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a b s t r a c t 

Non-uniform illumination images are of limited visibility due to under-exposure, over-exposure, or a com- 

bination of these two factors. Enhancing these images is a very challenging task in image processing. 

Although there are numerous enhancement methods to improve the visual quality of images, many of 

these methods produce undesirable results with regard to contrast and saturation improvements. In or- 

der to improve the visibility of images without over-enhancement or under-enhancement, a variational- 

based fusion method is proposed for adaptively enhancing non-uniform illumination images. First, a hue- 

preserving global contrast adaptive enhancement algorithm obtains a globally enhanced image. Second, 

a hue-preserving local contrast adaptive enhancement method produces a locally enhanced image. Fi- 

nally, an enhanced result is obtained by a variational-based fusion model with contrast optimization and 

color correction. The final result represents a trade-off between global contrast and local contrast, and 

also maintains the color balance between the globally enhanced image and the locally enhanced image. 

This method produces visually desirable images in terms of contrast and saturation improvements. Ex- 

periments were conducted on a dataset that included different kinds of non-uniform illumination images. 

The results demonstrate that the proposed method outperforms the compared enhancement algorithms 

both qualitatively and quantitatively. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The advent of digital cameras makes it very convenient to ob-

tain images. However, some images contain poor visual details,

which results from the limitations of imaging devices or environ-

mental illuminations. To improve the visibility of images, many

enhancement methods [1–8] have been proposed. Enhancement

methods are able to improve the visual quality of images, so they

have been widely applied to various fields of imaging, such as pho-

tography [9] , medical imaging [10] , and remote-sensing imaging

[11] . Since image enhancement methods can improve the visibility

of images, they are often used for pre-processing images in some

other computer vision applications and image processing problems,

including object segmentation [12] , face recognition [13] , and high

dynamic range image rendering [14] . Moreover, these kinds of im-

age enhancement methods are also applied in post-processing im-

ages and videos. 
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Images captured in uniform illumination environments can be

nhanced well in terms of contrast improvements. However, most

f the enhancement algorithms fail in processing non-uniform illu-

ination images. Some existing methods [1–3,5,8,15] either under-

nhance dark regions or over-enhance bright regions of images.

enerally speaking, enhancement methods are categorized into

wo types: global enhancement algorithms and local enhancement

lgorithms. Usually, global enhancement methods produce over-

nhanced results in the bright regions of images, while local en-

ancement algorithms obtain under-enhanced results in the dark

egions of images. An example is shown in Fig. 1 , from which we

an see that the global enhancement method Histogram Equal-

zation (HE) [15] over-enhances the bright regions and the local

ethod Contrast-Limited Adaptive Histogram Equalization (CLAHE)

16] under-enhances the dark regions. 

Inspired by the idea of exposure fusion [17] , Tian and Cohen

18] proposed an enhancement method that combines globally

nhanced images and locally enhanced images. This method im-

roves the contrast both in dark regions and bright regions of im-

ges. Following the enhancement framework in [18] , we consider a

ariational method [19] in the fusion model to improve more visi-

ility of images. Specifically, a hue-preserving global contrast adap-

ive enhancement method is applied to the original non-uniform

https://doi.org/10.1016/j.sigpro.2018.07.022
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Fig. 1. Enhancement results by the global method Histogram Equalization (HE), lo- 

cal method Contrast-Limited Adaptive Histogram Equalization (CLAHE), and the pro- 

posed method. The bright regions (white building) are over-enhanced by HE. The 

dark regions (under-exposed tree) are under-enhanced by CLAHE. The bright re- 

gions and dark regions are both enhanced well by the proposed method. 
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llumination color images. Then, a hue-preserving local contrast

daptive enhancement method is applied to the original images. Fi-

ally, the enhanced results are obtained via a variational-based fu-

ion algorithm considering contrast optimization [20,21] and color

orrection [22,23] . 

The main contributions of this paper include presenting an

daptive global contrast enhancement method, considering hue

reservation in the enhancement framework, and developing a

ariational-based fusion model via contrast optimization and color

orrection. 

This paper is an extended version of our previous work [18] .

ompared with [18] , a variational-based fusion model consider-

ng contrast optimization and color correction is proposed in this

ork. The proposed variational-based fusion method produces bet-

er results than [18] in terms of contrast improvement. The rest

f this paper is organized as follows. The related work is briefly

ummarized in Section 2 . The detailed description of the proposed

ethod is presented in Section 3 . Numerical experiments and per-

ormance evaluations are shown in Section 4 . Finally, we give the

onclusions and the future work in Section 5 . 

. Related work 

The proposed image enhancement method combines the results

f a global enhancement method and a local enhancement method,

ith a variational-based image fusion framework. In this section,

e will introduce some related techniques, including global en-

ancement methods, local enhancement methods, and image fu-

ion models. 

.1. Global enhancement methods 

Global image enhancement methods conduct the same oper-

tion on the same pixel value regardless of the corresponding

eighboring pixel distribution. The simplest method is a piece-wise

inear transformation [15] , which defines a poly-line as the map-

ing function. In order to obtain more visibility of images, some

lobal enhancement methods use various curves to map the con-

idered images. For example, power-law functions, log functions,

nd gamma functions are often used for non-linear mappings,
hich produce better results than linear mappings. Global his-

ograms of images can also be used for enhancements. Histogram

qualization (HE) [15] is a widely used technique for image con-

rast enhancement. HE modifies the original histograms of images

o an approximate uniform histogram, which stretches pixel value

ange of images. The traditional HE might produce over-enhanced

esults. To avoid this problem, some improved histogram equal-

zation methods are proposed. Arici et al. [5] proposed a general

istogram equalization framework for image contrast enhancement

ia optimizing cost functions. Tian and Cohen [24] presented a nat-

ralness preservation histogram-based enhancement method using 

tructure measure and statistical naturalness measure. 

.2. Local enhancement methods 

Contrast-Limited Adaptive Histogram Equalization (CLAHE) 

16] is another traditional histogram-based enhancement algo-

ithm. CLAHE considers histogram equalization in each local re-

ion. This kind of local enhancement methods [25–28] can obtain

ore details of images, and preserve the image naturalness. In-

pired by the retinex theory [29] , there are many retinex-based

ontrast enhancement algorithms. Considering a Gaussian kernel

o build the relationship between the center pixel and surrounding

ixels, Jobson et al. [30] proposed a classic retinex-based enhance-

ent method. Recently, Petro et al. [31] improved the multiscale

etinex model for image enhancement. In order to obtain better

isual quality, Kimmel et al. [32] introduced a variational model to

he retinex enhancement via a quadratic programming optimiza-

ion. Moreover, Morel et al. [33] explored some new alternative

ernels for the retinex model, which are suitable for different kinds

f enhancement applications. Bani ́c and Lon ̌cari ́c [6] proposed a

ast retinex implementation for brightness adjustment and color

orrection, which avoids some disadvantages of traditional retinex

nhancement methods. Provenzi et al. [4] combined color correc-

ion and local contrast improvement for color image enhancement.

alma-Amestoy et al. [20] proposed a variational framework for

olor image enhancement, which was inspired by the basic phe-

omenology of color perception. Recently, Pierre et al. [21] pro-

osed a hue-preserving variational contrast enhancement method,

hich enables users to control the contrast improvement levels. 

.3. Image fusion 

Image fusion is a technique of combining useful information

rom different images, that describe the same scene. The fused re-

ult contains better visibility than any of the input images. The fu-

ion can be conducted on various levels, such as signal-level, pixel-

evel, feature-level, and symbol-level [34] . No matter which level

s selected, the fusion result should meet the following two condi-

ions: (1) the fused image preserves as much information as pos-

ible from the input images; (2) the fused image does not con-

ain new artifacts or noise. Mertens et al. [17] proposed a practical

ixel-level exposure fusion method for generating high dynamic

ange images. The result maintains useful information in each im-

ge sequence by using weighted blending. Ma et al. [35] proposed

 feature-level robust exposure fusion model for avoiding ghost-

ng effects. Wang et al. [36] proposed a variational method for

using multi-focus images. A family of weight functions using the

ocal average modulus of gradients and the power transform was

dopted in Wang et al.’s method. Fu et al. [37] proposed a fu-

ion method for combining three illumination components. This

ethod can obtain good results for weakly-illuminated images. In-

pired by the human visual system, Ying et al. [38] proposed a

ulti-exposure fusion method for low-light image enhancement,

hich produced enhanced results with small lightness distortion. 
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Fig. 2. The overall framework of the proposed enhancement method. The original image I has low contrast. The globally enhanced image G has good global contrast. 

However, the detailed structure information is not desirable (over-enhancement) in some regions. The local enhanced image E increased the detailed structure information. 

However, the visual quality is not desirable (under-enhancement). The final enhanced image F represents a trade-off between the global contrast and the local contrast. 

Fig. 3. The overview of the global contrast adaptive enhancement method. 
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3. The proposed method 

Let I = (I r , I g , I b ) : � → [0 , 255] 3 be the considered RGB color

image, where � ⊂ R 

2 is the image domain. x = (x 1 , x 2 ) denotes

the position in the image domain �. Our goal is to obtain the

enhanced color image F = (F r , F g , F b ) . The overall framework of the

proposed variational-based fusion method for non-uniform illumi-

nation image enhancement via contrast optimization and color cor-

rection is illustrated in Fig. 2 . The considered non-uniform illumi-

nation color image I is processed by a global enhancement method

and a local enhancement method, respectively. Then the globally

enhanced color image G and the locally enhanced color image E

are fused to produce a well-enhanced color image F . The detailed

description of the proposed method is presented below. 

3.1. Global contrast adaptive enhancement 

3.1.1. Overview 

The overall framework of the global contrast adaptive enhance-

ment method is shown in Fig. 3 . The brief introduction is given

below. 

In our global contrast adaptive enhancement method, the pixel

value range of a color image I is first converted to the full range

[0,255] with the linear stretching [39] via 

 I = 255 · I − I min 

I max − I 
, (1)
min 
here I min and I max are the minimal and the maximal intensity

alues among the three color channels of the image I = (I r , I g , I b ) .
 

 = ( ̂ I r ̂  I g , ̂  I b ) is the stretched color image. 

The stretched color image ˆ I is converted to the corresponding

ntensity image f using 

f = 0 . 299 · ˆ I r + 0 . 587 · ˆ I g + 0 . 114 · ˆ I b , (2)

here ˆ I r , ̂  I g , and 

ˆ I b are the three color channels of the stretched

olor image ˆ I . 

Then, a global contrast adaptive enhancement is conducted on f

o obtain the corresponding enhanced intensity image G f . The de-

ailed description of this global enhancement algorithm is given

n Section 3.1.2 . Last, we use the hue preservation enhancement

ramework to achieve the enhanced color image G with 

 (x ) = 

{ 

G f (x ) 

f (x ) 
ˆ I (x ) , if 

G f (x ) 

f (x ) 
< = 1 , 

255 −G f (x ) 

255 − f (x ) 

(
ˆ I (x ) − f (x ) 

)
+ G f (x ) , if 

G f (x ) 

f (x ) 
> 1 , 

(3)

here G (x ) = (G r (x ) , G g (x ) , G b (x )) represents the globally en-

anced color image, G r ( x ), G g ( x ), G b ( x ) are the three color channels

f G , and x denotes the positions of pixels on the image domain.

ikolova et al. [40] have analyzed and proven the efficiency of

ue preservation with this equation. The hue-preserving enhance-

ent framework is also analyzed in [3] , which demonstrates that

his kind of framework is better than the traditional channel-by-
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hannel enhancements or methods only enhancing the intensity

hannel. 

.1.2. Global contrast adaptive enhancement for gray images 

The overall pipeline of the global contrast adaptive enhance-

ent is given in Section 3.1.1 . As mentioned above, we will de-

cribe the global contrast adaptive enhancement, which is able to

btain G f from f . Given a gray image f , with a total number of N

ixels and an intensity level range of [0, 255]. h f is the normalized

istogram of the image f . 

The traditional histogram equalization (HE) [15] uses the origi-

al histogram of the considered image to obtain the mapping func-

ion. The mapping function T for the image f is given by 

 (i ) = 

⌊ 

255 ·
i ∑ 

j=0 

h f ( j) + 0 . 5 

⌋ 

, (4)

here i ∈ [0, 255] is the input integer for the mapping function,

nd �� computes the nearest integer of the considered value to-

ards minus infinity. 

Histogram equalization tries to create a uniform histogram for

nhanced images by considering a cumulative histogram as the

orresponding mapping function. This method often produces en-

anced images with visual artifacts. To avoid this problem, Arici

t al. [5] proposed a general histogram modification framework

or contrast enhancement. The modified histogram h should be

loser to the normalized uniform histogram h U , and the value of

he residual h − h f should also be small. The problem of obtaining

he optimal modified histogram 

˜ h is regarded as a bi-criteria opti-

ization problem, which can be formulated as a weighted sum of

wo terms shown in 

in 

h 
(|| h − h f || + λ|| h − h U || ) , (5)

here || h − h f || is a norm of h − h f , || h − h U || is a norm of h − h U ,

nd the parameter λ> 0 adjusts the trade-off between the con-

rast enhancement and the data fidelity. An analytical solution of

q. (5) will be obtained when the squared sum of the L 2 norm is

dopted. This problem is rewritten in 

˜ 
 = arg min 

h 

( || h − h f || 2 2 + λ|| h − h U || 2 2 ) . (6)

his is a quadradic optimization problem, and the solution of

q. (6) is given by 

˜ 
 = 

(
1 

1 + λ

)
h f + 

(
λ

1 + λ

)
h U . (7)

he parameter λ needs to be carefully selected to obtain satisfac-

ory enhancement results. Different values of λ can produce corre-

ponding modified histograms, thus generating different enhanced

mages. 

In [5] , the authors manually gave the parameter λ. In order to

evelop an adaptive enhancement method, we adopt the tone dis-

ortion of the mapping function T to guide the optimization. The

one distortion measure [41] is defined by 

 (T ) = max 
0 ≤ j≤i ≤255 

{ 

i − j; T (i ) = T ( j) , h f (i ) > 0 , h f ( j) > 0 

} 

. (8)

e are able to know that the smaller the tone distortion D ( T )

s, the smoother the tone is reproduced by the mapping func-

ion T , from the definition in Eq. (8) . The smoother tone means

ess unnatural-looking in the results. In other words, a small tone

istortion is able to avoid unnatural artifacts. The tone distortion

easure D is obtained from the mapping function T , which is

omputed with the optimally modified histogram 

˜ h . And the his-

ogram 

˜ h depends on the weighted parameter λ. So we can use the

one distortion to select the optimal weighted parameter λ, which
roduces an optimally modified histogram and the final mapping

unction. This mapping function is utilized to produce the globally

nhanced image G f . 

.2. Local contrast adaptive enhancement 

The proposed global contrast adaptive enhancement method

an improve the global contrast and brightness of the whole im-

ge. However, it is essentially a global method, which may reduce

he local contrast or the detail information in the original image.

o we will employ a local contrast adaptive enhancement to im-

rove the local contrast and preserve the detail information. 

In this method, we combine the hue preservation enhancement

ramework described in Section 3.1.1 and the Contrast-Limited

daptive Histogram Equalization method (CLAHE) [16] to improve

he local contrast and preserve the hue of the images. The locally

nhanced gray image E f is obtained using CLAHE. Then, we can

roduce the locally enhanced color image E via Eq. (9) . 

 (x ) = 

{ 

E f (x ) 

f (x ) 
ˆ I (x ) , if 

E f (x ) 

f (x ) 
< = 1 , 

255 −E f (x ) 

255 − f (x ) 

(
ˆ I (x ) − f (x ) 

)
+ E f (x ) , if 

E f (x ) 

f (x ) 
> 1 , 

(9) 

here E (x ) = (E r (x ) , E g (x ) , E b (x )) represents the locally enhanced

olor image, E r ( x ), E g ( x ), E b ( x ) are the three color channels of E ,

nd x denotes the positions of pixels on the image domain. 

The overall framework of this method is shown in Fig. 4 .

his framework is similar to the framework shown in Fig. 3 . The

nly difference is that the step Contrast-Limited Adaptive
istogram Equalization takes the place of the step Global
ontrast Adaptive for Gray Images . The detailed de-

cription of the Contrast-Limited Adaptive Histogram Equalization

ethod (CLAHE) can be found in the paper [16] . In our method,

e adopted the Matlab Image Processing Function adapthisteq to

mplement CLAHE. All parameters of CLAHE are the defaults. The

umber of rectangular contextual regions is 8 × 8. ClipLimt is a con-

rast factor that prevents over-enhancement of the image, specifi-

ally in homogeneous regions. It is equal to 0.01 with the default

etting. NBins is equal to 256, which results in greater dynamic

ange. Range is set to full , which means the full range [0,255] is

sed for enhanced images. 

.3. Variational-based fusion via contrast optimization and color 

orrection 

Inspired by the idea of exposure fusion [17] and variational-

ased enhancement [20] , we developed a variational-based fusion

ethod considering contrast optimization and color correction to

btain the final enhanced image F with the globally enhanced im-

ge G and the locally enhanced image E . This fusion framework

chieves desirable contrast and saturation for each pixel, since we

dopt pixel-level weights to fuse every pixel via contrast optimiza-

ion and color correction. 

.3.1. Variational-based fusion model 

The goal is to fuse the globally enhanced image G and the lo-

ally enhanced image E to create a final enhancement result F ,

hich achieves the optimal contrast and maintains the color bal-

nce. Our model operates in the three color channel respectively.

ue to the hue-preserving framework analyzed in Section 3.1.1 ,

e only compute the weight maps for the intensity images of the

lobally enhanced color image and the locally enhanced color im-

ge. We then apply the same weight maps to the three color chan-

els. In the following section, we give the variational-based fusion

odel for the gray-scale images corresponding to the color chan-

els. 
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Fig. 4. The overview of the local contrast adaptive enhancement method. 
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The variational-based fusion model via contrast optimization

and color correction is achieved by minimizing the following en-

ergy functional: 

F = arg min 

Z 

{
α

∫ 
�

(
ω G (x ) 

(
Z (x ) −G (x ) 

)2 + ω E (x ) 

(
Z (x ) −E (x ) 

)2 
)

dx 

+ β

∫ 
�

(
1 

2 

(
Z (x ) − ˆ G (x ) 

)2 + 

1 

2 

(
Z (x ) − ˆ E (x ) 

)2 
)

dx 

− γ

∫ 
�

∫ 
�

g σ ( x , y )	ε

(
Z (x ) − Z (y ) 

)
d x d y 

}
, (10)

where, G(x) and E(x) are the globally enhanced image and the

locally enhanced image, ω G(x) and ω E(x) are the corresponding

weight maps, and 

ˆ G (x ) , ˆ E (x ) are the corresponding color cor-

rection results via midway image equalization [42] . The function

g σ ( x , y ) is a Gaussian curve, where x and y denote the positions

of two pixels on the image domain. 	ε is a non-linear function. α,

β and γ are the three parameters that control data fidelity, color

consistency, and local contrast. 

Data fidelity. The first part of the energy functional (the first line

in Eq. (10) ) is to achieve data fidelity. This term can be considered

as a general fusion framework, which produces a trade-off fusion

result between the globally enhanced image G (x ) and the locally

enhanced image E (x ) . This process provides an attachment to the

original data. 

The weight maps of the globally enhanced image and the lo-

cally enhanced image are computed by 

 d = min { C d , B d } , d ∈ { G , E } , 
ω d = 

W d 

W G + W E 

, d ∈ { G , E } , (11)

where W d is the weight map, ω d is the normalized weight map,

C d is the contrast measure, B d is the brightness measure, and

the operation min can efficiently penalize the corresponding low-

contrast, low brightness (under-exposure) or high brightness (over-

exposure). C d is obtained by a Laplacian filter, which can assign

high weights to edges and textures in the corresponding image.

B d is computed by a Gaussian curve exp 

(
− (i −0 . 5) 2 

2 σ 2 
1 

)
and σ 1 = 0.2

in our experiments, which can assign high weights to pixel values

close to 0.5 and define low weights to pixel values near 0 (under-

exposure) or near 1 (over-exposure). 

Color consistency. The second part of the energy functional (the

second line in Eq. (10) ) is to maintain the color consistency. Most
revious research [4,20,21,43] considers the gray world principle

o achieve the color consistency in image enhancement. Actually,

he gray world principle does not always work well for color con-

istency. We apply color balance [23] as the solution. ˆ G (x ) and
ˆ 
 (x ) are the corresponding color correction results of G ( x ) and

 ( x ) after the midway image equalization. ˆ G (x ) and 

ˆ E (x ) share

he same cumulative histogram, which makes them have the same

olor style. The final enhanced result F can maintain color consis-

ency with 

ˆ G (x ) and 

ˆ E (x ) via this strategy. 

ocal contrast improvement. The third part of the energy functional

the third line in Eq. (10) ) is to improve the local contrast of the

nal enhanced result F . The Gaussian function g σ (x , y ) is given in

q. (12) . 

 σ ( x , y ) = 

1 

2 πσ 2 
exp 

(
−| x − y | 2 

2 σ 2 

)
, (12)

here σ is a parameter representing the size of the Gaussian ker-

el, and x , y denote the positions of two pixels on the image do-

ain. The function 	ε ( z ) is given in Eq. (13) . 

ε (z) = 

√ 

z 2 + ε2 , (13)

here ε is a small constant. This equation describes a non-linear

unction. Its sigmoid-shaped derivation 	 ′ 
ε (z) = 

z √ 

z 2 + ε2 
appearing

n Eq. (14) provides the non-linear response of the human visual

ystem, with respect to a contrast enhancement function [43,44] . 

.3.2. Numerical method 

The problem of Eq. (10) can be solved with the gradient de-

cent method. With the iteration index t and the time step τ , the

olution is described in Eq. (14) . 

 

t+1 (x ) = Z 

t (x ) ( 1 − 2(α + β) τ ) 

+ 

( 

2 αQ (x ) + 2 β ˆ Q (x ) 

+ 2 γ

∫ 
�

g σ ( x , y )	 ′ 
ε

(
Z 

t (x ) − Z 

t (y ) 
)
dy 

) 

τ, (14)

here Q (x ) = ω G (x ) · G (x ) + ω E (x ) · E (x ) , ̂  Q (x ) = 

1 
2 ( ̂

 G (x ) + ̂

 E (x )) ,

 

0 (x ) = Q (x ) . After each gradient descent step, we account for a

imple constraint that Z 

t ( x ) should be in the pixel value range

0,255]. Since there are not many pixel intensities falling outside

0,255], a direct clipping strategy is adopted as the projection op-

ration. Because a linear mapping may decrease the contrast of the

nhanced results, we do not use it for projecting pixel values. 
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Table 1 

The relation between the final iteration stop numbers and the 

steps τ . The test image I is shown in Fig. 1 . The image size is 

432 × 576. 

Step τ 0.01 0.02 0.03 0.04 0.05 

Iteration stop number 96 74 60 50 44 
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Fig. 5. Final enhanced results via the fusion model with different global enhance- 

ment methods and local enhancement methods. (a). Original image; (b). Fusion 

with HMF [5] and SLRMSR [6] ; (c). Fusion with the method in Section 3.1 and the 

method in Section 3.2 . To allow for visual comparisons, the regions in the red and 

green rectangles are enlarged and shown below the corresponding images. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

o  

m  

v  

w  

t

4

 

a  

u  

t  

t  

s  

g  

e  

b

 

e  

(  

R  

D  

V  

B  

m  

f  

d  

t  

H  

G  

h  

a

 

m  

s

4

 

u  

1 www.ceremade.dauphine.fr/ ∼tian/non- uniform- illumination- image- enhancement. 

html . 
.3.3. Parameters setting 

The proposed variation-based fusion model produces enhanced

mages by minimizing the energy functional described in Eq. (10) .

he solution for this model is given in Eq. (14) . There are some

arameters that need to be carefully selected. α, β and γ are

he three parameters controlling the data fidelity, the color consis-

ency, and the local contrast. The larger the values, the more influ-

nce their terms have in the final enhanced images. In our imple-

entation, we set α = 0 . 5 , β = 0 . 5 , γ = 1 to achieve the balance

f data fidelity, color consistency, and local contrast improvement.

he function g σ ( x , y ) is a Gaussian curve given in Eq. (12) . The

arameter σ represents the size of the Gaussian kernel. Smaller

alues of σ increase the local contrast improvement. However, a

maller σ might produce unnaturally enhanced results. In order to

ake a trade-off, we set σ to be equal to the min (high, width ) / 20 .

igh and width are the height and the width of images, respec-

ively. The function 	 ′ 
ε (z) = 

z √ 

z 2 + ε2 
appearing in Eq. (14) provides

he non-linear response to the human visual system, with respect

o a contrast enhancement function. The parameter ε is a small

onstant, which controls the non-linearity. In our implementation,

e set ε = 0 . 1 . 

The parameter τ is the gradient descent step and is a very im-

ortant parameter impacting the minimization. In order to select

 suitable τ for achieving satisfactorily enhanced results, we give

he relation between the final iteration numbers and the values

f τ in Table 1 . The iteration will stop when the mean difference

absolute value) between the previous iteration and the current it-

ration is less than 
 = 0 . 0 0 02 , or the iteration reaches the max-

mum number Iter = 100 . From Table 1 , we know that smaller τ
esults in the need for too many iterations for the convergence. In

ur implementation with Matlab code, each iteration needs around

 seconds for the test image I (432 × 576) shown in Fig. 1 . The com-

utation time can be improved by using other approximation min-

mization solutions and C ++ programming. In our testing, we also

now that larger τ might produce over-enhanced results. In order

o achieve a balance between the convergence speed and the natu-

alness of the enhanced images, we set τ = 0 . 02 , 
 = 0 . 001 , Iter =
0 for all of the experiments in the following sections. For the

ataset mentioned above, the average iteration stop number is 15. 

.4. Fusion with other global enhancement and local enhancement 

ethods 

One of the contributions of this paper is presenting a new

ethod for combining globally enhanced images and locally en-

anced images. The global contrast adaptive enhancement method

n Section 3.1 is developed from Arici et al.s Histogram Mod-

fication Framework (HMF) [5] , Wu’s tone distortion measure

41] , and Nikolova et al.s hue preservation method [40] . The lo-

al contrast adaptive enhancement method in Section 3.2 is de-

eloped from the traditional CLAHE [16] and Nikolova et al.s

ue preservation method [40] . Any other global enhancement

ethod and local enhancement method can replace the method

n Section 3.1 and Section 3.2 , respectively. For example, Arici

t al.’s contrast enhancement method using Histogram Modifica-

ion Framework (HMF) [5] can replace the global enhancement

ethod in Section 3.1 . Bani ́c et al.’s Smart Light Random Mem-
ry Sprays Retinex (SLRMSR) [6] can replace the local enhancement

ethod in Section 3.2 . The final enhanced results can be produced

ia the fusion model in Section 3.3 . We show results in Fig. 5 in

hich the proposed method outperforms the compared method in

erms of contrast improvement. 

. Experiments and comparisons 

We ran the proposed method and several state-of-the-art im-

ge enhancement methods on a dataset [45,46] including 24 non-

niform illumination color images. The test dataset is a collec-

ion of challenging cases for image enhancement. Each image in

his dataset has some regions correctly exposed and other regions

everely under-exposed or over-exposed. A good enhancement al-

orithm should enhance the under-exposed regions and the over-

xposed regions. Meanwhile, the well-exposed regions should not

e affected. 

The comparison algorithms include Arici et al.’s contrast

nhancement method using Histogram Modification Framework

HMF) [5] , Bani ́c et al.’s Smart Light Random Memory Sprays

etinex (SLRMSR) [6] , Ignatov et al.’s enhancement method with

eep Convolutional Networks (DeepNet) [8] , Fu et al.’s Weighted

ariational Model for image enhancement (WVM) [47] , Ying et al.’s

io-Inspired Multi-Exposure Fusion framework for image enhance-

ent (BIMEF) [7,38] , and Tian et al.’s Global-Local Fusion method

or contrast enhancement (GLF) [18] . The source code or executable

emos of SLRMSR, DeepNet, WVM, and BIMEF are available on

he corresponding project homepages. We reproduced the method

MF with the parameter λ = 1 for all experiments. The code of

LF and the proposed method will be available on the project

omepage 1 . The parameter settings of the proposed method are

nalyzed in Section 3.3.3 . 

To evaluate the performance of the proposed adaptive enhance-

ent method, both qualitative comparisons and quantitative as-

essments are considered in the following sections. 

.1. Qualitative comparisons 

In this section, we show some original test images (non-

niform illumination color images) and the corresponding en-

http://www.ceremade.dauphine.fr/~tian/non-uniform-illumination-image-enhancement.html
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Fig. 6. Enhanced results of the image Arch . (a). Original image; (b)–(h). Results enhanced respectively by HMF [5] , SLRMSR [6] , DeepNet [8] , WVM [47] , BIMEF [38] , GLF 

[18] and the proposed method. To allow for the visual comparisons, the regions in the red and green rectangles are enlarged and shown below the corresponding images. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(  
hanced images to subjectively compare the performance of these

enhancement algorithms. Contrast enhancement and detailed in-

formation preservation are considered in the comparisons. 

Fig. 6 shows the enhanced results on the image Arch
( Fig. 4 (a)), which contains high illuminations on the sky region and

low illuminations on the arch region. Our goal is to enhance the

bright regions (high illuminations) and the dark regions (low illu-

minations), without reducing the details in the bright regions. HMF

( Fig. 4 (b)) and SLRMSR ( Fig. 4 (c)) slightly enhances the bright re-

gions and the dark regions. DeepNet ( Fig. 4 (d)) over-enhances the

bright regions (mountain, sky, and so on) and fails in the dark re-

gions. WVM ( Fig. 4 (e)) over-enhances the bright regions (moun-

tain, sky, and so on) and obtains good results in the dark area.

BIMEF ( Fig. 4 (f)) also over-enhances the bright regions (mountain,

sky, and so on) and obtains good results in the dark regions. GLF

( Fig. 4 (g)) produces good results both in the bright regions and the

dark regions. In the bright regions and the dark regions, the pro-

posed method ( Fig. 4 (h)) obtains desirable results in terms of im-

proving contrasts and preserving details. From the enlarged bright

regions, we can observe that the proposed method obtains better

contrasts than the results of GLF. Our method generates the best

results both in the dark regions and in the bright regions, which is

a result of combining the globally enhanced image and the locally

enhanced image via contrast optimization and color correction. 

Other results are shown in Figs. 7–10 , which demonstrate that

the proposed method can obtain the best results both in the bright

regions and in the dark regions. HMF, SLRMSR, DeepNet, WVM, and

BIMEF either slightly enhance the dark regions or over-enhance

the bright areas, which produces undesirably enhanced results. GLF

can obtain good results both in the bright regions and in the dark

regions. However, the results produced by GLF are slightly worse
han the proposed method in terms of contrast improvement. The

roposed method achieves more local contrast than GFL. Since the

ifferences are not easy to discern in this paper, the visual com-

arisons are also given on the project homepage. 

.2. Quantitative comparisons 

For the quantitative evaluation of our method, two widely

dopted image quality assessment metrics are considered below.

autière et al. [48] proposed a contrast evaluation method via Visi-

le Edges Assessment (VEA). This metric evaluates the contrast im-

rovement with three indicators. The first indicator e evaluates the

bility for restoring edges. The second indicator r̄ is the mean ratio

f gradients in visible edges. The third indicator � represents the

ercentage of pixels becoming saturated after the enhancement.

he higher values of e and r̄ indicate better contrast improvements.

he lower value of � indicates the better ability of pixel value

ange preservation. The evaluation results are shown in Table 2 ,

hich demonstrates that the proposed method outperforms other

lgorithms in terms of contrast improvement (higher e and r̄ ). The

ontrast optimization of the proposed method can generate more

isible edges. For the pixel value range preservation (lower �),

eepNet obtains the best result. The proposed method does not

chieve desirable performance � since the simple clipping projec-

ion for pixels falling outside [0,255] is adopted in the variational

teration. However, the performance of � has little effect on the

mage visual quality improvement. As shown in Figs. 6–9 , the pro-

osed method achieves the best overall results even though the

erformance of � is not the best. 

Panetta et al. [49] proposed a color image quality measurement

CQE) that combines the contrast, sharpness and colorfulness met-
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Fig. 7. Enhanced results of the image Man1 . (a). Original image; (b)–(h). Results enhanced respectively by HMF [5] , SLRMSR [6] , DeepNet [8] , WVM [47] , BIMEF [38] , GLF 

[18] and the proposed method. 

Fig. 8. Enhanced results of the image Woman1 . (a). Original image; (b)–(h). Results of HMF [5] , SLRMSR [6] , DeepNet [8] , WVM [47] , BIMEF [38] , GLF [18] , and the proposed 

method, respectively. 

Table 2 

Average VEA of enhancement algorithms on the test dataset. 

HMF [5] SLRMSR [6] DeepNet [8] WVM [47] BIMEF [38] GLF [18] Proposed 

e 0.1858 0.2064 −0.0497 0.1965 0.1494 0.2482 0.3597 

r̄ 1.9781 2.3539 1.4993 2.0218 1.9950 2.4277 3.0483 

�(%) 0.0046 0.0336 0 0.0513 0.0077 0.0137 0.2116 
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Fig. 9. Enhanced results of the image Beach . (a). Original image; (b)–(h). Results enhanced respectively by HMF [5] , SLRMSR [6] , DeepNet [8] , WVM [47] , BIMEF [38] , GLF 

[18] , and the proposed method. 

(a) Original (b) HMF (c) SLRMSR (d) DeepNet

(e) WVM (f) BIMEF (g) GLF (h) Proposed

Fig. 10. Enhanced results of the image Woman2 . (a). Original image; (b)–(h). Results enhanced respectively by HMF [5] , SLRMSR [6] , DeepNet [8] , WVM [47] , BIMEF [38] , 

GLF [18] and the proposed method. 
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tion in the variational-based fusion model ensures that our method 
rics. CQE is the weighted sum of the three metrics. The contrast is

represented by the Michelson–Law measure of enhancement AME

[50] of the intensity component. The sharpness is represented by

the Weber contrast based measure of enhancement EME [51] of

each gray edge map. The colorfulness is represented with the sta-

tistical information [52] of the opponent color components. The
igher the value of CQE, the better is the quality of the consid-

red color image. We use these metrics to evaluate our method in

omparison to several algorithms on the test dataset. The results

hown in Table 3 indicate that the proposed method outperforms

ther algorithms in terms of image quality. The contrast optimiza-
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Table 3 

Average CQE of the enhanced images. 

HMF [5] SLRMSR [6] DeepNet [8] WVM [47] BIMEF [38] GLF [18] Proposed 

CQE 0.4601 0.4926 0.3970 0.4629 0.4504 0.5052 0.5755 

Contrast 0.3510 0.3826 0.2326 0.3757 0.3234 0.3595 0.5304 

Sharpness 0.5981 0.6373 0.5589 0.5909 0.6231 0.6776 0.7009 

Colorfulness 0.4290 0.4547 0.4049 0.4170 0.4001 0.4779 0.4819 
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chieves better results with higher contrast and sharpness. The

ue preservation considered in enhancements and the color cor-

ection considered in the variational-based fusion give our method

he ability to achieve desirable colorfulness. 

. Conclusions 

In this paper, we have proposed a variational-based fusion

ethod for non-uniform illumination image enhancement via con-

rast optimization and color correction. The main contributions of

ur paper are as follows. First, a global contrast adaptive enhance-

ent method is introduced to improve the global contrast. Second,

 hue preservation framework is considered in the global enhance-

ent and the local enhancement. Third, a variational-based image

usion method is developed for obtaining final enhanced images.

xperiments demonstrate that our proposed method outperforms

ther enhancement methods in terms of subject visual compar-

sons and objective performance evaluations. 

Since there is undesirable noise in the dark regions of some

on-uniform illumination images, noise reduction will be consid-

red in the contrast enhancement framework in the future work.

he numerical method used to solve the minimization problem is

ighly complex and requires more time to achieve satisfactory re-

ults. We will consider other approximate minimization methods

o complete this task in the future. 
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