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12 Abstract

13 In this paper, a new image-matching mathematical model is presented with its application

14 to mammogram registration. In a variational framework, an energy minimization problem is

15 formulated and a multigrid resolution algorithm is designed. The model focuses on the match-

16 ing of regions of interest. It also combines several constraints which are both intensity- and

17 segmentation-based. A new feature of our model is combining region matching and segmen-

18 tation by formulation of the energy minimization problem with free boundary conditions.

19 Moreover, the energy has a new registration constraint. The performances of the new model

20 and an equivalent model with fixed boundary conditions are compared on simulated mammo-

21 gram pairs. It is shown that the model with free boundary is more robust to initialization in-

22 accuracies than the one with fixed boundary conditions. Both models are applied to several

23 real bilateral mammogram pairs. The model ability to compensate significantly for some nor-

24 mal differences between mammograms is illustrated. Results suggest that the new model could

25 enable some improvements of mammogram comparisons and tumor detection system perfor-

26 mances.
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30 1. Introduction

31 Image Registration has been an active topic of research for over a decade. Its most

32 famous medical applications are related to brain imagery [57]. For instance, Image

33 Registration is used in computational anatomy as tool for analyzing brain structures
34 by adapting an anatomical template to individual anatomies [11,12,20,22]. However,

35 Image Registration is a general problem which arises whenever several images are to

36 be compared or data from several images to be fused.

37 As can be seen though the complete survey in [38], a lot of work has been done in

38 Image Registration since the early 1980s. The registration techniques are usually di-

39 vided into two groups. Techniques of the first kind use features such as points and

40 curves to match the images [7]. Such techniques require that features be extracted

41 prior to registration. Techniques of the second kind use image gray level values.
42 Among these intensity-based techniques, some are non-rigid and based on the

43 squared intensity difference minimization criteria [1,3,8,10,12,18,20,37,44,64].

44 In [45,47], Richard and Graffigne described an approach for combining feature-

45 and intensity-based registration constraints in a same mathematical model. The ap-

46 proach focuses on the mapping of regions of interest rather than the whole image

47 matching. The model consists of minimizing an intensity-based energy with some

48 fixed boundary conditions (Dirichlet) which are derived from contours of regions

49 of interest (see Section 2.2). In [45,47], the model was applied to mammograms. It
50 was shown that, thanks to the combined constraints, the computation time and

51 the mammogram registration accuracy improved. However, model performances de-

52 pend on the quality of some preprocessing steps (segmentation of image regions of

53 interest and matching of contours). Indeed, since boundary conditions are fixed, pre-

54 processing inaccuracies cannot be corrected during the matching process. Hence

55 these inaccuracies may decrease matching performances. Besides, Dirichlet boundary

56 conditions constrain too strongly the problem and may sometimes disrupt breast

57 registrations near contours.
58 In this paper, our main contribution is the design of a new mathematical model

59 which fixes the drawbacks described above by combining region matching and seg-

60 mentation. As in [45,47], the model enables the matching of regions of interest. But,

61 contrarily to the model in [45,47], the minimization problem is defined with free

62 boundary conditions allowing to make evolution in the segmentation of the region

63 of interest. Consequently, the boundary conditions are relaxed and it becomes pos-

64 sible to compensate for preprocessing inaccuracies during the matching process. Fur-

65 thermore, some constraints are proposed in order to compensate efficiently for
66 preprocessing inaccuracies and increase the model robustness.

67 The approach we propose in this paper is related to the ones described in [58,65].

68 In [58,65], a unified variational framework which enables to interleave segmentation

69 and registration is also designed. However, our approach differs significantly from

70 the ones in [58,65]. The model in [65] deals only with rigid registration and does only

71 have feature-based registration constraints. The model in [58] deals with nonrigid

72 registration but does not take into account regions of interest for mapping one image

73 onto the other.
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74 In this paper, the new registration model is applied to bilateral mammogram

75 pairs (mammograms of left and right breasts of same women). The context of this

76 application is related to the design of automatic tumor detection systems for the

77 computer aided diagnosis (CAD). It will be described in Section 4.1. Mammogram

78 registration is a challenging problem. Several mammogram registration techniques
79 are only based on breast contours [29,36,40]. Thus, these techniques cannot suc-

80 ceed in registering correctly breast interiors. In [39,41,48,50,52], some authors at-

81 tempted to register breast interiors using the Bookstein warping technique with

82 internal control points [7]. Following such an approach, the main problem is to

83 extract from both mammograms points which are anatomically significant, suffi-

84 ciently numerous and distributed over the images and to match some extracted

85 points of both images. The difficulty is to design point extraction and matching

86 techniques which are robust to factors which can change image aspects (e.g., the
87 breast compression level).

88 The registration approach proposed in this paper departs from the ones in

89 [39,41,48,50,52]. First of all, the new model is not based on internal control points.

90 Hence, the difficulty mentioned above is avoided. Secondly, thanks to intensity-

91 based registration constraints, the model can register breast interiors more accurately

92 than models based on internal control points. Finally, the model takes into account

93 regions of interest (i.e., breasts) and combines efficiently intensity-based constraints

94 with contour-based constraints in an unified mathematical framework.
95 The new image-matching approach and its mathematical formulation is presented

96 in Section 2. In Section 3, a multigrid algorithm is designed for the numerical reso-

97 lution of the problem. Illustrations and validations of the algorithm application to

98 mammograms are given in Section 4.

99 2. Models

100 In this section, three different image-matching problems are formulated. In Sec-

101 tion 2.1, the formulation of the usual intensity-based problem is reminded. Sections

102 2.2 and 2.3 are both devoted to the matching of regions of interest. In Section 2.2, we

103 recall the formulation of our previous model [45,47]. In Section 2.3, the new model is

104 presented.

105 2.1. The classical model

106 The classical variational framework for Image Matching is the following

107 [1,3,12,37,44,64]. Let X be a connected and open set of R2 and I0 and I1 be two im-

108 ages defined on X using interpolation. Let us denote by �XX the set which is the closure

109 of X (with respect to the euclidean norm of R2) and contains the set X and its bound-

110 ary. Let W1 be a space composed of smooth functions mapping �XX onto itself. Let us

111 denote by I0
/ the geometric deformation of I0 that is induced by the element / of W1:

8x 2 X; I0
/ðxÞ ¼ I0 � /ðxÞ:
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113 Matching I0 and I1 consists of finding an element / which is such that the deformed

114 image I0
/ is ‘‘similar’’ to I1. This is expressed in terms of an inverse problem

115 [1,3,12,37,44,64]:

116 Model 1. Find an element of W1 which minimizes an energy J1 of the following
117 form:

J1ðuÞ ¼
1

2
AXðu; uÞ þ

c1

2
jI0

/ 
 I1j2X; ð1Þ

119 with some conditions on the boundary of X. In this energy definition, the parameter

120 c1 belongs to Rþ. The variable u belongs to W1. It is equal to / 
 Id, where Id is the

121 identity map of W1 (i.e., 8x 2 �XX; IdðxÞ ¼ xÞ. It is the displacement field associated to

122 the deformation /. The function j � jX denotes the usual quadratic norm on L2ð�XX;RÞ,
123 i.e.,:

jI j2X ¼
Z

X
I2ðxÞdx:

126 The energy in Eq. (1) is composed of two terms. The second term, which is weighted
127 by the parameter c1, depends on the images. The more similar the images I0

/ and I1

128 are, the lower this term is. It introduces an intensity-based matching constraint into

129 the model. The first term is a smoothing term which ensures that the problem is well

130 posed and that solutions are non-degenerate solutions. Its design is usually based on

131 a strain energy of the continuum mechanics. Inspired by the theory of linearized

132 Elasticity [14], we define the strain energy as in [45]

AXðu; vÞ ¼ hLu; viX ¼
Z

X
LuðxÞ � vðxÞdx; ð2Þ

134 for any u; v 2 W1, where h�; �iX is the usual scalar product on L2ð�XX;R2Þ and L is the

135 following operator 1

Lu ¼ 
divfk trðeðuÞÞIdM þ 2leðuÞg: ð3Þ
137 where k and l are two positive values called the Lame coefficients, IdM is the identical

138 matrix of size 2 � 2 and eðuÞ is the linearized strain tensor 1=2ðruT þruÞ. The

139 elastic smoothing term is suitable for the registration of images which do not have

140 large geometric disparities. In the mammogram application, it ensures that problem

141 solutions are homeomorphisms. An application of Model 1 to a mammogram pair is

142 shown in Fig. 1; this example will be commented further in Section 4.

1 If M is a 2 � 2-matrix, then trðMÞ is equal to M11 þM22. If m is a smooth function mapping X into the

2 � 2-matrix set, then the value of divfmg at a point x of X is a bidimensional vector having the ith
component equal to ox1

mðxÞi1 þ ox2
mðxÞi2.
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143 2.2. Region-matching with fixed boundary conditions

144 Unlike the previous model, the model presented in this section focuses on regions

145 of interest. The framework is the following. Let us assume that the images I0 and I1

146 have single regions of interest which are, respectively, located on the connected and

147 open subsets X0 and X1 of X. This means that for each image, the domain can be seg-

148 mented in one region of interest (X0 or X1) and the background (X 
 X0 or X 
 X1).

149 Let us denote by oX0 and oX1 the boundaries of X0 and X1, respectively. We assume
150 that the contours oX0 and oX1 were previously extracted and matched. Let /0 (or

151 Id þ u0) be a function defined on X1 and mapping the coordinates of oX1 onto those

152 of oX0. In order to focus on the regions of interest, the minimization problem is not

153 defined on W1 (see Section 2.1) but on a space W2 which is composed of smooth func-

154 tions mapping X1 onto X0. The inverse problem is stated as follows [45,47]:

155 Model 2. Find an element of W2 which minimizes an energy J2 of the following

156 form:

J2ðuÞ ¼
1

2
AX1

ðu; uÞ þ c1

2
jI0

/ 
 I1j2X1
; ð4Þ

158 with the following non-homogeneous Dirichlet boundary conditions:

8x 2 oX1; uðxÞ ¼ u0ðxÞ ¼ /0ðxÞ 
 x:

Fig. 1. (a) The source image I0, (b) the geometric deformation I0
/ of I0 after the application of Model 1,

and (c) the target image I1. Images (a) and (c) are mammograms of left and right breasts (source: MIAS

database [55]).
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160 The terms of energy J2 have the same definitions and play the same roles as those of

161 energy J1 in Model 1. However, they are not defined on the whole domain X but only

162 on the region of interest X1. Besides, the boundary conditions are specific to the

163 regions of interest and based on a known matching of their contours. An application

164 of Model 2 is shown in Fig. 5.

165 2.3. Region-matching with free boundary conditions

166 The model presented in this section focuses on the regions of interest. But, unlike

167 the previous model, the problem is defined with free boundary conditions. Hence,

168 the problem is not defined on W2 (see Section 2.2) but on a space W3 which is com-

169 posed of smooth functions mapping X1 onto R2. The inverse problem is defined as

170 follows [46]:

171 Model 3. (first formulation). Find an element of W3 which minimizes an energy ~JJ3 of

172 the following form:

~JJ3ðuÞ ¼
1

2
AX1

ðu; uÞ þ c1

1

2
jI0

/ 
 I1j2X1
þ c2

Z
X
/ðX1Þ

SððI0ðxÞÞ2Þdx; ð5Þ

174 with free boundary conditions on oX1.

175 In the energy definition, the weighting parameters c1 and c2 both belong to Rþ. As in

176 Models 1 and 2, the energy has a matching and a regularity term. It has also a term

177 which depends on image I0. This term is defined on a region X 
 /ðX1Þ which is

178 expected to be the background of I0 (see Fig. 2). It is a term which constrains / to

179 map points of X1 out of the background domain of I0. For reasons that will appear
180 next, it will be referred as the segmentation term. An application of Model 3 is shown

181 in Fig. 5.

182 Design of S. Assume that the image I0 can be robustly segmented using a thresh-

183 old; that is to say there exists a value g such that ðI0ðxÞÞ2
< g if and only if x belongs

184 to the background of the image I0. Then, S can be defined as a smooth distribution

185 function approximating on a bounded interval the function that is equal to 0 on

186 ð
1; g½ and 1 on ½g;þ1Þ. The value of S at a point r of R may be interpreted as

187 the conditional probability for a pixel x not to be on the image background knowing
188 that ðI0ðxÞÞ2

is equal to r. In the case where the segmentation threshold is not accu-

Fig. 2. A schematic picture of region-matching with free boundary conditions.
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189 rate, the design of S can be based on an empirical estimation of these probabilities.

190 For instance, in the mammogram application, these probabilities are estimated using

191 an image I1 for which segmentation is known. The function S is a smoothed version

192 of the histogram of the image ðI1Þ2
evaluated over the domain X1. The typical shape

193 of the estimated functions S is shown in Fig. 3.

194 Segmentation of I0. Contrarily to Model 2, a preliminary segmentation of the re-

195 gion of interest in I0 is not needed for the problem formulation. A segmentation of I0

196 is obtained after the problem resolution: the contour is given by the image /ðoX1Þ of
197 oX1 by a function / which minimizes the energy. Let us also remark that the un-

198 known /ðoX1Þ is a parametrized curve and that, from the point of view of this un-

199 known, Model 3 is closely related to active contour models [15–17,30].

200 An equivalent problem. Assuming some regularity conditions (the elements / of

201 W3 belong to the Sobolev hilbertian space 2 H 1ðX1;R
2Þ [14] and are such that

202 detðr/Þ > 0 on X1), it can be seen thatZ
X
/ðX1Þ

SððI0ðxÞÞ2Þdx ¼
Z

X
SððI0ðxÞÞ2Þdx


Z
X1

SððI0
/ðxÞÞ

2Þ detðr/Þdx; ð6Þ

204 where the real value detðr/Þ is the Jacobian of the function /. Thus, since the first
205 term on the right does not depend on /, the previous minimization problem can be

206 restated in the following equivalent way:

207 Model 4 (equivalent formulation). Find an element of W3 which minimizes an energy

208 J3 which is of the following form:

Fig. 3. Typical shape of estimated functions S (Model 3).

2 In the definition of the Sobolev space, it is assumed that the domain boundary oX1 is continuous.

Thanks to a contour smoothing, this assumption is true in practice; see more details in Section 4.2.
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J3ðuÞ ¼
1

2
AX1

ðu; uÞ þ c1

2
jI0

/ 
 I1j2X1

 c2

Z
X1

SððI0
/ðxÞÞ

2Þ detðr/Þdx; ð7Þ

210 with free boundary conditions on oX1.

211 3. Numerical solution

212 In this section, a gradient descent algorithm is designed for the numerical resolu-

213 tion of the problem of Model 3. In Section 3.1, the energy is derived and the algo-

214 rithm is expressed in terms of a dynamic system. In Section 3.2, we propose a

215 spatial discretization of the dynamic system using the Galerkin method. In Section
216 3.3, an initialization method is described. In Section 3.4, a multigrid implementation

217 of the algorithm is designed.

218 3.1. Gradient descent algorithm

219 The Frechet derivative of the energy J3 (Eq. (7)) at a point u of W3 is as follows:

220 for all v in W3

dJ3juðvÞ ¼ AX1
ðu; vÞ þ c1hðI0

/ 
 I1ÞrI0
/; viX1


 2c2

Z
X1

detðr/ÞS0ððI0
/Þ

2ÞrI0
/

� vdx
 c2

Z
X1

SððI0
/Þ

2Þtrðcofðr/ÞT � rvÞdx; ð8Þ

222 where cofðMÞ is the cofactor matrix of a matrix M (cofðMÞ ¼ detðMÞM
T). More-

223 over, by a Green formula [14],
Z

X1

SððI0
/Þ

2Þtrðcofðr/ÞT � rvÞdx ¼ 

Z

X1

divfSððI0
/Þ

2Þcofðr/ÞTg � vdx: ð9Þ

225 Recall that the gradient rJ of an energy J at a point u with respect to an inner

226 product h�; �i is given by the element rJu which is such that, for all v,

hrJu; vi ¼ dJjuðvÞ:

228 Thus, from Eqs. (8) and (9), it comes that the gradient of energy J3 with respect to

229 the inner product AX1
ð�; �Þ is

rJ3u ¼ u
 L
1F ð/ðtÞÞ; ð10Þ

231 where L is the operator defined by Eq. (3) and F is the following mapping:

F ð/Þ ¼ 
c1ðI0
/ 
 I1ÞrI0

/ þ 2c2 detðr/ÞS0ððI0
/Þ

2ÞrI0
/


 c2divfSððI0
/Þ

2Þcofðr/ÞTg: ð11Þ

233 Thus, the gradient descent of energy J3 can be expressed in terms of the following

234 dynamic system:
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235 Algorithm 1 (gradient descent). The gradient descent is

8t < 0;
du
dt

ðtÞ ¼ 
uðtÞ þ dðtÞ and uð0Þ ¼ M0; ð12Þ

237 where the initial deformation M0 will be defined in Section 3.3, and at each time t,
238 dðtÞ is the solution of the following partial derivative equation (PDE):

Ld ¼ F ð/ðtÞÞ; ð13Þ
240 with /ðtÞ ¼ Id þ uðtÞ and F defined as in Eq. (11).

241 3.2. Algorithm discretization

242 For the implementation of Algorithm 1, Eq. (13) is discretized following the

243 Galerkin method [13]. First, it can be noticed that Eq. (13) is formally equivalent

244 to the variational equation:

8v 2 W3; AX1
ðd; vÞ ¼ hF ð/ðtÞÞ; viX1

; ð14Þ

246 where F is defined in Eq. (11). We choose a space Wh of dimension h which is in-

247 cluded in W3 and spanned by a finite family of functions with compact support. We

248 will denote by wh
i the functions of this family, where i is an index varying in a finite

249 set Ih of size h. In order to approximate the solution of Eq. (14), we find in Wh the

250 solution of the approximate variational equation:

8v 2 Wh; AX1
ðd; vÞ ¼ hF ð/ðtÞÞ; viX1

: ð15Þ

252 The solution of this equation is

dh ¼
X
j2Ih

bh
jw

h
j ; ð16Þ

254 where the coefficients bh
j are the solution of the linear system:

8i 2 Ih;
X
j2Ih

bjAX1
ðwh

j ;w
h
i Þ ¼ hF ð/ðtÞÞ;wh

i iX1
: ð17Þ

256 In order to design the approximation spaces Wh, the set X1 is decomposed into h=2

257 fixed-size non-overlapping squares. We define Wh as the space formed by the

258 functions that are C1 on X1 and polynomial on each of these squares. The design of

259 the function family fwh
i gi2Ih is based on spline functions.

260 When decomposed, the domain X1 may be slightly approximated near the bound-

261 aries. This may cause segmentation inaccuracies. However, these inaccuracies are ta-

262 ken into account in Model 3 via the estimation of S (see Section 2.3).

263 3.3. Initialization step

264 Unlike Model 2, the contour match is not used for the design of Model 3. How-

265 ever, it is worth using it to have a better initialization of the dynamic system. Hence
266 we define the displacements M0 in Eq. (12) as the solution of the problem in Model 2
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267 when c1 is equal to zero. The displacements M0 are the same as those which are ob-

268 tained at the initialization step of the algorithm of Model 2 [45,47]. Let us denote by

269 W0 the space composed of the functions of W2 (see Section 2.2) and equal to the

270 identity map Id on oX1. The displacements M0 are equal to u0 þ d0, where u0 is de-

271 fined in Section 2.2 and d0 is the solution in W0 of the following variational equation:

8v 2 W0; AX1
ðd; vÞ ¼ 
AX1

ðu0; vÞ: ð18Þ
273 Using the Galerkin method (see Section 3.2), d0 can be approximated by the dis-

274 placements dh
0 which are found as follows:

dh
0 ¼

X
j2Ih

bh
j;0w

h
j 2 Wh

0; ð19Þ

276 where the coefficients bh
j;0 are the solution of the linear system

8i 2 Ih;
X
j2Ih

bh
j;0AX1

ðwh
j ;w

h
i Þ ¼ 
AX1

ðu0;w
h
i Þ: ð20Þ

279 3.4. Multigrid implementation

280 In order to lower computation times and obtain better minimization results, we

281 adopt a multigrid implementation approach together with a coarse-to-fine strategy.

282 We define a series fWhðkÞgk2N of embedded subspaces having the properties described

283 in Section 3.2:

Whð1Þ � � � � � WhðkÞ � � � � � W3:

285 The dynamic system is discretized with respect to time using the Euler method. We

286 obtain the following resolution scheme:

287 Algorithm 2 (multigrid implementation). Initialization: uð0Þ ¼ u0 þ dhðKÞ
0 , where u0 is

288 defined in Section 2.2 and dhðKÞ
0 is the solution in a space WhðKÞ

0 of Eqs. (19) and (20).

289 kth Iteration (k P 0): uðk þ 1Þ ¼ uðkÞ þ �dðkÞ,where � is a small positive value and

290 dðkÞ is the solution in WhðkÞ of Eqs. (16) and (17) with t equal to k.

291 4. Application to mammogram pairs

292 In this section, we apply the different models described in Section 2 to mammo-

293 gram pairs. In Section 4.1, the application context and goal are presented. In Section

294 4.2, some preliminary remarks are given about preprocessing, parameter choices and

295 mammograms used. Section 4.3 gives some evaluations and comparisons of the al-
296 gorithm performances based on simulated mammogram pairs. In Section 4.4, we il-

297 lustrate the algorithm applications to real mammogram pairs.

298 4.1. Application context and goal

299 Radiologists use several methods to analyze mammograms for the detection of

300 abnormalities [56]. One of these methods consists of seeking deviations from normal

10 F.J.P. Richard, L.D. Cohen / Computer Vision and Image Understanding xxx (2003) xxx–xxx

YCVIU 1008

DISK / 20/2/03

No. of pages: 31

DTD 4.3.1/ SPS
ARTICLE IN PRESS



UNCORRECTED
PROOF

301 breast symmetry by comparison of left and right breast mammograms (same view

302 angles). This method is helpful to locate abnormalities which are difficult to detect

303 based on single image analysis. As an illustration, comparing bilateral mammograms

304 of Figs. 4a and b, a significant bright region asymmetry can be observed in the cir-

305 cled area. Focusing on this asymmetry area in the right mammogram, a small bright
306 region which indicates a tumor (a spiculated mass) can be detected. This tumor con-

307 trasts poorly with the surrounding tissues and would have been difficult to locate us-

308 ing only the right mammogram. A detection approach which is similar to the

309 asymmetry approach consists in looking for abnormal temporal changes in different

310 mammograms of the same breasts (same view angles).

311 The comparison of bilateral or temporal mammogram pairs is also an approach

312 for the design of computer aided diagnosis (CAD) systems devoted to the auto-

313 matic tumor detection (see [2,21,62] for CAD in mammography). The techniques
314 which follow this approach can be classified into two categories. The first type

315 of techniques compare regions of mammograms [9,31,33,34,42,59–61,63]. The main

316 difficulty encountered in the design of such a technique is the segmentation and

317 matching of mammogram regions of interest. The second kind of techniques com-

318 pare locally mammograms without using regions of interest [23,29,36,39,40,45,47–

319 49,51,53,54,66–68]. The main problem of this approach is to compensate for nor-

320 mal mammogram differences which are locally similar to abnormalities and gener-

321 ate high false-positive rates. These normal differences can be due to acquisition
322 process condition changes, breast positioning and breast compression level varia-

323 tions and anatomical or histological variations. Differences resulting from acquisi-

Fig. 4. A pair of bilateral mammograms showing an abnormal asymmetry.
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324 tion condition changes are often very sharp in temporal mammogram pairs. They

325 can be compensated for by a mammogram normalization [24,25,28,33,35]. Differ-

326 ences due to breast positioning can be easily compensated for by an alignment pro-

327 cedure which involves rotation and translation and are based on breast contours

328 [23,36,53,54,66,67]. The effects of the other factors (breast compression level, his-
329 tology and anatomy variations) on mammogram appearance are not well known;

330 in particular, modeling compression effects is an important and quite recent topic

331 of research [4–6,25–27,32,43]. For differences due to the three last factors to be

332 compensated for, it is necessary to register pairs of mammograms. Main works

333 on mammogram registration can be found in [29,36,40,39,41,45,47,48,50,52]. These

334 works were discussed in Section 1.

335 In mammograms, textures and finest details might be very dissimilar from one im-

336 age to the other. Hence mammograms cannot be registered at finest scales. This pa-
337 per concerns only the registration of normal structures which are present in

338 mammograms at a coarse scale (essentially, muscles and salient bright regions of

339 breasts). The registration aim is to compensate accurately for differences between

340 the coarse structures and, consequently, to enhance differences due to small tumors.

341 Our final goal is to detect tumors in mammograms by analyzing the registered mam-

342 mogram differences and the deformation fields. The tumor detection is beyond the

343 scope of this paper. The interested readers may find more details and some trials

344 based on Model 2 in [45].

345 4.2. Some preliminary remarks

346 The next experiments are based on bilateral mammogram pairs which are shown

347 in Figs. 12a and b, 13a and b, and 14a and b. These images comes from the MIAS

348 database [55] and have a resolution of 200 lm. These image pairs were chosen in the

349 different classes of the database. As a consequence, the breast aspect is very different

350 from one pair to the other. In the first pair, the aspect is of ‘‘dense’’ type (bright as-
351 pect), in the second one, it is of ‘‘fatty’’ type (dark aspect) and in the third one, it is of

352 ‘‘glandular’’ type (between fatty and dense aspects).

353 In each mammogram, the breast region was automatically segmented. The seg-

354 mentation technique is based on a threshold which is the value of the gray-level cor-

355 responding to the first peak in the smoothed histogram of the image. After

356 thresholding, the biggest connected region (the breast) is located. The breast contour

357 is smoothed using an approximation technique based on B-splines [19].

358 The registration models are applied to images which are coarse approximations of
359 the original mammograms (see Section 4.1). In order to obtain these images, mam-

360 mograms are smoothed using an approximation technique based on B-splines

361 [19,45].

362 In the next experiments, the value of the weight c1 of the intensity-based registra-

363 tion term in Models 2 and 3 is fixed at 1. The Lame coefficients k and l of the reg-

364 ularity term (Eq. (2)) are fixed at 10
12 and 500, respectively. These values are fixed

365 using the Poisson ratio m and the Young�s modulus E. The Lame coefficients l and k
366 are related to m and E by equations
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l ¼ E
2ð1 þ mÞ and k ¼ Em

ð1 þ mÞð1 
 2mÞ
368 [14]. The Poisson ratio takes values in �0; 0:5½. When far enough from 0.5, variations

369 of the Poisson ratio values does not affect mammogram registrations obtained using

370 Model 2 [45]. The Poisson ratio value is fixed arbitrarily at 10
15. In models of

371 Section 2, the Young�s modulus can be interpreted as a weight of the regularity term.

372 We fixed its value as follows. We apply Model 2 to the first mammogram pair with
373 different values of the Young modulus. We choose the lowest value which enables to

374 register significantly the first mammogram pair without obtaining a singular solution

375 (E ¼ 103). Despite the mammogram aspect differences outlined above, the selected

376 values for l, k, and c1 turned out to be suitable for the application of Models 2 and 3

377 to the three image pairs (see Section 4.4). This suggests that parameters could be

378 chosen optimally for the application of models to mammogram pairs of a same

379 database.

380 The algorithms of Models 2 and 3 were implemented on a PC Intel Pentium II
381 600 MHz. The computation time of both algorithms is approximately the same. It

382 is between 5 and 8 min when applied to mammograms having approximately

383 450,000 pixels on average.

Fig. 5. Application to a first simulated mammogram pair: (a) the source image I0, the geometric deforma-

tion I0
/ of I0 after the application of (b) Model 2 and (c) Model 3, (d) the target image I1

H
. The target image

I1
H

was obtained by applying a deformation /H to the source image I0 (I1
H
¼ I0 � /H).
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384 4.3. Application to simulated mammogram pairs

385 Couples of images in Figs. 5a and d, 6a and b, and 7a and b are three simulated

386 mammogram pairs. In these simulated pairs ðI0; I1
H
Þ, I1

H
is a geometric deformation of

387 I0 (I1
H
¼ I0 � /H) obtained with a known function /H. The functions /H were ob-

388 tained after application of Model 2 to the original mammogram pairs shown in Figs.

389 12a and b, 13a and b, and 14a and b, respectively.

390 Model 2 was applied to each simulated image pair ðI0; I1
H
Þ with the exact initiali-

391 zation derived from /H. In each case, a solution denoted by /ref was obtained. As

392 can be seen in Figs. 5b, 6c, and 7c, the image pairs were almost perfectly registered

393 by Model 2. The image differences were, respectively, lowered by 80.8, 80.5, and

394 79.9% and the mean distances between the algorithm solution /ref and the exact

Fig. 6. Application to a second simulated mammogram pair: (a) the source image I0, (b) the target image

I1
H

. The geometric deformation I0
/ of I0 after the application of (c) Model 2 and (d) Model 3. Images (a) and

(b) form a simulated pair of mammograms. The target image I1
H

was obtained by applying a deformation

/H to the source image I0 (I1
H
¼ I0 � /H).
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395 mapping /H were, respectively, 3.8, 5.4, and 4.3 pixels. The Image Registration ben-

396 efits from the region-specific constraints: Model 1 lowered the image differences by

397 only 68, 70, and 64.3%, respectively (for a more extensive comparison of Models 1
398 and 2, the interested reader may refer to [45]). In this context, Model 2 is the most

399 relevant among the three models described in Section 2 since the boundary condi-

400 tions are exact. Using Model 3 with c2 ¼ 1000, the image differences were, respec-

401 tively, lowered by 78, 77.2, and 77%.

402 For each simulated mammogram pair, we simulate five wrong initialization func-

403 tions /0 defined on the breast contour of I1
H

(see Sections 2.2 and 3.3). Typical wrong

404 initializations are shown in Figs. 8a and b. Comparing the yellow and pink lines, it

405 can be seen that, these initialization functions do not correctly map into the breast
406 contour in I0. Models 2 and 3 were applied to the pairs ðI0; I1

H
Þ with the wrong ini-

Fig. 7. Application to a third simulated mammogram pair: (a) the source image I0, (b) the target image I1
H

.

The geometric deformation I0
/ of I0 after the application of (c) Model 2 and (d) Model 3, (d) the target

image I1
H

. Images (a) and (b) form a simulated pair of mammograms. The target image I1
H

was obtained

by applying a deformation /H to the source image I0 (I1
H
¼ I0 � /H).
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407 tialization functions. The mean results for the three pairs are shown in Table 1. In all

408 cases, it can be observed that the registration performance of Model 2 is drastically

409 reduced due to the initialization errors. With wrong initializations, the image differ-

410 ences are, respectively, lowered by only 69.9, 66.1, and 64.7% on average. Moreover,

411 the solution regularity is decreased. The regularity term reaches the mean values

412 344.5, 506.5, and 309 with wrong initializations whereas they were only 117, 450,

413 and 260 with the exact initializations. These regularity decreases are due to some

414 compressions or dilatations which occur near contours. Such compressions and dil-
415 atations are shown in Figs. 9a and 10a. They are caused by the opposition of the two

416 registration constraints (the one of the fixed and wrong boundary conditions and the

417 one of the intensity-based energy term).

418 Model 3 is more robust than Model 2 to the initialization errors. Indeed, the reg-

419 istration scores of Model 3 are higher than those of Model 2 (over 73% on average in

420 all cases) and its solutions are smoother. Comparing Figs. 9a and b and 10a and b, it

Fig. 8. Correction effect due to the segmentation term of Model 3. (a) and (b) show two different examples

of segmentation results obtained after image registration with wrong initialization. In (a) and (b), the yel-

low line is the correct segmentation of the breast and the pink one is the segmentation which is induced by

the wrong initialization map /0. The blue and red lines are the segmentations that are induced by the so-

lutions of Model 3 with c2 equal to 0 and 1000, respectively.
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421 can also be observed that the compressions and dilatations near the contours are less

422 pronounced in the solutions of Model 3 than in those of Model 2. The robustness of

423 Model 3 is further attested by the comparisons of the algorithm solutions and the

424 reference solution /ref (solution of Model 2 without initialization errors). Means

425 and standard deviations of distances between the solutions obtained with different

426 models and /ref are shown in Table 2 for each simulated cases. It can be seen that

427 Model 2 is more sensitive to initialization errors than Model 3. In all simulated cases,

428 means and standard deviations obtained for Model 2 are higher than those obtained
429 for Model 3. Standard deviations for Model 3 are low. Model 3 is stable when the

430 initialization varies.

431 Besides, in Table 1, it can be noticed that performances of Model 3 improves as

432 the weight c2 of the segmentation term increases. When Model 3 is used with c2 equal

433 to 1000, not only registration scores are good and close to those of solutions /ref but

434 also standard deviations are low. This shows that the segmentation term in Model 3

435 is a factor of robustness.

436 Moreover, mammograms are much better registered near the contours when c2 is
437 high. As an illustration, we can compare image differences in Figs. 11a and b. Figs.

438 8a and b show the segmentations of I0 which are induced by the algorithm solutions.

439 It can be seen that the segmentation obtained with Model 3 when c2 is high is close to

440 the right segmentation whereas the segmentation obtained with Model 3 when c2 is

441 low remains close to the wrong initialization segmentation. In Model 3, the segmen-

442 tation term is necessary for the initialization errors to be compensated for.

Table 1

Comparison of the applications of Models 2 and 3 with wrong initializations

Case 1 Case 2 Case 3

Means Std Dev. Means Std Dev. Means Std Dev.

Initialization step Rs. 19.7% 18.4 28.2% 25.3 25.8% 7.8

Rl. 295.5 124.1 424 512.8 256 145

Model 2

Rs. 69.9% 2.4 66.1% 6.8 64.7% 14.4

Rl. 344.2 139.2 506.5 460.2 309 141

Model 3

c2 ¼ 0 Rs. 74.1% 3.9 73.6% 6.9 75.1% 1.6

Rl. 301 129.8 481 335.8 452 151

c2 ¼ 500 Rs. 75.5% 3.2 75% 5.1 75.8% 1.2

Rl. 298.6 130.0 493 329.5 449 148.7

c2 ¼ 103 Rs. 76.9% 1.8 75% 4.9 76.6% 1.3

Rl. 300 129.1 495.2 327.3 448 149

c2 ¼ 104 Rs. 76.1% 1.1 75.1% 4.1 78.4% 2.2

Rl. 313.8 128.2 563 297.7 436 136

The rows ‘‘Rs.’’ give the image registration scores (in percentage of the initial quadratic difference

between I0 and I1): 100 � ðjI0 
 I1j2 
 jI0
/ 
 I1j2Þ=jI0 
 I1j2. The rows ‘‘Rl.’’ give the values of the regularity

term (Eq. (2)). The column ‘‘Means’’ gives the means of the registration and regularity scores of the

algorithms with five different wrong initializations and the column ‘‘Std Dev.’’ the standard deviations of

these scores.
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Fig. 9. First simulation case. (a) and (b) show an example of images /ðX1Þ of the tessellated breast domain

X1 in I1
H

by the solutions / which are obtained using Model 2 (a) and Model 3 (c2 ¼ 1000) (b) with a same

wrong initialization. In (a), a strong compression due to initialization errors can be observed near the nip-

ple position.

Fig. 10. Third simulation case. (a) and (b) show an example of images /ðX1Þ of the tessellated breast do-

main X1 in I1
H

by the solutions / which are obtained using Model 2 (a) and Model 3 (c2 ¼ 1000) (b) with a

same wrong initialization. In (a), a strong dilatation due to initialization errors can be observed near the

contour in the top of image.
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443 In this section, the experiments were done using three mammograms with different

444 breast aspects (see Section 4.2). Despite these differences, the behavior and the per-

445 formances of Model 3 are equivalent on the three simulated pairs for each value of

446 the parameter c2. Results in Tables 1 and 2 suggest that the value of c2 could be set to

447 1000 for the application of Model 3 to mammogram pairs of the MIAS database.
448 When the parameter c2 is equal to 1000, the algorithm obtains the best mean regis-

449 tration score and is stable when the initialization varies (the standard deviations

450 mentioned in tables are low).

Table 2

Means and standard deviations of distances between /ref (solution of Model 2 with the exact initialization)

and solutions obtained using different models with initialization errors

Model 2 Model 3 Model 3

(c2 ¼ 0) (c2 ¼ 1000)

First simulation case

Mean distances 9.6 7.1 6.1

Distance standard deviations 7.1 3.2 3.1

Second simulation case

Mean distances 9 7.7 7.6

Distance standard deviations 4.6 3.3 3.2

Third simulation case

Mean distances 12.6 9.6 8.8

Distance standard deviations 8.6 1.8 1.2

Fig. 11. First simulation case. (a) and (b) show the absolute differences between images I1
H

and I0 � / (first

simulation case), where / are the solutions found using Model 3 with c2 ¼ 0 (a) and with c2 ¼ 1000 (b).

[black, high differences; white, low differences].

F.J.P. Richard, L.D. Cohen / Computer Vision and Image Understanding xxx (2003) xxx–xxx 19

YCVIU 1008

DISK / 20/2/03

No. of pages: 31

DTD 4.3.1/ SPS
ARTICLE IN PRESS



UNCORRECTED
PROOF

451 In the previous experiments, simulations were only with respect to geometric

452 deformations. More general simulations would include anatomic variations. Such

453 experiments are beyond the scope of this paper. The interested reader can

454 find several simulated experiments about anatomic variations due to tumors in

455 [45].

Fig. 12. Bilateral mammograms # 035/036 (MIAS database). (a) The source image I0, (b) the target image

I1. The geometric deformation I0
/ of I0 (c) after the initialization step, after the application of (d) Model 2,

(e) Model 3 with c2 equal to 0, and (f) Model 3 with c2 equal to 1000.
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456 4.4. Application to real mammogram pairs

457 Comparing bilateral mammogram in Figs. 12a and b, 13a and b, and 14a and b

458 and observing image differences in Figs. 15a, 16a, and 17a, it can be noticed that

459 mammograms have a lot of important asymmetries, due in particular to breast shape
460 variations. Next, looking at source images I0 in Figs. 12a, 13a, and 14a and at their

Fig. 13. Bilateral mammograms # 077/078 (MIAS database). (a) The source image I0, (b) the target image

I1. The geometric deformation I0
/ of I0 (c) after the initialization step, after the application of (d) Model 2,

(e) Model 3 with c2 equal to 0, and (f) Model 3 with c2 equal to 1000.
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461 geometric deformations I0
/ in Figs. 12c,13c, and 14c, it can be seen that the initiali-

462 zation step changes breast shapes in I0. As observed in Figs. 15b, 16b, and 17b, these

463 changes significantly compensate not only for the asymmetries near the breast con-

Fig. 14. Bilateral mammograms # 047/048 (MIAS database). (a) The source image I0, (b) the target image

I1. The geometric deformation I0
/ of I0 (c) after the initialization step, after the application of (d) Model 2,

(e) Model 3 with c2 equal to 0, and (f) Model 3 with c2 equal to 1000.

22 F.J.P. Richard, L.D. Cohen / Computer Vision and Image Understanding xxx (2003) xxx–xxx

YCVIU 1008

DISK / 20/2/03

No. of pages: 31

DTD 4.3.1/ SPS
ARTICLE IN PRESS



UNCORRECTED
PROOF

Fig. 15. Bilateral mammograms # 035/036. The absolute differences between image I1 and (a) I0, (b) the

deformed image I0
/ after the initialization step, (c) the deformed image I0

/ after the application of Model 2,

(d) the deformed image I0
/ after the application of Model 3 with c2 equal to 0, (e) the deformed image I0

/

after the application of Model 3 with c2 equal to 1000 [black, high differences; white, low differences].

Fig. 16. Bilateral mammograms # 077/078. The absolute differences between image I1 and (a) I0, (b) the

deformed image I0
/ after the initialization step, (c) the deformed image I0

/ after the application of Model 2,

(d) the deformed image I0
/ after the application of Model 3 with c2 equal to 0, and (e) the deformed image

I0
/ after the application of Model 3 with c2 equal to 1000 [black, high differences; white, low differences].
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464 tours but also for some inner differences. However, due to preprocessing step inac-

465 curacies and to the algorithm discretization (see Section 3.2), the breast contour

466 asymmetries are not perfectly compensated for. For instance, in Fig. 16b, it can

467 be observed a dark border in the upper part of the contour area. Moreover, several
468 important inner differences remain in the registered image pair.

469 Some of these inner differences are due to shape and location variations of bright

470 salient regions of images. Comparing pairs of deformed images in Figs. 12b and d,

471 13b and d, and 14b and d and looking at images of Figs. 15c, 16c, and 17c, it can be

472 seen that these particular differences are compensated for using Model 2. However,

473 several differences still remain in the pair of images registered by Model 2. Some of

474 these differences are caused by breast tissue disparities and cannot be corrected by

475 any geometric deformation.
476 However, these registrations can be improved. In particular, in the registered im-

477 age differences (Figs. 15c, 16c, and 17c), we still observe the contour differences

Fig. 17. Bilateral mammograms # 047/048. The absolute differences between image I1 and (a) I0, (b) the

deformed image I0
/ after the initialization step, (c) the deformed image I0

/ after the application of Model 2,

(d) the deformed image I0
/ after the application of Model 3 with c2 equal to 0, and (e) the deformed image

I0
/ after the application of Model 3 with c2 equal to 1000 [black, high differences; white, low differences].
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478 which remained after the initialization. These differences cannot be compensated for

479 using Model 2 due to the fixed boundary conditions. Besides, some important differ-

480 ences remain near contours; for instance, see differences near the nipple position in

481 Fig. 15c or in the upper part of image in Fig. 16c. Model 2 is unable to correct such

482 differences for the following reason. The differences increase the intensity-based reg-
483 istration constraint in a way that conflicts with the contour-based constraint. As can

484 be noticed in Figs. 18b, 19b, and 20b, constraint conflicts generate strong compres-

485 sions or dilatations in difference areas. Further difference corrections are not possible

486 because they would increase compressions (or dilatations) and regularity term values

487 (Eq. (2)).

488 These results are in sharp contrast with those of Model 3. We recall that, in this

489 model, the boundary conditions are free. Consequently, the contour constraint of

490 Model 2 is less stringent. This constraint relaxation permits a better registration of
491 the images near the breast contours. Looking at deformed images in Figs. 12e and

492 b, 13e and f, and 14e and f and at registered image differences in Figs. 15d and e,

493 16d and e, and 17d and e, it can be observed that Model 3 (with different values

494 of weight c2) succeeds in compensating significantly for the differences near contours.

495 Moreover, as can be observed in Figs. 18c and d, 19c and d, and 20c and d, the de-

496 formations are less compressed and dilated near contours and smoother than the

497 ones obtained with Model 2. As can be observed in Figs. 15d and e, 16d and e,

498 17d and 15e, Model 3 without the segmentation term (c2 ¼ 0) may map some parts

Fig. 18. Bilateral mammograms # 035/036. (a) The tessellated breast domain X1 in I1, the image /ðX1Þ of

X1 by the mapping / obtained with (b) the application of Model 2, (c) the application of Model 3 with c2

equal to 0, and (d) the application of Model 3 with c2 equal to 1000.
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499 of the breast in I1 into some parts of the background in I0 whereas Model 3 with a

500 strong segmentation constraint keeps mappings inside breast regions of I0.

501 5. Conclusion

502 Based on a variational approach, we formulated a new mathematical model for

503 mammogram registration. An energy minimization problem was presented. A mul-

504 tigrid gradient descent algorithm was designed for the numerical resolution of the

505 problem. As in [45,47], the model focuses on the matching of regions of interest.

Fig. 19. Bilateral mammograms # 077/078. (a) The tessellated breast domain X1 in I1, the image /ðX1Þ of

X1 by the mapping / obtained with (b) the application of Model 2, (c) the application of Model 3 with c2

equal to 0, and (d) the application of Model 3 with c2 equal to 1000.
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506 It also combines segmentation-based and intensity-based constraints. However, the
507 energy minimization problem is not posed with fixed boundary conditions but with

508 free boundary conditions. Moreover, the energy has a new registration constraint.

509 The performances of both models were compared on simulated mammogram pairs.

510 It was shown that the new model is more robust to the initialization inaccuracies

511 than the previous one. The ability of the new model to compensate for these inaccu-

512 racies during the matching process was also illustrated. Both models were applied to

513 real mammogram pairs in order to illustrate the interest of the new model in the ap-

Fig. 20. Bilateral mammograms # 047/048. (a) The tessellated breast domain X1 in I1, the image /ðX1Þ of

X1 by the mapping / obtained with (b) the application of Model 2, (c) the application of Model 3 with c2

equal to 0, and (d) the application of Model 3 with c2 equal to 1000.

F.J.P. Richard, L.D. Cohen / Computer Vision and Image Understanding xxx (2003) xxx–xxx 27

YCVIU 1008

DISK / 20/2/03

No. of pages: 31

DTD 4.3.1/ SPS
ARTICLE IN PRESS



UNCORRECTED
PROOF

514 plication context. Although it was designed for the mammogram registration, the

515 model is generic: it can be applied whenever the images have single regions of inter-

516 est. We believe that, in these common cases, the new model is better suited for Image

517 Registration than the usual intensity-based models. In particular, it could be power-

518 ful for the mapping of brain anatomical templates onto individual anatomies.
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