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Abstract: Color inconsistency often exists between the images to be stitched and will reduce the
visual quality of the stitching results. Color transfer plays an important role in image stitching.
This kind of technique can produce corrected images which are color consistent. This paper presents
a color transfer approach via histogram specification and global mapping. The proposed algorithm
can make images share the same color style and obtain color consistency. There are four main
steps in this algorithm. Firstly, overlapping regions between a reference image and a test image are
obtained. Secondly, an exact histogram specification is conducted for the overlapping region in the
test image using the histogram of the overlapping region in the reference image. Thirdly, a global
mapping function is obtained by minimizing color differences with an iterative method. Lastly,
the global mapping function is applied to the whole test image for producing a color-corrected image.
Both the synthetic dataset and real dataset are tested. The experiments demonstrate that the proposed
algorithm outperforms the compared methods both quantitatively and qualitatively.

Keywords: color transfer; color correction; image stitching; histogram specification; global mapping curve

1. Introduction

Image stitching [1] is the technique for producing a panorama large-size image from multiple
small-size images. Due to the differences in imaging devices, camera parameter settings or illumination
conditions, these multiple images are usually color inconsistent. This will affect visual results of image
stitching. Thus, color transfer plays an important role in image stitching. It can maintain the color
consistency and make the panorama be more natural than the results without color transfer.

Color transfer is also known as color correction, color mapping or color alignment in the
literature [2–7]. This kind of technique is aimed to transfer the color style of a reference image
to a test image. It can make these images to be color consistent. One example is shown in Figure 1,
from which we can obviously see the effectiveness of color transfer in image stitching.

Pitie et al. [8,9] proposed an automated color mapping method using color distribution transfer.
There are two parts in their algorithm. The first part is to obtain a one-to-one color mapping using
three-dimensional probability density function transfer, which is iterative, nonlinear and convergent.
The second part is to reduce grain noise artifacts via a post-processing algorithm, which adjusts the
gradient field of the corrected image to match the test image. Fecker et al. [10] proposed a color
correction algorithm using cumulative histogram matching. They used basic histogram matching
algorithm for the luminance component and chrominance components. Then, the first and last active
bin values of cumulative histograms are modified to satisfy the monotonic constraint, which can avoid
possible visual artifacts. Nikolova et al. [11,12] proposed a fast exact histogram specification algorithm,
which can be applied to color transfer. This approach relies on an ordering algorithm, which is based
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on a specialized variational method [13]. They used a fast fixed-point algorithm to minimize the
functions and obtain color corrected images.

Figure 1. An example of color transfer in image stitching. (a) reference image; (b) test image; (c) color
transfer for the test image using the reference color style; (d) stitching without color transfer; (e) stitching
with color transfer. Image Source: courtesy of the authors and databases referred on [2,14].

Compared to the previous approaches described above, we combine the ideas of histogram
specification and global mapping to produce a color transfer function, which can extend well the
color mapping from the overlapping region to the entire image. The main advantage of our method
is the color transfer ability for two images having small overlapping regions. The experiments also
show that the proposed algorithm outperforms other methods in terms of objective evaluation and
subjective evaluation.

This paper is an extended version of our previous work [15]. Compared with the conference
paper [15], more related work are introduced, more comparisons and discussions are included in this
paper. The rest of this paper is organized as follows. The related work is summarized in Section 2.
The detailed proposed color transfer algorithm is presented in Section 3. The experiments and the
result analysis are shown in Section 4. The discussion and conclusion are given in Section 5.

2. Related Work

Image stitching approaches can combine multiple small-size images together to produce
a large-size panorama image. Generally speaking, image alignment and color transfer are the two
important challenging tasks in image stitching, which has received a lot of attention recently [1,16–20].
Different kinds of image alignment methods or different color transfer algorithms can construct
different approaches for image stitching. Even though color transfer method is the main topic studied
in this paper, we also introduce the image alignment algorithms to make this research be comprehensive
and be understood easily. A brief review of the methods for image alignment and color transfer is
presented below.

2.1. Image Alignment

Motion models describe the mathematical relationships between the pixel coordinates in one
image and the pixel coordinates in the other image. There are four main kinds of motion models
in image stitching, including 2D translations, 3D translations, cylindrical and spherical coordinates,
and lens distortions. For a specific application, a corresponding motion model needs to be defined first.
Then, the parameters in the motion model can be estimated using corresponding algorithms. At last,
the considered images can be aligned rightly to create a panorama image. We summarize two kinds of
alignment algorithms, including pixel-based alignment and feature-based alignment.
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2.1.1. Pixel-Based Alignment

The pixel-based alignment methods are to shift or warp the images relative to other images and to
compare the corresponding pixels. Generally speaking, an error metric is firstly defined to compare the
difference between the considered images. Then, a suitable search algorithm is applied to obtain the
optimal parameters in the motion model. The detailed techniques and the comprehensive description
are available in [1]. A simple description of this method is given below.

Given an image I0(xi), the goal is to obtain where it is located in the other image I1(xi).
The simplest solution is to compute the minimum of the sum of squared difference function:

E(u) = ∑
i
(I1(xi + u)− I0(xi))

2 = ∑
i

e2
i , (1)

where u is the displacement vector, ei = I1(xi + u)− I0(xi) is the residual error. To solve this minimization
problem, the search algorithms will be adopted. The simplest method is the full search technique.
For speeding up the computation, coarse-to-fine techniques based on image pyramids are often used
in the practical applications.

2.1.2. Feature-Based Alignment

The feature-based alignment methods are to extract distinctive features (interesting points) from
each image and to match every feature. Then, the geometric transformation between the considered
images is estimated. The most popular feature extraction method is the scale-invariant feature
detection [21]. The most widely used solution for feature matching is the indexing schemes based
on finding nearest neighbors in high-dimension spaces. For estimating the geometric transformation,
a usual method is to use least squares to minimize the sum of squared residuals by

ELS = ∑
i
||ri||2 = ∑

i
||x̃′i(xi; p)− x̂

′
i||2, (2)

where x̂
′
i is the detected feature point location corresponding to point xi in other images, x̃

′
i is the

estimated location, and p is the estimated motion parameter. Equation (2) assumes all feature points are
matched with the same accuracy, which does not work well in the real application. Thus, the weighted
least square is often used to obtain more robust results via

EWLS = ∑
i

σ−2
i ||ri||2, (3)

where σ2
i is a variance estimate.

2.2. Color Transfer

The color transfer problem is well reviewed in [2,5]. A brief introduction is summarized below.

2.2.1. Geometry-Based Color Transfer

Geometric-based color transfer methods compute the color mapping functions using the
corresponding feature points in multiple images. Feature detection algorithms are adopted to obtain
the interesting points. Scale-Invariant Feature Transform (SIFT) [21] and Speeded-Up Robust Feature
(SURF) [22] are the two most widely used methods for feature detection. After obtaining the features
of each image, the correspondences between the considered images are matched using the RANdom
SAmple Consensus algorithm (RANSAC), which can remove the outliers efficiently to improve
the matching accuracy. Then, the correspondences are used to build a color transfer function via
minimizing the color difference between the corresponding feature points. Finally, this transfer
function is applied to the target image to produce the color transferred image.
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2.2.2. Statistics-Based Color Transfer

When the feature detection and matching are not available, the geometry-based color transfer can
not work. In this situation, the statistical correlation [23] between the reference image and the test image
is used to create the color mapping function, which can transfer the color style of the reference image
to the test image and enforce the considered images to share the same color style. Reinhard et al. [24]
proposed a simple and traditional statistics-based algorithm to transfer colors between two images,
which was also extended by many researchers. Papadakis et al. [25] proposed a variational model for
color image histogram transfer, which used the energy functional minimization to finish the goal of
transferring the image color style and maintaining the image geometry. Hristova et al. [26] presented
a style-aware robust color transfer method, which was based on the style feature clustering and the
local chromatic adaptation transform.

2.2.3. User-Guided Color Transfer

When the feature matching information and the statistical information of the considered
images are both difficult to be obtained, it is essential to adopt user-guided methods to create the
correspondences and use them to build the color transfer mapping function. The transfer function
between images can be obtained from a set of strokes [27], which are user-defined by painting on
the considered images. Then, the transfer function can be computed via different minimization
approaches. The other kind of method is the color swatch based algorithm [28], which is more related
to the construction of the correspondences between the considered images. The color mapping function
is obtained from swatched regions in one image and can be applied to the corresponding regions in
the other image.

3. The Proposed Approach

This paper proposes a method of color transfer in image stitching using histogram specification
and global mapping. Generally speaking, there are four steps in this algorithm. Firstly, there are
two given images to be stitched. The image with good visual quality is defined as the reference
image, and the other is defined as the test image. Overlapping regions between these two images are
obtained using a feature-based matching method. Secondly, histogram specification is conducted for
the overlapping regions. Thirdly, using corresponding pixels in the overlapping region, which are
original pixels and the pixels after histogram specification, the mapping function is computed with
an iterative method for minimizing color differences. At last, the whole color transferred image is
produced by applying the mapping function to the entire test image.

3.1. The Notations and the Algorithm Framework

R is a reference image,
T is a test image,
R_O is the overlapping region in the reference image,
T_O is the overlapping region in the test image,
T_O_HS is the result of histogram specification for T_O,
(i, j) is the location of pixels in images,
k is the pixel values, k ∈ [0, 1, ..., 255] for 8-bit images,
ε(k) := {(i, j) ∈ T_O | T_O(i, j) = k},
Map is a color mapping function,
T_O_Map is the result of color transfer for T_O using the color mapping function,
Di f f is pixel differences between two images,
PSNR is the peak signal-to-noise ratio between two images.
The algorithm framework is described in Figure 2.
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Figure 2. The framework of the proposed algorithm. Image Source: courtesy of the authors and databases
referred on [29].

3.2. The Detailed Description of This Algorithm

In this section, we will describe the proposed algorithm in detail.

3.2.1. Obtain Overlapping Regions between Two Images

In the application of image stitching, there are overlapping regions between input images.
Due to little changes of scenes, differences of image capture angles, differences of focal lengths and other
factors, the corresponding overlapping regions are not exactly pixel-to-pixel. Firstly, we find matching
points between the reference image and the test image, using the scale-and-rotation-invariant feature
descriptor (SURF) [22]. Then, the geometric transformation will be estimated from the corresponding
points. In our implementation, the projective transformation is applied. After that, these images can
be transformed and placed to the same panorama [1]. At last, we obtain overlapping regions using the
image correspondence location information. This part is described in Algorithm 1.
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Algorithm 1 Obtain overlapping regions between two images.

1: Input two images R and T , then compute the feature point correspondences Ri ↔ Ti using SURF,

i = 1, 2, ..., N, where N is the number of feature point correspondences.
2: Estimate the geometric transform t f orms using the correspondences, the following term

is minimized:

min
N

∑
i=1

(
Ri− t f orm(Ti)

)2.

3: Warp these two images and put in the same panorama using the geometric transform t f orms,

define two matrixes M1 and M2 to store position information.
4: Obtain overlapping regions using the image correspondence location information described in M1

and M2.

3.2.2. Histogram Specification for the Overlapping Region

In this step, we will make exact histogram specification for the overlapping region in the test
image to match the histogram of the overlapping region in the reference image. The histogram is
calculated as follows:

Hist(k) =
1

m× n

m

∑
i=1

n

∑
j=1

δ[k, T(i, j)], (4)

where

δ[a, b] =

{
1, if a = b,

0, otherwise.

T is an image, k are pixel values, k ∈ [0, 1, ..., 255] for 8-bit images, m and n are the height and
width of the image, and i and j are the columns and rows of pixels.

Histogram specification is also known as histogram matching, which is aimed to transform
an input image to an output image fitting a specific histogram. We adopt an algorithm in [11] to
perform the histogram specification in overlapping regions between the reference image and the test
image. The detailed algorithm is described in Algorithm 2.

Algorithm 2 Histogram specification for the overlapping region.

1: Input: T_O is the overlapping region in the test image, hist is the histogram of R_O, u(0) = T_O,

α = 0.05, β = 0.1, iteration number S = 5, c0 = 0.
2: For s = 1, ..., S, compute

u(s) = T_O− η−1(β∇T η(∇u(s−1))),

where∇ is the gradient operator,∇T is the transposition of∇, η−1(x) = αx
1−|x| , η(x) = x

α+|x| .
3: Order the values in ΠN according to the corresponding ascending entries of u(S), where

ΠN := {1, ..., N} denote the index set of pixels in T_O.
4: For k = 0, 1, ..., 255,

set c(k+1) = c(k) + hist(k) and T_O_HS[c(k) + 1] = ... = T_O_HS[c(k+1)] = k.
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3.2.3. Compute the Color Mapping Function

In this step, we will get the color mapping function from corresponding pixels in T_O and
T_O_HS. This operation is conducted for the three color channels, respectively.

For each color channel, a mapping function is computed as follows:

Map(k) =

⌊((
min

c ∑
(i,j)∈ε(k)

(
T_O_HS(i, j)− c

)2
)
+ 0.5

)⌋
, (5)

where k ∈ [0, 1, ..., 255] for 8-bits images, b(x)c is the nearest integer of x towards minus infinity,
ε(k) := {(i, j) ∈ T_O | T_O(i, j) = k}. The nearest integer of c is the mapping value corresponding
to k. In the minimization problem of Equation (5), the value of c is usually not an integer. Thus, we use
the nearest integer as the corresponding mapping value of k.

During the estimation of a color mapping function, we embed some constraint conditions like the
related methods [3,30]. Firstly, the mapping function must be monotonic. Secondly, some function
values may be obtained by interpolation methods, due to some pixel values k not existing in the
overlapping regions. In our implementation, the simple linear interpolation is used. The detailed
algorithm is described in Algorithm 3.

Algorithm 3 Compute the color mapping function.

1: Input: T_O is the overlapping region in the test image, T_O_HS is the result of histogram

specification for T_O. The following steps will be conducted for the three color channels,

respectively.
2: For k = 0, 1, ..., 255, minimize the function:

Map(k) =

⌊((
min

c ∑
(i,j)∈ε(k)

(
T_O_HS(i, j)− c

)2
)
+ 0.5

)⌋
.

3: For some value of k, the set ε(k) is the empty set. Then, the corresponding k can not be computed

in the above step and will be obtained using interpolation methods.

3.2.4. Minimize Color Differences Using an Iterative Method

Firstly, color transfer is conducted in the overlapping region T_O by the color mapping function
obtained at the previous step. The result is denoted as T_O_Map. Secondly, pixel value differences
Di f f , and the PSNR between T_O_HS and T_O_Map is computed. Thirdly, the pixels (i, j) will
be removed from ε(k) := {(i, j) ∈ T_O | T_O(i, j) = k}, when Di f f (i, j) is larger than the preset
threshold Thd_Diff, since this kind of pixel is considered to be outliers. Finally, a new color mapping
function can be obtained by the algorithm described in Algorithm 3.

Repeat these processes until reaching the preset iteration times or PSNR increase is smaller than
the preset threshold Thd_PSNR. After these iterations, the final mapping function is applied to the
whole test image. Then, the corrected image shares the same color style with the reference image.
In other words, the two images are color consistent, which are suitable for image stitching. The detailed
algorithm is described in Algorithm 4.
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Algorithm 4 Minimize color differences using an iterative method.

1: Input: T_O is the overlapping region in the test image, Map is the color mapping function obtained

in Algorithm 3, ε(k) := {(i, j) ∈ T_O | T_O(i, j) = k}, maximal iteration number S, Thd_Diff

is a threshold value, Thd_PSNR is a threshold value.
2: Obtain T_O_Map by applying Map to T_O, using

T_O_Map(i, j) = Map
(
T_O(i, j)

)
.

3: Compute pixel-to-pixel differences by

Di f f (i, j) = |T_O_Map(i, j)− T_O_HS(i, j)| .

4: Remove pixels (i, j) from ε(k), when Di f f (i, j) is larger than the preset threshold Thd_Diff.
5: Compute the PSNR increase for T_O_Map.
6: With the new sets ε(k), repeat Algorithm 3 and steps 2 to 5 in Algorithm 4 until reaching the

maximal iteration number or PSNR increase is smaller than the threshold Thd_PSNR.

4. Experiments

4.1. Test Dataset and Evaluation Metrics

Both synthetic image pairs and real image pairs are selected to compose the test dataset.
Test images in this dataset are chosen from [2,3,14,29]. The synthetic data includes 40 reference/test
image pairs. Each pair is from the same image, but with different color style. The image with good
visual quality is assigned as a reference image, and the other is assigned as a test image. The real
data includes 35 reference/test image pairs. These image pairs are taken under different capture
conditions, including different exposures, different illuminations, different imaging devices or different
capture time. For each pair, the image of good quality is assigned as a reference image and the other
as a test image.

Anbarjafari [31] proposed an objective no-reference measure for illumination assessment. Xu and
Mulligan [2] proposed an evaluation method for color correction in image stitching, which has been
adopted in our evaluation. This method includes two components: color similarity between a corrected
image G and a reference image R, and structure similarity between a corrected image G and a test
image T .

The Color Similarity CS(G, R) is defined as CS(G, R) = PSNR(G_O, R_O). PSNR is the
Peak Signal-to-Noise Ratio [32] and G_O,R_O are the overlapped regions of G and R, respectively.
The higher value of CS(G, R) indicates the more similar color style between the corrected image and
the reference image. The definition of PSNR is given by

PSNR(A, B) = 10× log10(
L2

MSE(A, B)
),

MSE(A, B) =
1

m× n

m

∑
i=1

n

∑
j=1

(A(i, j)− B(i, j))2,
(6)

where A and B are the considered images, L = 255 for 8-bit images, and m and n are the height and
width of the considered images.

The structure similarity SSIM(G, T) is the Structural SIMilarity index, which is defined
as a combination of luminance, contrast and structure components [33]. The higher value of SSIM(G, T)
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indicates the more similar structure between the corrected image and the test image. The definition of
SSIM is described by

SSIM(A, B) =
1
N

N

∑
i=1

SSIM(ai, bi), (7)

where N is the number of local windows for an image, and ai, bi are the image blocks at the ith local
window of the image A and B, respectively. The detailed computation of SSIM(ai, bi) is described by

SSIM(a, b) = [l(a, b)]α× [c(a, b)]β× [s(a, b)]γ, (8)

where l(a, b) = 2µaµb +C1
µ2

a+µ2
b +C1

, c(a, b) = 2σaσb +C2
σ2

a+σ2
b +C2

, s(a, b) = σab +C3
σaσb +C3

, µa and µb are the mean

luminance values of the windows a and b, respectively, σa and σb are the standard variance of the
windows a and b, respectively, σab is the auto-covariance between the windows a and b, C1, C2, C3 are
small constants to avoid divide-by- zero error, and α, β, γ are constants controlling the weight among
the three components. The default settings recommended in [33] are: C1 = (0.01L)2, C2 = (0.03L)2,
C3 = C2

2 , L = 255, α = β = γ = 1.
In the following parts, we compare our algorithm with the methods proposed in [9–11]. These

methods transfer the color style of the whole reference image to the whole test image. The source
codes of Pitie’s and Nikolova’s methods are downloaded from their homepages. The source code of
Fecker’s method is obtained from [2].

4.2. Experiments on Synthetic Image Pairs

Each synthetic image pair from [2,14,34,35] describes the same scene (exactly pixel-to-pixel) with
different color styles. Our algorithm is applied to color correction in image stitching, so we cropped
these image pairs to have various overlapping percentages, which simulates the situation in image
stitching. Then, color transfer methods are applied to the corresponding image pairs that have different
overlapping percentages. In the following experiments, we cropped each image pair with four different
overlapping percentages (10%, 30%, 60% and 80%), respectively. Thus, we have 40× 4 = 160 synthetic
pairs to make numerical experiments. As shown in the Table 1, our algorithm outperforms other
methods in terms of color similarity and structure similarity.

Table 1. Comparison for synthetic dataset (average of 40 image pairs for each overlapping percentage).
CS is the Color Similarity index, SSIM is the Structural SIMilarity index.

Overlapping
Percentage

CS (dB) SSIM

Pitie Fecker Nikolova Proposed Pitie Fecker Nikolova Proposed

10% 18.21 18.34 18.39 22.03 0.7924 0.8033 0.8165 0.8834
30% 20.16 20.28 20.31 24.11 0.8101 0.8181 0.8299 0.8867
60% 21.93 21.83 22.02 24.19 0.8417 0.8461 0.8545 0.8853
80% 23.39 23.24 23.43 24.31 0.8662 0.8674 0.8721 0.8857

From the experimental results of these algorithms, we can also make a conclusion that our
algorithm obtains the better visual quality of correction results even though the overlapping percentage
is very small. The ability of color transfer for image pairs having narrow overlapping regions is very
important in the application of image stitching. This advantage can make our color correction algorithm
more suitable for image stitching. In Table 1, we can also observe that the proposed method is not
significantly better than other algorithms when the overlapping percentage is very large. For example,
when the overlapping percentage is 80%, the difference between the proposed method and Nikolova’s
algorithm [11] is very small. Since we adopted Nikolova’s algorithm for transferring the color style in
the overlapping region, the proposed method is almost the same as Nikolova’s algorithm when the
overlapping percentage is close to 100%.
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Some visual comparisons are shown in Figures 3–6. In Figure 3, the overlapping regions include
the information describing the sky, the pyramid and the head of the camel. The red rectangles
indicate the transferred color has some distance from the reference color style in the reference image.
The yellow rectangle indicates the transferred color by the proposed method is almost the same as
the reference color style. We can also observe easily that our algorithm transfers color information
more accurately than other algorithms. For more accurate comparison, we show the histograms of the
overlapping regions in Figure 4. The histograms of the overlapping regions in the reference image and
in the test image are totally different. The histograms of the overlapping regions after color transfer
algorithms are closer to the reference. In addition, the results by the proposed method are the closest
one, which indicates the proposed method outperforms other algorithms.

Figure 3. Comparison for the synthetic image pair. Image Source: courtesy of the authors and databases
referred on [2,14].

Figure 4. Histogram comparisons for overlapping regions in Figure 3. The first column shows the
histograms (three color channels, respectively) of overlapping regions in the reference image, the
second column shows the corresponding histograms in the test image, the third column shows the
corresponding histograms of overlapping regions after the proposed method, the fourth column shows
Pitie’s result, the fifth column shows Fecker’s result, and the last column shows Nikolova’s result.

In Figure 5, the red rectangles show disadvantages of other algorithms, which have transferred
the green color to the body of the sheep. The yellow rectangle indicates the advantage of our algorithm,
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which has transferred the right color to the sheep body. In Figure 6, the rectangles describe the airplane
body that exists in the overlapping region. The red rectangles show disadvantages of other algorithms
that transferred the inconsistent color to the airplane body. The yellow rectangle indicates that the
proposed method transfers the consistent color to the airplane body.

Figure 5. Comparison for the synthetic image pair. Image Source: courtesy of the authors and databases
referred on [2,14].

Figure 6. Comparison for the synthetic image pair. Image Source: courtesy of the authors and databases
referred on [2,14].
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4.3. Experiments on Real Image Pairs

In the experiments above, we make the comparisons using synthetic image pairs, which have
exactly the same overlapping regions. However, overlapping regions are not usually exactly the same
(not pixel-to-pixel) in the real application of image stitching. Thus, we make some experiments for real
image pairs.

Objective comparisons are given in Table 2, which indicates that our algorithm outperforms other
methods in terms of color similarity and structure similarity. Subjective visual comparisons are also
presented in Figures 7–10. In Figure 7, the red rectangles show disadvantages of other algorithms,
which have transferred the green color to the tree body and the windows. The yellow rectangles
indicate the advantage of our algorithm, which transfers the right color to the mentioned regions.
The histogram comparisons for the overlapping regions are shown in Figure 8, which indicates the
proposed method outperforms other algorithms. More results and the comparisons are given in
Figures 9 and 10.

Figure 7. Comparison for the real image pair. Image Source: courtesy of the authors and databases
referred on [29].

Figure 8. Histogram comparisons for overlapping regions in Figure 7. The first column shows the
histograms of overlapping regions in the reference image, the second column shows the corresponding
histograms in the test image, the third column shows the corresponding histograms of overlapping
regions after the proposed method, the fourth column shows Pitie’s result, the fifth column shows
Fecker’s result, and the last column shows Nikolova’s result.
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Table 2. Comparison for real image pairs (Average of 35 pairs).

Pitie Fecker Nikolova Proposed

CS(dB) 18.98 19.04 19.12 21.19
SSIM 0.8162 0.8334 0.8255 0.8531

Figure 9. Comparison for the real image pair. Image Source: courtesy of the authors and databases
referred on [29].

Figure 10. Comparison for the real image pair. Image Source: courtesy of the authors and databases
referred on [3].

5. Discussion

In this paper, we have proposed an efficient color transfer method for image stitching, which
combines the ideas of histogram specification and global mapping. The main contribution of the
proposed method is using original pixels and the corresponding pixels after histogram specification to
compute a global mapping function with an iteration method, which can effectively minimize color
differences between a reference image and a test image. The color mapping function can spread well
the color style from the overlapping region to the whole image. The experiments also demonstrate the
advantages of our algorithm in terms of objective evaluation and subjective evaluation.

As our work relies on the exact histogram specification, bad results of histogram specification
will decrease the visual quality of our results. Even though the problem of histogram specification has
received considerable attention and has been well studied during recent years, some future work can
be conducted to improve the results of this kind of algorithm.
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In the detailed description of the proposed algorithm, we have shown that our method is building
the color mapping functions using the global information and without using the local neighbor
information. In future work, we will consider the information of local patches to construct the color
mapping functions, which may be more accurate to transfer colors. Another problem is that the
mapping function is computed for each color channel. This simple processing does not consider
the relation of the three color channels, and this may produce some color artifacts. In our future
work, we try to obtain the color mapping function considering the relation of the three color channels.
The minimization is completed with an iteration framework, and the termination conditions include
computing PSNR. These operations need high computation, so a fast minimization method will also
be considered in the future work.
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