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1. Introduction

Image Registration has been an active topic of research for over a decade. Its most famous
medical applications are related to brain imagery [ 57]. Forinstance, Image Registration is
used in computational anatomy as tool for analyzing brain structures by adapting an anatomical
template to individual anatomies [ 11, 12, 20, 22]. However,Image Registration is a general
problem which arises whenever several images are to be compared or data from several images
to be fused.

As can be seen though the complete survey in [ 38], a lot of workhas been done in Im-
age Registration since the early 80’s. The registration techniques are usually divided into two
groups. Techniques of the first kind use features such as points and curves to match the images
[ 7]. Such techniques require that features be extracted prior to registration. Techniques of the
second kind use image gray level values. Among these intensity-based techniques, some are
non-rigid and based on the squared intensity difference minimization criteria [ 1, 3, 8, 10, 12,
18, 20, 37, 44, 64].

In [ 45, 47], F. Richard and C. Graffigne described an approachfor combining feature based
and intensity based registration constraints in a same mathematical model. The approach fo-
cuses on the mapping of regions of interest rather than the whole image matching. The model
consists of minimizing an intensity-based energy with somefixed boundary conditions (Dirich-
let) which are derived from contours of regions of interest (see section 2.2). In [ 45, 47], the
model was applied to mammograms. It was shown that thanks to the combined constraints the
computation time and the mammogram registration accuracy improved. However, model per-
formances depend on the quality of some preprocessing steps(segmentation of image regions of
interest and matching of contours). Indeed, since boundaryconditions are fixed, preprocessing
inaccuracies cannot be corrected during the matching process. Hence these inaccuracies may
decrease matching performances. Besides, Dirichlet boundary conditions constrain too strongly
the problem and may sometimes disrupt breast registrationsnear contours.

In this paper, our main contribution is the design of a new mathematical model which fixes the
drawbacks described above by combining region matching andsegmentation. As in [ 45, 47],
the model enables the matching of regions of interest. But, contrarily to the model in [ 45, 47],
the minimization problem is defined with free boundary conditions allowing to make evolution
in the segmentation of the region of interest. Consequently, the boundary conditions are re-
laxed and it becomes possible to compensate for preprocessing inaccuracies during the match-
ing process. Furthermore, some constraints are proposed inorder to compensate efficiently for
preprocessing inaccuracies and increase the model robustness.

The approach we propose in this paper is related to the ones described in [ 58, 65]. In [ 58,
65], a unified variational framework which enables to interleave segmentation and registration
is also designed. However, our approach differs significantly from the ones in [ 58, 65]. The
model in [ 65] deals only with rigid registration and does only have feature-based registration
constraints. The model in [ 58] deals with nonrigid registration but does not take into account
regions of interest for mapping one image onto the other.

In this paper, the new registration model is applied to bilateral mammogram pairs (mammo-
grams of left and right breasts of same women). The context ofthis application is related to
the design of automatic tumor detection systems for the CAD (Computer Aided Diagnosis).
It will be described in section 4.1. Mammogram registrationis a challenging problem. Several
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mammogram registration techniques are only based on breastcontours [ 29, 36, 40]. Thus, these
techniques cannot succeed in registering correctly breastinteriors. In [ 39, 41, 48, 50, 52], some
authors attempted to register breast interiors using the Bookstein warping technique with inter-
nal control points [ 7]. Following such an approach, the mainproblem is to extract from both
mammograms points which are anatomically significant, sufficiently numerous and distributed
over the images and to match some extracted points of both images. The difficulty is to design
point extraction and matching techniques which are robust to factors which can change image
aspects (e.g. the breast compression level).

The registration approach proposed in this paper departs from the ones in [ 39, 41, 48, 50, 52].
First of all, the new model is not based on internal control points. Hence, the difficulty men-
tioned above is avoided. Secondly, thanks to intensity-based registration constraints, the model
can register breast interiors more accurately than models based on internal control points. Fi-
nally, the model takes into account regions of interest (i.e. breasts) and combines efficiently
intensity-based constraints with contour-based constraints in an unified mathematical frame-
work.

The new image-matching approach and its mathematical formulation is presented in section
2. In section 3, a multigrid algorithm is designed for the numerical resolution of the problem.
Illustrations and validations of the algorithm application to mammograms are given in section
4.

2. Models

In this section, three different image-matching problems are formulated. In section 2.1, the
formulation of the usual intensity-based problem is reminded. Sections 2.2 and 2.3 are both
devoted to the matching of regions of interest. In section 2.2, we recall the formulation of our
previous model [ 45, 47]. In section 2.3, the new model is presented.

2.1. The Classical Model
The classical variational framework for Image Matching is the following [ 1, 3, 12, 37, 44,

64]. Let
 be a connected and open set ofR2 andI0 andI1 be two images defined on
 using
interpolation. Let us denote by
 the set which is the closure of
 (with respect to the euclidean
norm ofR2) and contains the set
 and its boundary. LetW1 be a space composed of smooth
functions mapping
 onto itself. Let us denote byI0� the geometric deformation ofI0 that is
induced by the element� of W1:8 x 2 
; I0�(x) = I0 Æ �(x):
MatchingI0 andI1 consists of finding an element� which is such that the deformed imageI0�
is “similar” to I1. This is expressed in terms of an inverse problem [ 1, 3, 12, 37, 44, 64]:
Model 1 Find an element ofW1 which minimizes an energyJ1 of the following form:J1(u) = 12 A
(u; u) + 
12 jI0� � I1j2
; (1)

with some conditions on the boundary of
. In this energy definition, the parameter
1 belongs
to R+ . The variableu belongs toW1. It is equal to� � Id, whereId is the identity map ofW1 (i.e.8 x 2 
; Id(x) = x) . It is the displacement field associated to the deformation�. The
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functionj � j
 denotes the usual quadratic norm onL2(
;R), i.e.:jIj2
 = Z
 I2(x)dx:
The energy in equation (1) is composed of two terms. The second term, which is weighted by

the parameter
1, depends on the images. The more similar the imagesI0� andI1 are, the lower
this term is. It introduces an intensity-based matching constraint into the model. The first term
is a smoothing term which ensures that the problem is well-posed and that solutions are non-
degenerate solutions. Its design is usually based on a strain energy of the continuum mechanics.
Inspired by the theory of linearized Elasticity [ 14], we define the strain energy as in [ 45]A
(u; v) = hLu; vi
 = Z
 Lu(x) � v(x) dx; (2)

for anyu; v 2 W1, whereh�; �i
 is the usual scalar product onL2(
;R2) andL is the following
operator1Lu = �divf� tr(e(u))IdM + 2 � e(u)g: (3)

where� and� are two positive values called the Lame coefficients,IdM is the identical matrix
of size2 � 2 ande(u) is the linearized strain tensor1=2(ruT + ru). The elastic smoothing
term is suitable for the registration of images which do not have large geometric disparities. In
the mammogram application, it ensures that problem solutions are homeomorphisms. An appli-
cation of model 1 to a mammogram pair is shown in figure 1; this example will be commented
further in section 4.

2.2. Region-Matching With Fixed Boundary Conditions
Unlike the previous model, the model presented in this section focuses on regions of interest.

The framework is the following. Let us assume that the imagesI0 andI1 have single regions
of interest which are respectively located on the connectedand open subsets
0 and
1 of 
.
This means that for each image, the domain can be segmented inone region of interest (
0 or
1) and the background (
� 
0 or 
� 
1). Let us denote by�
0 and�
1 the boundaries of
0 and
1, respectively. We assume that the contours�
0 and�
1 were previously extracted
and matched. Let�0 (or Id + u0) be a function defined on
1 and mapping the coordinates of�
1 onto those of�
0. In order to focus on the regions of interest, the minimization problem is
not defined onW1 (see section 2.1) but on a spaceW2 which is composed of smooth functions
mapping
1 onto
0. The inverse problem is stated as follows [ 45, 47]:
Model 2 Find an element ofW2 which minimizes an energyJ2 of the following form:J2(u)= 12 A
1(u; u) + 
12 jI0� � I1j2
1; (4)1If M is a2 � 2-matrix, thentr(M) is equal toM11 +M22. If m is a smooth function mapping
 into
the2� 2-matrix set, then the value ofdivfmg at a pointx of 
 is a bidimensional vector having theith
component equal to�x1m(x)i1 + �x2m(x)i2.
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(a) (b) (c)

Figure 1. (a) The source imageI0, (b) the geometric deformationI0� of I0 after the application
of model 1, (c) the target imageI1. Images (a) and (c) are mammograms of left and right breasts
(source: MIAS database [ 55]).

with the following non-homogeneous Dirichlet boundary conditions:8 x 2 � 
1; u(x) = u0(x) = �0(x)� x:
The terms of energyJ2 have the same definitions and play the same roles as those of energyJ1 in model 1. However, they are not defined on the whole domain
 but only on the region of
interest
1. Besides, the boundary conditions are specific to the regions of interest and based on
a known matching of their contours. An application of model 2is shown on figure 5.

2.3. Region-Matching With Free Boundary Conditions
The model presented in this section focuses on the regions ofinterest. But, unlike the previous

model, the problem is defined with free boundary conditions.Hence, the problem is not defined
onW2 (see section 2.2) but on a spaceW3 which is composed of smooth functions mapping
1
ontoR2. The inverse problem is defined as follows [ 46]:

Model 3 (first formulation) . Find an element ofW3 which minimizes an energy~J3 of the
following form:~J3(u)= 12 A
1(u; u) + 
1 12 jI0� � I1j2
1 + 
2 Z
��(
1) S((I0(x))2)dx; (5)
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Figure 2. A schematic picture of region-matching with free boundary conditions.

with free boundary conditions on�
1.
In the energy definition, the weighting parameters
1 and
2 both belong toR+. As in models
1 and 2, the energy has a matching and a regularity term. It hasalso a term which depends on
imageI0. This term is defined on a region
 � �(
1) which is expected to be the background
of I0 (see figure 2). It is a term which constrains� to map points of
1 out of the background
domain ofI0. For reasons that will appear next, it will be referred as thesegmentation term. An
application of model 3 is shown in figure 5.

Design ofS. Assume that the imageI0 can be robustly segmented using a threshold; that is
to say there exists a value� such that(I0(x))2 < � if and only if x belongs to the background
of the imageI0. Then,S can be defined as a smooth distribution function approximating on a
bounded interval the function that is equal to0 on(�1; �[ and1 on[�;+1). The value ofS at a
pointr of Rmay be interpreted as the conditional probability for a pixel x not to be on the image
background knowing that(I0(x))2 is equal tor. In the case where the segmentation threshold
is not accurate, the design ofS can be based on an empirical estimation of these probabilities.
For instance, in the mammogram application, these probabilities are estimated using an imageI1 for which segmentation is known. The functionS is a smoothed version of the histogram of
the image(I1)2 evaluated over the domain
1. The typical shape of the estimated functionsS
is shown in figure 3.

Segmentation ofI0. Contrarily to model 2, a preliminary segmentation of the region of
interest inI0 is not needed for the problem formulation. A segmentation ofI0 is obtained after
the problem resolution: the contour is given by the image�(�
1) of �
1 by a function� which
minimizes the energy. Let us also remark that the unknown�(�
1) is a parametrized curve and
that, from the point of view of this unknown, model 3 is closely related to active contour models
[ 15, 16, 17, 30].

An equivalent problem.Assuming some regularity conditions (the elements� ofW3 belong
to the Sobolev hilbertian space2 H1(
1;R2) [ 14] and are such thatdet(r �) > 0 on
1), it
can be seen that2In the definition of the Sobolev space, it is assumed that the domain boundary�
1 is continuous. Thanks
to a contour smoothing, this assumption is true in practice;see more details in section 4.2.
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��(
1) S((I0(x))2)dx = Z
 S((I0(x))2)dx� Z
1 S((I0�(x))2) det(r�) dx; (6)

where the real valuedet(r�) is the Jacobian of the function�. Thus, since the first term on the
right does not depend on�, the previous minimization problem can be restated in the following
equivalent way:
Model 3 (equivalent formulation) Find an element ofW3 which minimizes an energyJ3 which
is of the following form:J3(u)= 12 A
1(u; u) + 
12 jI0� � I1j2
1 � 
2 Z
1 S((I0�(x))2) det(r�) dx; (7)

with free boundary conditions on�
1.
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Figure 3. Typical shape of estimated functionsS (model 3).

3. Numerical Solution

In this section, a gradient descent algorithm is designed for the numerical resolution of the
problem of model 3. In section 3.1, the energy is derived and the algorithm is expressed in terms
of a dynamic system. In section 3.2, we propose a spatial discretization of the dynamic system
using the Galerkin method. In section 3.3, an initialization method is described. In section 3.4,
a multigrid implementation of the algorithm is designed.

3.1. Gradient Descent Algorithm
The Frechet derivative of the energyJ3 (equation (7)) at a pointu of W3 is as follows: for allv in W3dJ3ju(v) = A
1(u ; v) + 
1h(I0� � I1)rI0� ; vi
1 (8)
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2 Z
1 det(r�)S 0((I0�)2)rI0� � vdx� 
2 Z
1 S((I0�)2)tr(
of(r�)T � rv) dx;
where
of(M) is the cofactor matrix of a matrixM (
of(M) = det(M)M�T ). Moreover, by a
Green formula [ 14],Z
1 S((I0�)2) tr(
of(r�)T � rv) dx = � Z
1 divfS((I0�)2) 
of(r�)Tg � v dx: (9)

Recall that the gradientrJ of an energyJ at a pointu with respect to an inner producth�; �i is
given by the elementrJu which is such that, for allv,hrJu; vi = dJju(v)
Thus, from equations (8) and (9), it comes that the gradient of energyJ3 with respect to the
inner productA
1(�; �) isrJ3u=u� L�1 F (�(t)); (10)

whereL is the operator defined by equation (3) andF is the following mapping:F (�) = �
1 (I0� � I1)rI0�+2 
2 det(r�) S 0((I0�)2)rI0� � 
2 divfS((I0�)2) 
of(r�)Tg: (11)

Thus, the gradient descent of energyJ3 can be expressed in terms of the following dynamic
system:
Algorithm 1 (gradient descent) The gradient descent is8 t < 0; dudt (t) = �u(t) + Æ(t) and u(0) = M0; (12)

where the initial deformationM0 will be defined in section 3.3, and at each timet, Æ(t) is the
solution of the following PDE (Partial Derivative Equation):L Æ=F (�(t)); (13)

with �(t) = Id + u(t) andF defined as in equation (11).

3.2. Algorithm Discretization
For the implementation of algorithm 1, equation (13) is discretized following the Galerkin

method [ 13]. First, it can be noticed that equation (13) is formally equivalent to the variational
equation:8 v 2 W3; A
1(Æ; v)= hF (�(t)); vi
1; (14)

whereF is defined in equation (11). We choose a spaceWh of dimensionh which is included
in W3 and spanned by a finite family of functions with compact support. We will denote by hi
the functions of this family, wherei is an index varying in a finite setIh of sizeh. In order
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to approximate the solution of equation (14), we find inWh the solution of the approximate
variational equation:8 v 2 Wh; A
1(Æ; v)= hF (�(t)); vi
1: (15)

The solution of this equation isÆh = Xj2Ih �hj  hj ; (16)

where the coefficients�hj are the solution of the linear system:8 i 2 Ih; Xj2Ih �j A
1( hj ;  hi ) = hF (�(t));  hi i
1: (17)

In order to design the approximation spacesWh, the set
1 is decomposed intoh=2 fixed-size
non-overlapping squares. We defineWh as the space formed by the functions that areC1 on
1
and polynomial on each of these squares. The design of the function family f hi gi2Ih is based
on spline functions.

When decomposed, the domain
1 may be slightly approximated near the boundaries. This
may cause segmentation inaccuracies. However, these inaccuracies are taken into account in
model 3 via the estimation ofS (see section 2.3).

3.3. Initialization Step
Unlike model 2, the contour match is not used for the design ofmodel 3. However, it is worth

using it to have a better initialization of the dynamic system. Hence we define the displacementsM0 in equation (12) as the solution of the problem in model 2 when
1 is equal to zero. The
displacementsM0 are the same as those which are obtained at the initialization step of the
algorithm of model 2 [ 45, 47]. Let us denote byW0 the space composed of the functions ofW2 (see section 2.2) and equal to the identity mapId on�
1. The displacementsM0 are equal
to u0 + Æ0, whereu0 is defined in section 2.2 andÆ0 is the solution inW0 of the following
variational equation:8 v 2 W0; A
1(Æ; v) = �A
1(u0; v): (18)

Using the Galerkin method (see section 3.2),Æ0 can be approximated by the displacementsÆh0
which are found as follows:Æh0 =Xj2Ih �hj;0  hj 2 Wh0 ; (19)

where the coefficients�hj;0 are the solution of the linear system8 i 2 Ih; Xj2Ih �hj;0 A
1( hj ;  hi ) = �A
1(u0;  hi ): (20)

3.4. Multigrid Implementation
In order to lower computation times and obtain better minimization results, we adopt a

multigrid implementation approach together with a coarse-to-fine strategy. We define a series



10fWh(k)gk2N of embedded subspaces having the properties described in section 3.2:Wh(1) � � � � � Wh(k) � � � � � W3:
The dynamic system is discretized with respect to time usingthe Euler method. We obtain the
following resolution scheme:
Algorithm 2 (multigrid implementation)
Initialization: u(0) = u0 + Æh(K)0 ,
whereu0 is defined in section 2.2 andÆh(K)0 is the solution in a spaceWh(K)0 of equations (19)
and (20).kth Iteration (k � 0) : u(k + 1) = u(k) + � Æ(k),
where� is a small positive value andÆ(k) is the solution inWh(k) of equations (16) and (17)
with t equal tok.

4. Application to mammogram pairs

In this section, we apply the different models described in section 2 to mammogram pairs.
In section 4.1, the application context and goal are presented. In section 4.2, some preliminary
remarks are given about preprocessing, parameter choices and mammograms used. Section 4.3
gives some evaluations and comparisons of the algorithm performances based on simulated
mammogram pairs. In section 4.4, we illustrate the algorithm applications to real mammogram
pairs.

4.1. Application Context and Goal
Radiologists use several methods to analyze mammograms forthe detection of abnormalities

[ 56]. One of these methods consists of seeking deviations from normal breast symmetry by
comparison of left and right breast mammograms (same view angles) . This method is helpful
to locate abnormalities which are difficult to detect based on single image analysis. As an il-
lustration, comparing bilateral mammograms of figures 4.1 (a) and 4.1 (b), a significant bright
region asymmetry can be observed in the circled area. Focusing on this asymmetry area in the
right mammogram, a small bright region which indicates a tumor (a spiculated mass) can be de-
tected. This tumor contrasts poorly with the surrounding tissues and would have been difficult
to locate using only the right mammogram. A detection approach which is similar to the asym-
metry approach consists in looking for abnormal temporal changes in different mammograms
of the same breasts (same view angles) .

The comparison of bilateral or temporal mammogram pairs is also an approach for the de-
sign of CAD (Computer Aided Diagnosis) systems devoted to the automatic tumor detection
(see [ 2, 21, 62] for CAD in mammography). The techniques which follow this approach can
be classified into two categories. The first type of techniques compares regions of mammo-
grams [ 9, 31, 33, 34, 42, 59, 60, 61, 63]. The main difficulty encountered in the design of
such a technique is the segmentation and matching of mammogram regions of interest. The
second kind of techniques compare locally mammograms without using regions of interest [
23, 29, 36, 40, 39, 45, 47, 48, 49, 51, 53, 54, 66, 67, 68]. The main problem of this approach is to
compensate for normal mammogram differences which are locally similar to abnormalities and
generate high false-positive rates. These normal differences can be due to acquisition process
condition changes, breast positioning and breast compression level variations and anatomical
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(a) (b)

Figure 4. A pair of bilateral mammograms showing an abnormalasymmetry.

or histological variations. Differences resulting from acquisition condition changes are often
very sharp in temporal mammogram pairs. They can be compensated for by a mammogram
normalization [ 24, 25, 28, 33, 35]. Differences due to breast positioning can be easily compen-
sated for by an alignment procedure which involves rotationand translation and are based on
breast contours [ 23, 36, 53, 54, 66, 67]. The effects of the other factors (breast compression
level, histology and anatomy variations) on mammogram appearance are not well-known; in
particular, modeling compression effects is an important and quite recent topic of research [
4, 5, 6, 25, 26, 27, 32, 43]. For differences due to the three last factors to be compensated for, it
is necessary to register pairs of mammograms. Main works on mammogram registration can be
found in [ 29, 36, 40, 39, 41, 45, 47, 48, 50, 52]. These works were discussed in introduction.

In mammograms, textures and finest details might be very dissimilar from one image to the
other. Hence mammograms cannot be registered at finest scales. This paper concerns only the
registration of normal structures which are present in mammograms at a coarse scale (essen-
tially, muscles and salient bright regions of breasts). Theregistration aim is to compensate
accurately for differences between the coarse structures and, consequently, to enhance differ-
ences due to small tumors. Our final goal is to detect tumors inmammograms by analyzing the
registered mammogram differences and the deformation fields. The tumor detection is beyond
the scope of this paper. The interested readers may find more details and some trials based on
model 2 in [ 45].
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4.2. Some preliminary remarks
The next experiments are based on bilateral mammogram pairswhich are shown in figures 12

(a) and 12 (b), figures 13 (a) and 13 (b) and figures 14 (a) and 14 (b). These images comes from
the MIAS database [ 55] and have a resolution of200 microns. These image pairs were chosen
in the different classes of the database. As a consequence, the breast aspect is very different
from one pair to the other. In the first pair, the aspect is of “dense” type (bright aspect), in the
second one, it is of “fatty” type (dark aspect) and in the third one, it is of “glandular” type
(between fatty and dense aspects).

In each mammogram, the breast region was automatically segmented. The segmentation
technique is based on a threshold which is the value of the gray-level corresponding to the first
peak in the smoothed histogram of the image. After thresholding, the biggest connected region
(the breast) is located. The breast contour is smoothed using an approximation technique based
on B-splines [ 19].

The registration models are applied to images which are coarse approximations of the origi-
nal mammograms (see section 4.1). In order to obtain these images, mammograms are smoothed
using an approximation technique based on B-splines [ 19, 45].

In the next experiments, the value of the weight
1 of the intensity-based registration term
in models 2 and 3 is fixed at1. The Lame coefficients� and� of the regularity term (equation
2) are fixed at10�12 and500 respectively. These values are fixed using the Poisson ratio� and
the Young modulusE. The Lame coefficients� and� are related to� andE by equations� = E2(1+�) and� = E�(1+�)(1�2�) [ 14]. The Poisson ratio takes values in℄0; 0:5[. When far
enough from0:5, variations of the Poisson ratio values does not affect mammogram registrations
obtained using model 2 [ 45]. The Poisson ratio value is fixed arbitrarily at 10�15. In models of
section 2, the Young modulus can be interpreted as a weight ofthe regularity term. We fixed
its value as follows. We apply model 2 to the first mammogram pair with different values of
the Young modulus. We choose the lowest value which enables to register significantly the first
mammogram pair without obtaining a singular solution (E = 103). Despite the mammogram
aspect differences outlined above, the selected values for�, � and
1 turned out to be suitable
for the application of models 2 and 3 to the three image pairs (see section 4.4). This suggests
that parameters could be chosen optimally for the application of models to mammogram pairs
of a same database.

The algorithms of models 2 and 3 were implemented on a PC IntelPenthium II 600 MHz.
The computation time of both algorithms is approximately the same. It is between5 and 8
minutes when applied to mammograms having approximately450000 pixels on average.

4.3. Application to simulated mammogram pairs
Couples of images in figures 5 (a) and 5 (d), figures 6 (a) and 6 (b) and figures 7 (a) and 7

(b) are three simulated mammogram pairs. In these simulatedpairs(I0; I1? ), I1? is a geometric
deformation ofI0 (I1? = I0 Æ �?) obtained with a known function�?. The functions�? were
obtained after application of model 2 to the original mammogram pairs shown in figures 12 (a)
and (b), figures 13 (a) and (b), figures 14 (a) and (b), respectively.

Model 2 was applied to each simulated image pair(I0; I1? ) with the exact initialization derived
from�?. In each case, a solution denoted by�ref was obtained. As can be seen in figures 5 (b), 6
(c) and 7 (c), the image pairs were almost perfectly registered by model 2. The image differences
were respectively lowered by80:8, 80:5 and79:9 percent and the mean distances between the
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(a) (b) (c) (d)

Figure 5. Application to a first simulated mammogram pair: (a) The source imageI0, the geo-
metric deformationI0� of I0 after the application of (b) model 2 and (c) model 3, (d) the target
imageI1? . The target imageI1? was obtained by applying a deformation�? to the source imageI0 (I1? = I0 Æ �?).
algorithm solution�ref and the exact mapping�? were respectively3:8, 5:4 and4:3 pixels. The
image registration benefits from the region-specific constraints: Model 1 lowered the image
differences by only68, 70 and64:3 percent, respectively (for a more extensive comparison of
models 1 and 2, the interested reader may refer to [ 45]). In this context, model 2 is the most
relevant among the three models described in section 2 sincethe boundary conditions are exact.
Using model 3 with
2 = 1000, the image differences were respectively lowered by78, 77:2
and77 percent.

For each simulated mammogram pair, we simulate five wrong initialization functions�0 de-
fined on the breast contour ofI1? (see sections 2.2 and 3.3). Typical wrong initializations are
shown in figures 8 (a) and 8 (b). Comparing the yellow and pink lines, it can be seen that,
these initialization functions do not correctly map into the breast contour inI0. Models 2 and
3 were applied to the pairs(I0; I1? ) with the wrong initialization functions. The mean results
for the three pairs are shown in table 1. In all cases, it can beobserved that the registration
performance of model 2 is drastically reduced due to the initialization errors. With wrong ini-
tializations, the image differences are respectively lowered by only69:9, 66:1 and64:7 percent
on average. Moreover, the solution regularity is decreased. The regularity term reaches the mean
values344:5, 506:5 and309 with wrong initializations whereas they were only117, 450 and260
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(a) (b)

(c) (d)

Figure 6. Application to a second simulated mammogram pair:(a) The source imageI0, (b) the
target imageI1? . The geometric deformationI0� of I0 after the application of (c) model 2 and (d)
model 3. Images (a) and (b) form a simulated pair of mammograms. The target imageI1? was
obtained by applying a deformation�? to the source imageI0 (I1? = I0 Æ �?).
with the exact initializations. These regularity decreases are due to some compressions or di-
latations which occur near contours. Such compressions anddilatations are shown in figures 9
(a) and 10 (a). They are caused by the opposition of the two registration constraints (the one of
the fixed and wrong boundary conditions and the one of the intensity-based energy term).

Model 3 is more robust than model 2 to the initialization errors. Indeed, the registration scores
of model 3 are higher than those of model 2 (over73 percent on average in all cases) and its
solutions are smoother. Comparing figures 9 (a) and 9 (b) and figures 10 (a) and 10 (b), it can
also be observed that the compressions and dilatations nearthe contours are less pronounced
in the solutions of model 3 than in those of model 2. The robustness of model 3 is further
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(a) (b)

(c) (d)

Figure 7. Application to a third simulated mammogram pair: (a) The source imageI0, (b) the
target imageI1? . The geometric deformationI0� of I0 after the application of (c) model 2 and (d)
model 3, (d) the target imageI1? . Images (a) and (b) form a simulated pair of mammograms. The
target imageI1? was obtained by applying a deformation�? to the source imageI0 (I1? = I0Æ�?).
attested by the comparisons of the algorithm solutions and the reference solution�ref (solution
of model 2 without initialization errors). Means and standard deviations of distances between
the solutions obtained with different models and�ref are shown in table 2 for each simulated
cases. It can be seen that model 2 is more sensitive to initialization errors than model 3. In
all simulated cases, means and standard deviations obtained for model 2 are higher than those
obtained for model 3 . Standard deviations for model 3 are low. Model 3 is stable when the
initialization varies.

Besides, in table 1, it can be noticed that performances of model 3 improves as the weight
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(a) (b)

Figure 8. Correction effect due to the segmentation term of model 3. Figures (a) and (b) show
two different examples of segmentation results obtained after image registration with wrong
initialization. In figures (a) and (b), the yellow line is thecorrect segmentation of the breast and
the pink one is the segmentation which is induced by the wronginitialization map�0. The blue
and red lines are the segmentations that are induced by the solutions of model 3 with
2 equal
to 0 and1000 respectively.
2 of the segmentation term increases. When model 3 is used with
2 equal to1000, not only
registration scores are good and close to those of solutions�ref but also standard deviations are
low. This shows that the segmentation term in model 3 is a factor of robustness.

Moreover, mammograms are much better registered near the contours when
2 is high. As an
illustration, we can compare image differences in figures 11(a) and 11 (b). Figures 8 (a) and 8
(b) show the segmentations ofI0 which are induced by the algorithm solutions. It can be seen
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(a) (b)

Figure 9. First simulation case. Images (a) and (b) show an example of images�(
1) of the
tessellated breast domain
1 in I1? by the solutions� which are obtained using model 2 (image
(a)) and model 3 (
2 = 1000) (image (b)) with a same wrong initialization. In image (a),a
strong compression due to initialization errors can be observed near the nipple position.

that the segmentation obtained with model 3 when
2 is high is close to the right segmentation
whereas the segmentation obtained with model 3 when
2 is low remains close to the wrong
initialization segmentation. In model 3, the segmentationterm is necessary for the initialization
errors to be compensated for.

In this section, the experiments were done using three mammograms with different breast
aspects (see section 4.2). Despite these differences, the behavior and the performances of model
3 are equivalent on the three simulated pairs for each value of the parameter
2. Results in
tables 1 and 2 suggest that the value of
2 could be set to1000 for the application of model
3 to mammogram pairs of the MIAS database. When the parameter
2 is equal to1000, the
algorithm obtains the best mean registration score and is stable when the initialization varies
(the standard deviations mentioned in tables are low).

In the previous experiments, simulations were only with respect to geometric deformations.
More general simulations would include anatomic variations. Such experiments are beyond the
scope of this paper. The interested reader can find several simulated experiments about anatomic
variations due to tumors in [ 45].



18

(a) (b)

Figure 10. Third simulation case. Images (a) and (b) show an example of images�(
1) of the
tessellated breast domain
1 in I1? by the solutions� which are obtained using model 2 (image
(a)) and model 3 (
2 = 1000) (image (b)) with a same wrong initialization. In image (a),a strong
dilatation due to initialization errors can be observed near the contour in the top of image.

4.4. Application to real mammogram pairs
Comparing bilateral mammogram in figures 12 (a) and 12 (b), figures 13 (a) and 13 (b) and

figures 14 (a) and 14 (b) and observing image differences in figures 15 (a), 16 (a) and 17 (a),
it can be noticed that mammograms have a lot of important asymmetries, due in particular to
breast shape variations. Next, looking at source imagesI0 in figures 12 (a), 13 (a) and 14 (a)
and at their geometric deformationsI0� in figures 12 (c),13 (c) and 14 (c), it can be seen that the
initialization step changes breast shapes inI0. As observed in figures 15 (b), 16 (b) and 17 (b),
these changes significantly compensate not only for the asymmetries near the breast contours
but also for some inner differences. However, due to preprocessing step inaccuracies and to
the algorithm discretization (see section 3.2), the breastcontour asymmetries are not perfectly
compensated for. For instance, in figure 16 (b), it can be observed a dark border in the upper
part of the contour area. Moreover, several important innerdifferences remain in the registered
image pair.

Some of these inner differences are due to shape and locationvariations of bright salient
regions of images. Comparing pairs of deformed images in figures 12 (b) and 12 (d), figures 13
(b) and 13 (d), figures 14 (b) and 14 (d) and looking at images offigures 15 (c), 16 (c) and 17
(c), it can be seen that these particular differences are compensated for using model 2. However,
several differences still remain in the pair of images registered by model 2. Some of these
differences are caused by breast tissue disparities and cannot be corrected by any geometric
deformation.
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Case 1 Case 2 Case 3

Model Means Std Dev. Means Std Dev. Means Std Dev.

Initialization Rs. 19.7 % 18.4 28.2 % 25.3 25.8 % 7.8

Step Rl. 295.5 124.1 424 512.8 256 145

2 Rs. 69.9 % 2.4 66.1 % 6.8 64.7 % 14.4

Rl. 344.2 139.2 506.5 460.2 309 141

3 
2 Rs. 74.1 % 3.9 73.6 % 6.9 75.1 % 1.6= 0 Rl. 301 129.8 481 335.8 452 151
2 Rs. 75.5 % 3.2 75 % 5.1 75.8 % 1.2= 500 Rl. 298.6 130.0 493 329.5 449 148.7
2 Rs. 76.9 % 1.8 75 % 4.9 76.6 % 1.3= 103 Rl. 300 129.1 495.2 327.3 448 149
2 Rs. 76.1% 1.1 75.1 % 4.1 78.4 % 2.2= 104 Rl. 313.8 128.2 563 297.7 436 136
Table 1
Comparison of the applications of models 2 and 3 with wrong initializations. The rows “Rs.”
give the image registration scores (in percentage of the initial quadratic difference betweenI0 andI1): 100 � (jI0 � I1j2 � jI0� � I1j2)=jI0 � I1j2. The rows “Rl.” give the values of the
regularity term (equation (2)). The column “Means” gives the means of the registration and
regularity scores of the algorithms with five different wrong initializations and the column “Std
Dev” the standard deviations of these scores.

However, these registrations can be improved. In particular, in the registered image differ-
ences (figures 15 (c), 16 (c) and 17 (c)), we still observe the contour differences which remained
after the initialization. These differences cannot be compensated for using model 2 due to the
fixed boundary conditions. Besides, some important differences remain near contours; for in-
stance, see differences near the nipple position in figure x15 (c) or in the upper part of image
in figure 16 (c). Model 2 is unable to correct such differencesfor the following reason. The
differences increase the intensity-based registration constraint in a way that conflicts with the
contour-based constraint. As can be noticed in figures 18 (b), 19 (b) and 20 (b), constraint con-
flicts generate strong compressions or dilatations in difference areas. Further difference correc-
tions are not possible because they would increase compressions (or dilatations) and regularity
term values (equation (2)).

These results are in sharp contrast with those of model 3. We recall that, in this model, the
boundary conditions are free. Consequently, the contour constraint of model 2 is less stringent.
This constraint relaxation permits a better registration of the images near the breast contours.
Looking at deformed images in figures 12 (e), 12 (b), 13 (e), 13(f), 14 (e) and 14 (f) and at
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model 2 model 3 model 3

(
2 = 0) (
2 = 1000)

First simulation case

Mean distances 9:6 7:1 6:1
Distance standard deviations 7:1 3:2 3:1

Second simulation case

Mean distances 9 7:7 7:6
Distance standard deviations 4:6 3:3 3:2

Third simulation case

Mean distances 12:6 9:6 8:8
Distance standard deviations 8:6 1:8 1:2

Table 2
Means and standard deviations of distances between�ref (solution of model 2 with the exact
initialization) and solutions obtained using different models with initialization errors.

registered image differences in figures 15 (d), 15 (e), 16 (d), 16 (e), 17 (d), 17 (e), it can be ob-
served that model 3 (with different values of weight
2) succeeds in compensating significantly
for the differences near contours. Moreover, as can be observed in figures 18 (c), 18 (d),19 (c),
19 (d), 20 (c) and 20 (d), the deformations are less compressed and dilated near contours and
smoother than the ones obtained with model 2. As can be observed in figures 15 (d), 15 (e), 16
(d), 16 (e), 17 (d) and 15 (e), model 3 without the segmentation term (
2 = 0) may map some
parts of the breast inI1 into some parts of the background inI0 whereas model 3 with a strong
segmentation constraint keeps mappings inside breast regions ofI0.
5. Conclusion

Based on a variational approach, we formulated a new mathematical model for mammo-
gram registration. An energy minimization problem was presented. A multigrid gradient de-
scent algorithm was designed for the numerical resolution of the problem. As in [ 45, 47], the
model focuses on the matching of regions of interest. It alsocombines segmentation-based and
intensity-based constraints. However, the energy minimization problem is not posed with fixed
boundary conditions but with free boundary conditions. Moreover, the energy has a new regis-
tration constraint. The performances of both models were compared on simulated mammogram
pairs. It was shown that the new model is more robust to the initialization inaccuracies than
the previous one. The ability of the new model to compensate for these inaccuracies during
the matching process was also illustrated. Both models wereapplied to real mammogram pairs
in order to illustrate the interest of the new model in the application context. Although it was
designed for the mammogram registration, the model is generic: it can be applied whenever the
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(a) (b)

Figure 11. First simulation case. Figures (a) and (b) show the absolute differences between
imagesI1? and I0 Æ � (first simulation case) where� are the solutions found using model 3
with 
2 = 0 (figure (a)) and with
2 = 1000 (figure (b)).[black=high differences, white=low
differences]

images have single regions of interest. We believe that, in these common cases, the new model is
better suited for image registration than the usual intensity-based models. In particular, it could
be powerful for the mapping of brain anatomical templates onto individual anatomies.
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2 equal to1000.



30

(a) (b)

(c) (d)

Figure 20. Bilateral mammograms # 047/048. (a) The tessellated breast domain
1 in I1, the
image�(
1) of 
1 by the mapping� obtained with (b) the application of model 2, (c) the
application of model 3 with
2 equal to0, (d) the application of model 3 with
2 equal to1000.
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