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1. Introduction

Image Registration has been an active topic of researchviEra decade. Its most famous
medical applications are related to brain imagery [ 57]. iFstance, Image Registration is
used in computational anatomy as tool for analyzing braiurctiires by adapting an anatomical
template to individual anatomies [ 11, 12, 20, 22]. HoweWsiage Registration is a general
problem which arises whenever several images are to be gechpadata from several images
to be fused.

As can be seen though the complete survey in [ 38], a lot of viiak been done in Im-
age Registration since the early 80’s. The registratiohniues are usually divided into two
groups. Techniques of the first kind use features such assp@ml curves to match the images
[ 7]. Such techniques require that features be extractex firegistration. Techniques of the
second kind use image gray level values. Among these inyebased techniques, some are
non-rigid and based on the squared intensity differencemiiation criteria [ 1, 3, 8, 10, 12,
18, 20, 37, 44, 64].

In [ 45, 47], F. Richard and C. Graffigne described an apprdacbombining feature based
and intensity based registration constraints in a sameanatical model. The approach fo-
cuses on the mapping of regions of interest rather than tl@enmage matching. The model
consists of minimizing an intensity-based energy with sdiresl boundary conditions (Dirich-
let) which are derived from contours of regions of interesteg section 2.2). In [ 45, 47], the
model was applied to mammograms. It was shown that thanksetodmbined constraints the
computation time and the mammogram registration accumnagyaved. However, model per-
formances depend on the quality of some preprocessing&egentation of image regions of
interest and matching of contours). Indeed, since bounclamgditions are fixed, preprocessing
inaccuracies cannot be corrected during the matching psod¢ence these inaccuracies may
decrease matching performances. Besides, Dirichlet yrmibnditions constrain too strongly
the problem and may sometimes disrupt breast registratieascontours.

In this paper, our main contribution is the design of a newheatatical model which fixes the
drawbacks described above by combining region matchingsagcthentation. As in [ 45, 47],
the model enables the matching of regions of interest. Rurtrarily to the model in [ 45, 47],
the minimization problem is defined with free boundary cdiodis allowing to make evolution
in the segmentation of the region of interest. Consequetitey boundary conditions are re-
laxed and it becomes possible to compensate for preprogessiccuracies during the match-
ing process. Furthermore, some constraints are proposadi@n to compensate efficiently for
preprocessing inaccuracies and increase the model raasstn

The approach we propose in this paper is related to the orsesilbled in [ 58, 65]. In [ 58,
65], a unified variational framework which enables to irgaxle segmentation and registration
is also designed. However, our approach differs signiflgandm the ones in [ 58, 65]. The
model in [ 65] deals only with rigid registration and doesyhhve feature-based registration
constraints. The model in [ 58] deals with nonrigid registna but does not take into account
regions of interest for mapping one image onto the other.

In this paper, the new registration model is applied to bri@tmammogram pairs (mammo-
grams of left and right breasts of same women). The contegtisfapplication is related to
the design of automatic tumor detection systems for the C&bBnfputer Aided Diagnosis).
It will be described in section 4.1. Mammogram registrati®a challenging problem. Several



mammogram registration techniques are only based on leasiurs [ 29, 36, 40]. Thus, these
techniques cannot succeed in registering correctly bretstors. In [ 39, 41, 48, 50, 52], some
authors attempted to register breast interiors using trekBein warping technique with inter-
nal control points [ 7]. Following such an approach, the nawblem is to extract from both
mammograms points which are anatomically significant, geffitly numerous and distributed
over the images and to match some extracted points of bothesmd he difficulty is to design
point extraction and matching techniques which are rolu§dtors which can change image
aspects (e.g. the breast compression level).

The registration approach proposed in this paper depanstine ones in [ 39, 41, 48, 50, 52].
First of all, the new model is not based on internal contrahfs Hence, the difficulty men-
tioned above is avoided. Secondly, thanks to intensitgdasgistration constraints, the model
can register breast interiors more accurately than modedsed on internal control points. Fi-
nally, the model takes into account regions of interest fireasts) and combines efficiently
intensity-based constraints with contour-based comggan an unified mathematical frame-
work.

The new image-matching approach and its mathematical flation is presented in section
2. In section 3, a multigrid algorithm is designed for the muiwal resolution of the problem.
lllustrations and validations of the algorithm applicatim mammograms are given in section
4,

2. Models

In this section, three different image-matching problemesfarmulated. In section 2.1, the
formulation of the usual intensity-based problem is remthdSections 2.2 and 2.3 are both
devoted to the matching of regions of interest. In secti@) ®e recall the formulation of our
previous model [ 45, 47]. In section 2.3, the new model is gmésd.

2.1. The Classical Model

The classical variational framework for Image Matchinghs following [ 1, 3, 12, 37, 44,
64]. LetQ) be a connected and open sefR8fand/’ andI' be two images defined dn using
interpolation. Let us denote [y the set which is the closure 6f (with respect to the euclidean
norm of R?) and contains the sét and its boundary. LekV, be a space composed of smooth
functions mapping? onto itself. Let us denote bg/g the geometric deformation af that is
induced by the element of W, :

Ve, Ij(z) =10 ¢(x).

MatchingI® and " consists of finding an elementwhich is such that the deformed imagg
is “similar” to I'*. This is expressed in terms of an inverse problem [ 1, 3, 1243764]:
Model 1 Find an element ofV; which minimizes an energk of the following form:

1
Mw) = 5 Aa(u,u) + 311 ', ®
with some conditions on the boundary(afin this energy definition, the parameter belongs

to R* . The variableu belongs toW;. It is equal to¢ — Id, whereld is the identity map of
W, (i.e.Vx € Q,1d(z) = z) . Itis the displacement field associated to the deformatichhe



function| - | denotes the usual quadratic norm a&(Q; R), i.e.:
12, = /IQ(x)d:r.
Q

The energy in equation (1) is composed of two terms. The skt@ym, which is weighted by
the parametet;, depends on the images. The more similar the imalgasmdl1 are, the lower
this term is. It introduces an intensity-based matchingst@mt into the model. The first term
is a smoothing term which ensures that the problem is wededaand that solutions are non-
degenerate solutions. Its design is usually based on a sinargy of the continuum mechanics.
Inspired by the theory of linearized Elasticity [ 14], we defithe strain energy as in [ 45]

Aq(u,v) = (Lu,v)q = / Lu(z) - v(z) dz, (2)

for anyu,v € Wi, where(-, -)q is the usual scalar product dit(Q; R?) and L is the following
operator

Lu = —div{\ tr(e(u))ldy + 2 pe(u)}. (3)

where\ andy; are two positive values called the Lame coefficieids; is the identical matrix
of size2 x 2 ande(u) is the linearized strain tensay2(Vu® + Vu). The elastic smoothing
term is suitable for the registration of images which do rentéhlarge geometric disparities. In
the mammogram application, it ensures that problem saiatéwe homeomorphisms. An appli-
cation of model 1 to a mammogram pair is shown in figure 1; tkaple will be commented
further in section 4.

2.2. Region-Matching With Fixed Boundary Conditions

Unlike the previous model, the model presented in this sedbcuses on regions of interest.
The framework is the following. Let us assume that the imadesnd /! have single regions
of interest which are respectively located on the conneatetlopen subset3, and(2; of (.
This means that for each image, the domain can be segmentee iregion of interestl, or
2,) and the backgroundX — Q, or 2 — ). Let us denote by, andoS?, the boundaries of
Qy and(), respectively. We assume that the contafly andoS2, were previously extracted
and matched. Lep, (or Id + u,) be a function defined oft; and mapping the coordinates of
0§, onto those 0b¢2,. In order to focus on the regions of interest, the minimaproblem is
not defined oV, (see section 2.1) but on a spadé which is composed of smooth functions
mapping);, onto),. The inverse problem is stated as follows [ 45, 47]:
Model 2 Find an element oV, which minimizes an energj of the following form:

1 gl
Jo(u) = 5 Ag, (u,u) + |13 = I'3,, (@)

Lif M is a2 x 2-matrix, thentr(M) is equal toM7; + Mas. If m is a smooth function mapping into
the2 x 2-matrix set, then the value dfiv{mn} at a pointz of (2 is a bidimensional vector having thié
component equal t8,;, m(z);1 + Oz, m(z);2.
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Figure 1. (a) The source imagde, (b) the geometric deformatioff of 1° after the application
of model 1, (c) the target imageé. Images (a) and (c) are mammograms of left and right breasts
(source: MIAS database [ 55]).

with the following non-homogeneous Dirichlet boundaryditons:
VaedQ, ulz)=muy(zr) = go(z) — .

The terms of energy, have the same definitions and play the same roles as thosemgjyen
J1 in model 1. However, they are not defined on the whole dorf¥aiut only on the region of
interest(2,. Besides, the boundary conditions are specific to the reggbmterest and based on
a known matching of their contours. An application of modéd 8hown on figure 5.

2.3. Region-Matching With Free Boundary Conditions

The model presented in this section focuses on the regiansapést. But, unlike the previous
model, the problem is defined with free boundary conditibtence, the problem is not defined
on W, (see section 2.2) but on a spadg which is composed of smooth functions mapping
ontoR?. The inverse problem is defined as follows [ 46]:

Model 3 (first formulation) . Find an element ofV; which minimizes an energy; of the
following form:

= 1 1
Jow) =5 Ag, (wu) + 0 51— 'y +5% [ S(I°@)Dd, (5)
Q—p(h1)
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Figure 2. A schematic picture of region-matching with freeibdary conditions.

with free boundary conditions a#f?;.

In the energy definition, the weighting parametersand~, both belong tdR*. As in models

1 and 2, the energy has a matching and a regularity term. lalsasa term which depends on
image!°. This term is defined on a regidh — ¢(2;) which is expected to be the background
of I° (see figure 2). It is a term which constraifgo map points of2; out of the background
domain ofI°. For reasons that will appear next, it will be referred assbgmentation term. An
application of model 3 is shown in figure 5.

Design of S. Assume that the imagf can be robustly segmented using a threshold; that is
to say there exists a valugsuch that1°(z))? < n if and only if z belongs to the background
of the imagel®. Then,S can be defined as a smooth distribution function approximgatin a
bounded interval the function that is equabton (—oo, n[ andl on |, +o00). The value ofS at a
pointr of R may be interpreted as the conditional probability for a pixaot to be on the image
background knowing that/’(z))? is equal tor. In the case where the segmentation threshold
is not accurate, the design Sfcan be based on an empirical estimation of these probailiti
For instance, in the mammogram application, these praobiabibre estimated using an image
I'* for which segmentation is known. The functiSris a smoothed version of the histogram of
the image(7')? evaluated over the domain,. The typical shape of the estimated functichs
is shown in figure 3.

Segmentation of/°. Contrarily to model 2, a preliminary segmentation of theioegof
interest in/? is not needed for the problem formulation. A segmentatiofi’dé obtained after
the problem resolution: the contour is given by the imag#,) of 02, by a functiony which
minimizes the energy. Let us also remark that the unkno(a2, ) is a parametrized curve and
that, from the point of view of this unknown, model 3 is closedlated to active contour models
[ 15, 16, 17, 30].

An equivalent problem. Assuming some regularity conditions (the elementd V5 belong
to the Sobolev hilbertian spatée H'(Q;; R?) [ 14] and are such thatet(V ¢) > 0 on (), it
can be seen that

2In the definition of the Sobolev space, it is assumed thatdnesdh boundary(2; is continuous. Thanks
to a contour smoothing, this assumption is true in pracsee; more details in section 4.2.



[ S @))de = [ S(1°@))de ~ [ S(U3())?) det(V) da, 6)

Q-¢()

where the real valuéet(V ¢) is the Jacobian of the functiafh Thus, since the first term on the
right does not depend af the previous minimization problem can be restated in tHewong
equivalent way:

Model 3 (equivalent formulation) Find an element ofV; which minimizes an energl which

is of the following form:

To(u) =5 Aoy (u,w) + LI~ '3, — 5 [ S(I3())?) det(V6) d, ™
1951

with free boundary conditions af?;.
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Figure 3. Typical shape of estimated functighémodel 3).

3. Numerical Solution

In this section, a gradient descent algorithm is designedhi® numerical resolution of the
problem of model 3. In section 3.1, the energy is derived Arditgorithm is expressed in terms
of a dynamic system. In section 3.2, we propose a spatialedization of the dynamic system
using the Galerkin method. In section 3.3, an initializatioethod is described. In section 3.4,
a multigrid implementation of the algorithm is designed.

3.1. Gradient Descent Algorithm
The Frechet derivative of the enerdy (equation (7)) at a point of W; is as follows: for all
vin Ws

dJ3|u(U) = AQl (U, U) + ’71<(I<2 - Il) ng ) U>Q1 (8)



2y / det(V$)S'((I9?)VIS - vda — 7, / S((19)2)tr(cof (V)" - V) d,

wherecof (M) is the cofactor matrix of a matrix/ (cof (M) = det(M)M~"). Moreover, by a
Green formula [ 14],

/ S((19)%) tr(cof (V)" - Vv) da = — / div{S((19)2) cof (V$)"} - v da. 9)

Recall that the gradier¥ J of an energy/ at a pointu with respect to an inner produ¢t -) is
given by the elemeri¥ J, which is such that, for ald,

(Vidy, v) = dJj, (v)

Thus, from equations (8) and (9), it comes that the gradiéenergy./; with respect to the
inner productdg, (-, ) is

Visu=u— L7 F((t)), (10)
wherel is the operator defined by equation (3) ands the following mapping:

F(¢)=—m Iy — 1) VI
+2 7, det(Ve) S'((19?) VIO — 7 div{S((I9)?) cof (V)" }. (11)

Thus, the gradient descent of energyycan be expressed in terms of the following dynamic
system:
Algorithm 1 (gradient descent) The gradient descent is

du

Vi<0, —
T odt

(t) = —u(t) +9(t) and wu(0) = My, (12)

where the initial deformatio/, will be defined in section 3.3, and at each timeé(¢) is the
solution of the following PDE (Partial Derivative Equatipn

Lé=F(g(t)), (13)
with ¢(t) = Id + u(t) and F’ defined as in equation (11).

3.2. Algorithm Discretization

For the implementation of algorithm 1, equation (13) is titized following the Galerkin
method [ 13]. First, it can be noticed that equation (13) renally equivalent to the variational
equation:

Ve W, AQ1 (67 U) = <F(¢(t))7 U>Q17 (14)

whereF is defined in equation (11). We choose a spa¢eof dimension, which is included
in W; and spanned by a finite family of functions with compact suppe will denote by
the functions of this family, wheréis an index varying in a finite sdt, of sizeh. In order



to approximate the solution of equation (14), we findAit the solution of the approximate
variational equation:

Ve Wha AQl (67 U) = <F(¢(t))a U>Ql' (15)
The solution of this equation is

i =3l (16)

JEL,

where the coefﬁcientﬁf are the solution of the linear system:

Vi€ In, Y B Ae, (U5, 07) = (F(6(1), ¥7)ay (17)

JEL

In order to design the approximation spad®¥, the set?, is decomposed inth/2 fixed-size
non-overlapping squares. We definé as the space formed by the functions thatGten 2,
and polynomial on each of these squares. The design of tidarfamily {1/ },c;, is based
on spline functions.

When decomposed, the domdin may be slightly approximated near the boundaries. This
may cause segmentation inaccuracies. However, theseuna@tes are taken into account in
model 3 via the estimation ¢f (see section 2.3).

3.3. Initialization Step

Unlike model 2, the contour match is not used for the designadel 3. However, it is worth
using it to have a better initialization of the dynamic systélence we define the displacements
M, in equation (12) as the solution of the problem in model 2 wheis equal to zero. The
displacementsl/, are the same as those which are obtained at the initializatiep of the
algorithm of model 2 [ 45, 47]. Let us denote by, the space composed of the functions of
W, (see section 2.2) and equal to the identity midpn 0<2,. The displacement’/, are equal
to uy + dg, Whereu, is defined in section 2.2 anfj is the solution inW, of the following
variational equation:

VU € W(), AQl ((5, U) = _AQI (Uo, U). (18)

Using the Galerkin method (see section 38@)can be approximated by the displacemeijts
which are found as follows:

So=_ Blov} € W, (19)

JEIn
where the coefficients!, are the solution of the linear system
Vi€ L, Y Bl Aay (41, 0F) = —Ag, (uo, ¥} (20)
1 h>s 5,0 1921 i Vi Q4 Ug, i/
JEIL

3.4. Multigrid Implementation
In order to lower computation times and obtain better miastion results, we adopt a
multigrid implementation approach together with a coamséne strategy. We define a series
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{whiky, ., of embedded subspaces having the properties describectiorsa.2:
Wh(l) C - th(k) C v CW3.

The dynamic system is discretized with respect to time uiegeuler method. We obtain the
following resolution scheme:

Algorithm 2 (multigrid implementation)

Initialization: u(0) = ug + o¢ ",

whereu, is defined in section 2.2 an™ is the solution in a spaceV ™ of equations (19)
and (20).

kB Iteration (k > 0) : w(k + 1) = u(k) + € §(k),

wheree is a small positive value andl(k) is the solution inV"*) of equations (16) and (17)
with ¢ equal tok.

4. Application to mammogram pairs

In this section, we apply the different models describedeictisn 2 to mammogram pairs.
In section 4.1, the application context and goal are preskemn section 4.2, some preliminary
remarks are given about preprocessing, parameter chaicesmammograms used. Section 4.3
gives some evaluations and comparisons of the algorithfoqpeances based on simulated
mammogram pairs. In section 4.4, we illustrate the algorigtpplications to real mammogram
pairs.

4.1. Application Context and Goal

Radiologists use several methods to analyze mammogrartiefdetection of abnormalities
[ 56]. One of these methods consists of seeking deviatiam fiormal breast symmetry by
comparison of left and right breast mammograms (same vigjleah. This method is helpful
to locate abnormalities which are difficult to detect basadsimgle image analysis. As an il-
lustration, comparing bilateral mammograms of figures 4)lapd 4.1 (b), a significant bright
region asymmetry can be observed in the circled area. Fogusi this asymmetry area in the
right mammogram, a small bright region which indicates adu(a spiculated mass) can be de-
tected. This tumor contrasts poorly with the surroundisgues and would have been difficult
to locate using only the right mammogram. A detection apghnoghich is similar to the asym-
metry approach consists in looking for abnormal temporaingfes in different mammograms
of the same breasts (same view angles) .

The comparison of bilateral or temporal mammogram pairdss an approach for the de-
sign of CAD (Computer Aided Diagnosis) systems devoted &attomatic tumor detection
(see [ 2, 21, 62] for CAD in mammography). The techniques Wwiatlow this approach can
be classified into two categories. The first type of techrsqcempares regions of mammo-
grams [ 9, 31, 33, 34, 42, 59, 60, 61, 63]. The main difficultga@mtered in the design of
such a technique is the segmentation and matching of manamogggions of interest. The
second kind of techniques compare locally mammograms witheing regions of interest |
23,29, 36, 40, 39, 45, 47, 48, 49, 51, 53, 54, 66, 67, 68]. Tha prablem of this approach is to
compensate for normal mammogram differences which ardlyogianilar to abnormalities and
generate high false-positive rates. These normal diffaercan be due to acquisition process
condition changes, breast positioning and breast compressvel variations and anatomical
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Figure 4. A pair of bilateral mammograms showing an abnorsgmmetry.

or histological variations. Differences resulting fromgacsition condition changes are often
very sharp in temporal mammogram pairs. They can be compeh$ar by a mammogram
normalization [ 24, 25, 28, 33, 35]. Differences due to brgasitioning can be easily compen-
sated for by an alignment procedure which involves rotatind translation and are based on
breast contours [ 23, 36, 53, 54, 66, 67]. The effects of therofactors (breast compression
level, histology and anatomy variations) on mammogram aggee are not well-known; in
particular, modeling compression effects is an importartt quite recent topic of research [
4,5, 6, 25, 26, 27, 32, 43]. For differences due to the threieféators to be compensated for, it
is necessary to register pairs of mammograms. Main worksammogram registration can be
foundin[ 29, 36, 40, 39, 41, 45, 47, 48, 50, 52]. These workewdéscussed in introduction.

In mammograms, textures and finest details might be veryndiilss from one image to the
other. Hence mammograms cannot be registered at finesssgales paper concerns only the
registration of normal structures which are present in magmams at a coarse scale (essen-
tially, muscles and salient bright regions of breasts). Tdwmgstration aim is to compensate
accurately for differences between the coarse structurds@nsequently, to enhance differ-
ences due to small tumors. Our final goal is to detect tumansammograms by analyzing the
registered mammogram differences and the deformatiorsfidlde tumor detection is beyond
the scope of this paper. The interested readers may find nedadsland some trials based on
model 2 in [ 45].
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4.2. Some preliminary remarks

The next experiments are based on bilateral mammogramyplick are shown in figures 12
(a) and 12 (b), figures 13 (a) and 13 (b) and figures 14 (a) and)1Zljese images comes from
the MIAS database [ 55] and have a resolutio2@f microns. These image pairs were chosen
in the different classes of the database. As a consequdredre¢ast aspect is very different
from one pair to the other. In the first pair, the aspect is @rse” type (bright aspect), in the
second one, it is of “fatty” type (dark aspect) and in thedhone, it is of “glandular’ type
(between fatty and dense aspects).

In each mammogram, the breast region was automatically esetgwh. The segmentation
technique is based on a threshold which is the value of thelgkel corresponding to the first
peak in the smoothed histogram of the image. After threshg]dhe biggest connected region
(the breast) is located. The breast contour is smoothed asirpproximation technique based
on B-splines [ 19].

The registration models are applied to images which aresecgpproximations of the origi-
nal mammograms (see section 4.1). In order to obtain themges) mammograms are smoothed
using an approximation technique based on B-splines [ 1]9, 45

In the next experiments, the value of the weightf the intensity-based registration term
in models 2 and 3 is fixed at The Lame coefficientd andy of the regularity term (equation
2) are fixed atl0~'? and500 respectively. These values are fixed using the Poissonuratiul
the Young modulugr. The Lame coefficientg and \ are related tar and £ by equations
w = 2(1@) and )\ = (Hyﬁﬁ [ 14]. The Poisson ratio takes values]in0.5[. When far
enough from.5, variations of the Poisson ratio values does not affect magram registrations
obtained using model 2 [ 45]. The Poisson ratio value is fixédrarily at 10~*°. In models of
section 2, the Young modulus can be interpreted as a weigthieofegularity term. We fixed
its value as follows. We apply model 2 to the first mammograin wah different values of
the Young modulus. We choose the lowest value which enablegytster significantly the first
mammaogram pair without obtaining a singular solutidh £ 10%). Despite the mammogram
aspect differences outlined above, the selected valugs, fbiand~; turned out to be suitable
for the application of models 2 and 3 to the three image page Eection 4.4). This suggests
that parameters could be chosen optimally for the appboati models to mammogram pairs
of a same database.

The algorithms of models 2 and 3 were implemented on a PC Reethium Il 600 MHz.
The computation time of both algorithms is approximatelg game. It is betweeh and 8
minutes when applied to mammograms having approximat&g00 pixels on average.

4.3. Application to simulated mammogram pairs

Couples of images in figures 5 (a) and 5 (d), figures 6 (a) and &r{d figures 7 (a) and 7
(b) are three simulated mammogram pairs. In these simutsid(7°, I}), I} is a geometric
deformation of/® (I} = I° o ¢*) obtained with a known function*. The functionsy* were
obtained after application of model 2 to the original mammnaog pairs shown in figures 12 (a)
and (b), figures 13 (a) and (b), figures 14 (a) and (b), respagti

Model 2 was applied to each simulated image p&ir I}}) with the exact initialization derived
from ¢*. In each case, a solution denoteddy was obtained. As can be seen in figures 5 (b), 6
(c)and 7 (c), the image pairs were almost perfectly regéstbly model 2. The image differences
were respectively lowered 180.8, 80.5 and79.9 percent and the mean distances between the
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Figure 5. Application to a first simulated mammogram pai):Tlae source imagé’, the geo-
metric deformation/) of I° after the application of (b) model 2 and (c) model 3, (d) thgea
imageTI]. The target imagé, was obtained by applying a deformatighto the source image
I°(I} = I° o ¢*).

algorithm solutionp,.; and the exact mapping were respectively.8, 5.4 and4.3 pixels. The
image registration benefits from the region-specific camsts: Model 1 lowered the image
differences by only8, 70 and64.3 percent, respectively (for a more extensive comparison of
models 1 and 2, the interested reader may refer to [ 45]).ihdbntext, model 2 is the most
relevant among the three models described in section 2 iedeoundary conditions are exact.
Using model 3 withy, = 1000, the image differences were respectively loweredrBy77.2
and77 percent.

For each simulated mammogram pair, we simulate five wrortgliziation functionsp, de-
fined on the breast contour @f (see sections 2.2 and 3.3). Typical wrong initializatiores a
shown in figures 8 (a) and 8 (b). Comparing the yellow and pinkd, it can be seen that,
these initialization functions do not correctly map inte threast contour id°. Models 2 and
3 were applied to the paird®, I') with the wrong initialization functions. The mean results
for the three pairs are shown in table 1. In all cases, it canliserved that the registration
performance of model 2 is drastically reduced due to théaiigation errors. With wrong ini-
tializations, the image differences are respectively i@addy only69.9, 66.1 and64.7 percent
on average. Moreover, the solution regularity is decreabled regularity term reaches the mean
values344.5, 506.5 and309 with wrong initializations whereas they were onily7, 450 and260
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Figure 6. Application to a second simulated mammogram f(&jfThe source imag¥’, (b) the
targetimagd. The geometric deformatioig of I° after the application of (c) model 2 and (d)
model 3. Images (a) and (b) form a simulated pair of mammograte target imagé!' was
obtained by applying a deformatiert to the source imagé® (1! = I1° o ¢*).

with the exact initializations. These regularity decresaaee due to some compressions or di-
latations which occur near contours. Such compressionglgaations are shown in figures 9
() and 10 (a). They are caused by the opposition of the twistragon constraints (the one of
the fixed and wrong boundary conditions and the one of thegite-based energy term).

Model 3 is more robust than model 2 to the initialization esrdndeed, the registration scores
of model 3 are higher than those of model 2 (ov&ipercent on average in all cases) and its
solutions are smoother. Comparing figures 9 (a) and 9 (b) guodefs 10 (a) and 10 (b), it can
also be observed that the compressions and dilatationgimeaontours are less pronounced
in the solutions of model 3 than in those of model 2. The ralest of model 3 is further
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Figure 7. Application to a third simulated mammogram pai): The source imagé’, (b) the
targetimagd}. The geometric deformatioig of 1Y after the application of (c) model 2 and (d)
model 3, (d) the target imagé. Images (a) and (b) form a simulated pair of mammograms. The
targetimagd ! was obtained by applying a deformatighto the source imaggf’ (I} = 1°0¢*).

attested by the comparisons of the algorithm solutions hadeference solution,.; (solution
of model 2 without initialization errors). Means and stambdeviations of distances between
the solutions obtained with different models atg: are shown in table 2 for each simulated
cases. It can be seen that model 2 is more sensitive to indtiEin errors than model 3. In
all simulated cases, means and standard deviations obdtiminenodel 2 are higher than those
obtained for model 3 . Standard deviations for model 3 are Mwadel 3 is stable when the
initialization varies.

Besides, in table 1, it can be noticed that performances afein® improves as the weight
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Figure 8. Correction effect due to the segmentation term @deh3. Figures (a) and (b) show
two different examples of segmentation results obtainéer aihage registration with wrong
initialization. In figures (a) and (b), the yellow line is therrect segmentation of the breast and
the pink one is the segmentation which is induced by the whoitiglization mapg,. The blue
and red lines are the segmentations that are induced by lingss of model 3 withy, equal

to 0 and1000 respectively.

~- of the segmentation term increases. When model 3 is usechwikqual to1000, not only
registration scores are good and close to those of solufignbut also standard deviations are
low. This shows that the segmentation term in model 3 is afaftrobustness.

Moreover, mammograms are much better registered near titewws wheny, is high. As an
illustration, we can compare image differences in figuregadland 11 (b). Figures 8 (a) and 8
(b) show the segmentations 8f which are induced by the algorithm solutions. It can be seen
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Figure 9. First simulation case. Images (a) and (b) show amele of images)(¢2,) of the
tessellated breast domdin in ! by the solutiong) which are obtained using model 2 (image
(a)) and model 3+, = 1000) (image (b)) with a same wrong initialization. In image (a),
strong compression due to initialization errors can be nkegkenear the nipple position.

that the segmentation obtained with model 3 whers high is close to the right segmentation
whereas the segmentation obtained with model 3 wheis low remains close to the wrong

initialization segmentation. In model 3, the segmentatsmm is necessary for the initialization

errors to be compensated for.

In this section, the experiments were done using three mayrants with different breast
aspects (see section 4.2). Despite these differencesstiawior and the performances of model
3 are equivalent on the three simulated pairs for each valubeoparametery,. Results in
tables 1 and 2 suggest that the valueypttould be set ta 000 for the application of model
3 to mammogram pairs of the MIAS database. When the paramegterequal t01000, the
algorithm obtains the best mean registration score andaldestvhen the initialization varies
(the standard deviations mentioned in tables are low).

In the previous experiments, simulations were only witlpezs to geometric deformations.
More general simulations would include anatomic variagid®uch experiments are beyond the
scope of this paper. The interested reader can find sevamalatied experiments about anatomic
variations due to tumors in [ 45].
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Figure 10. Third simulation case. Images (a) and (b) showxamele of image®(2;) of the
tessellated breast domdin in ! by the solutiong) which are obtained using model 2 (image
(a)) and model 3, = 1000) (image (b)) with a same wrong initialization. In image @}trong
dilatation due to initialization errors can be observedriiea contour in the top of image.

4.4. Application to real mammogram pairs

Comparing bilateral mammogram in figures 12 (a) and 12 (bjrég 13 (a) and 13 (b) and
figures 14 (a) and 14 (b) and observing image differences urdgy15 (a), 16 (a) and 17 (a),
it can be noticed that mammograms have a lot of important astnes, due in particular to
breast shape variations. Next, looking at source imd§es figures 12 (a), 13 (a) and 14 (a)
and at their geometric deformatioﬁ%in figures 12 (c),13 (c) and 14 (c), it can be seen that the
initialization step changes breast shapeg’inrAs observed in figures 15 (b), 16 (b) and 17 (b),
these changes significantly compensate not only for the mstries near the breast contours
but also for some inner differences. However, due to pregssing step inaccuracies and to
the algorithm discretization (see section 3.2), the breastour asymmetries are not perfectly
compensated for. For instance, in figure 16 (b), it can berobdea dark border in the upper
part of the contour area. Moreover, several important imlierences remain in the registered
image pair.

Some of these inner differences are due to shape and locaitations of bright salient
regions of images. Comparing pairs of deformed images indgi2 (b) and 12 (d), figures 13
(b) and 13 (d), figures 14 (b) and 14 (d) and looking at imagdgafes 15 (c), 16 (c) and 17
(c), it can be seen that these particular differences argpeosated for using model 2. However,
several differences still remain in the pair of images reged by model 2. Some of these
differences are caused by breast tissue disparities amibtée corrected by any geometric
deformation.



Case 1 Case 2 Case 3
Model Means| Std Dev.|| Means| Std Dev.|| Means| Std Dev.
Initialization | Rs. | 19.7 % | 18.4 28.2%| 253 25.8% 7.8
Step RI. | 2955 | 124.1 424 512.8 256 145
2 Rs.| 69.9 % 2.4 66.1 % 6.8 64.7% | 14.4
RI. | 344.2 | 139.2 506.5 | 460.2 309 141
3 Yo Rs.| 74.1% 3.9 73.6 % 6.9 75.1% 1.6
=0 RI. | 301 129.8 481 335.8 452 151
Y2 Rs.| 75.5% 3.2 75 % 5.1 75.8% 1.2
=500 | Rl | 298.6 | 130.0 493 329.5 449 148.7
Yo Rs.| 76.9 % 1.8 75 % 4.9 76.6 % 1.3
=10 | Rl | 300 129.1 495.2 | 327.3 448 149
Y2 Rs.| 76.1% 11 75.1% 4.1 78.4 % 2.2
=10* | Rl | 313.8| 128.2 563 297.7 436 136

Table 1

Comparison of the applications of models 2 and 3 with wrorigiailizations. The rows “Rs.”
give the image registration scores (in percentage of th@lirquadratic difference between
1° and'): 100 - (|1° — I']* — |13 — I'|*)/|1° — I'[*. The rows “RI.” give the values of the
regularity term (equation (2)). The column “Means” gives tmeans of the registration and
regularity scores of the algorithms with five different wepimitializations and the column “Std
Dev” the standard deviations of these scores.

However, these registrations can be improved. In particutathe registered image differ-
ences (figures 15 (c), 16 (c) and 17 (c)), we still observe dmeauir differences which remained
after the initialization. These differences cannot be cengated for using model 2 due to the
fixed boundary conditions. Besides, some important diffees remain near contours; for in-
stance, see differences near the nipple position in figuke(g)Lor in the upper part of image
in figure 16 (c). Model 2 is unable to correct such differenfasthe following reason. The
differences increase the intensity-based registratiorsitaint in a way that conflicts with the
contour-based constraint. As can be noticed in figures 18 jb) and 20 (b), constraint con-
flicts generate strong compressions or dilatations in iiffee areas. Further difference correc-
tions are not possible because they would increase conpmeg®r dilatations) and regularity
term values (equation (2)).

These results are in sharp contrast with those of model 3.a8&Irthat, in this model, the
boundary conditions are free. Consequently, the contoostcaint of model 2 is less stringent.
This constraint relaxation permits a better registratibthe images near the breast contours.
Looking at deformed images in figures 12 (e), 12 (b), 13 (e)(f1, 314 (e) and 14 (f) and at
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model 2| model 3| model 3
(72 =0) | (72 = 1000)

First simulation case

Mean distances 9.6 7.1 6.1

Distance standard deviations 7.1 3.2 3.1

Second simulation case

Mean distances 9 7.7 7.6

Distance standard deviations 4.6 3.3 3.2

Third simulation case

Mean distances 12.6 9.6 8.8

Distance standard deviations 8.6 1.8 1.2

Table 2
Means and standard deviations of distances betweegr{solution of model 2 with the exact
initialization) and solutions obtained using differentaets with initialization errors.

registered image differences in figures 15 (d), 15 (e), 161@)e), 17 (d), 17 (e), it can be ob-
served that model 3 (with different values of weigh} succeeds in compensating significantly
for the differences near contours. Moreover, as can be véden figures 18 (c), 18 (d),19 (c),
19 (d), 20 (c) and 20 (d), the deformations are less compdeasé dilated near contours and
smoother than the ones obtained with model 2. As can be ax$enfigures 15 (d), 15 (e), 16
(d), 16 (e), 17 (d) and 15 (e), model 3 without the segmentdagan ¢, = 0) may map some
parts of the breast ifi! into some parts of the backgrounditwhereas model 3 with a strong
segmentation constraint keeps mappings inside breastegf/°.

5. Conclusion

Based on a variational approach, we formulated a new matt@hanodel for mammo-
gram registration. An energy minimization problem was praésd. A multigrid gradient de-
scent algorithm was designed for the numerical resolutfdhe problem. As in [ 45, 47], the
model focuses on the matching of regions of interest. It etsobines segmentation-based and
intensity-based constraints. However, the energy miration problem is not posed with fixed
boundary conditions but with free boundary conditions. Bter, the energy has a new regis-
tration constraint. The performances of both models wenegared on simulated mammogram
pairs. It was shown that the new model is more robust to theliziation inaccuracies than
the previous one. The ability of the new model to compensatéhiese inaccuracies during
the matching process was also illustrated. Both models eygpéed to real mammogram pairs
in order to illustrate the interest of the new model in thelaapion context. Although it was
designed for the mammogram registration, the model is genecan be applied whenever the
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Figure 11. First simulation case. Figures (a) and (b) shavahsolute differences between
imagesI! and I° o ¢ (first simulation case) where are the solutions found using model 3
with v, = 0 (figure (a)) and withy, = 1000 (figure (b)).[black=high differences, white=low
differences]

images have single regions of interest. We believe thabged common cases, the new model is
better suited for image registration than the usual intgdsased models. In particular, it could
be powerful for the mapping of brain anatomical templatete amdividual anatomies.
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the target imagé'. The geometric deformatioig of 1° (c) after the initialization step, after the
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the target imagé'. The geometric deformatidg of 1Y (c) after the initialization step, after the
application of (d) model 2, (e) model 3 with equal to0, (f) model 3 with~, equal to1000.
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Figure 14. Bilateral mammograms # 047/048 (MIAS databasg)The source imagé’, (b)
the target imagé'. The geometric deformatioig of 1° (c) after the initialization step, after the
application of (d) model 2, () model 3 with equal to0, (f) model 3 with~, equal to1000.
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(@) I°, (b) the deformed imagé)} after the initialization step, (c) the deformed imaljeafter
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Figure 17. Bilateral mammograms # 047/048.The absoluferdifices between imagé and
(@) I°, (b) the deformed imagé) after the initialization step, (c) the deformed imaljeafter
the application of model 2, (d) the deformed ima@eafter the application of model 3 with,

equal to0, (e) the deformed imagt‘é}j5 after the application of model 3 with, equal to1000
[black=high differences, white=low differences]
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Figure 18. Bilateral mammograms # 035/036. (a) The tegsellareast domaif; in I*, the
image ¢(€2;) of Q; by the mappingy obtained with (b) the application of model 2, (c) the
application of model 3 with, equal to0, (d) the application of model 3 witl, equal to1000.
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Figure 19. Bilateral mammograms # 077/078. (a) The tegsellareast domaif; in I*, the
image ¢(€2;) of Q; by the mappingp obtained with (b) the application of model 2, (c) the
application of model 3 with, equal to0, (d) the application of model 3 witl, equal to1000.
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Figure 20. Bilateral mammograms # 047/048. (a) The tegsellareast domai; in I*, the
image ¢(€2;) of Q; by the mappingy obtained with (b) the application of model 2, (c) the
application of model 3 with, equal to0, (d) the application of model 3 witl, equal to1000.
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