thus evaluated our registration
by computing the Dice coefficient between the lesion in each frame and the le-
sion in the reference frame. Figures 3 shows this score, in comparison with the
original sequence and the sequence registered by the block-matching method of
[5]. Our method globally provides more precise and robust registration in the
area of the tumour as the obtained Dice coefficients have both a higher mean
and a lower variance. It outperforms [5] in every sequence but one, in which the
lesion was extremely large (bigger than the kidney). Furthermore, the motion
of center of the lesion, which was of 6.6mm (median over the datasets) in the
original sequences, was reduced to 1.6mm after our stabilisation, which is below
the resolution in z.

3.3 Parametric images

Our method was further evaluated by comparing parametric images estimated
from the registered sequence. In each voxel, parameters (θ1, θ2) were obtained
by fitting the time-intensity curve I(t) - which is proportional to the contrast
concentration Ctissue(t) - to the solution of a Tofts model [13] :

dCtissue(t)

dt
= θ1 Caorta(t)− θ2 Ctissue(t) (4)

where Caorta, which denotes the contrast concentration in the aorta, is modelled
as the sum of two sigmoids and a Gaussian function. The sum of squared errors
was minimized using a Levenberg-Marquardt method. In each voxel, we compute
the residual fitting error at convergence, which quantifies how much the time-
intensity curve deviates from the model. These are reported in Figure 4, which
shows an improvement over baseline method in every tested sequence but one.
This is illustrated by the example given in Figure 5. Our method provides much
smoother curves, which improves the reliability of the subsequent parameter
estimation. As the true parameters are unknown, we can only assess their value
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Fig. 4. Boxplots of pixelwise fitting errors (sum of squared differences with the model)
for each sequence, estimated from original sequences (red), sequences registered with
entropy-based block matching [5] (blue) and the proposed method (green).
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Fig. 5. (Left) Time-intensity curves in two different regions of interest of a sequence.
(Right) Maps of parameter θ2 estimated on (a) unregistered sequences, (b) sequences
registered with entropy-based block matching [5] and (c) the proposed method. Note
that the lesion is much more visible in our parametric image.

visually but one can clearly see that the lesion is much better distinguished in
the parametric image obtained with our registration, which tends to prove the
pertinence of our approach. The inner structures of the kidney are also more
precisely delineated.

4 Discussion

In this paper, we proposed a fast, automatic and robust method to register
3D+t DCE-CT sequences. To be able to cope with contrast uptake, our ap-
proach relies on a segmentation of the organ of interest, rather than intensity-
based similarity criteria. This segmentation is simultaneously estimated, within
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a co-segmentation framework. Experiments showed that it provides better re-
sults than the state-of-the-art both quantitatively in terms of registration and
qualitatively in terms of pharmacokinetic parameters estimation.

The proposed approach is generic and can be extended to other organs. For
the kidney, a rigid transformation was enough to capture the movement of the
region of interest. Other organs may undergo a different kind of movement, such
as affine or even deformations. This can be taken into account within our frame-
work by adapting (Gi)i transformations. The co-segmentation could also have
been directly applied to the tumour instead of the organ, but the definition of
the image-based classification terms (ri)i would have been challenging. In our
experiments, the acquisitions frequency was so low (min 2.5 seconds) that no
temporal coherence was enforced. For other applications, temporal consistency
can however be useful. This could be achieved by adding extra terms in the en-
ergy to constrain the transformations (Gi)i and is currently under investigation.
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