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Abstract. In this paper we consider a new approach for single objechseatation in 3D images. Our method
improves the classical geodesic active surface modeletttyr simplifies the model initialization and naturally
avoids local minima by incorporating user extra informatinto the segmentation process. The initialization
procedure is reduced to introducing 3D curves into the imadgese curves are supposed to belong to the
surface to extract and thus, also constitute user givenrirdton. Hence, our model finds a surface that has
these curves as boundary conditions and that minimizestegral of a potential function that corresponds
to the image features. Our goal is achieved by using glomalhimal paths. We approximate the surface to
extract by a discrete network of paths. Furthermore, anpotation method is used to build a mesh or an
implicit representation based on the information retritfrom the network of paths. Our paper describes a
fast construction obtained by exploiting the Fast Marclalygprithm and a fast analytical interpolation method.
Moreover, a Level set method can be used to refine the segtioentehen higher accuracy is required. The
algorithm has been successfully applied to 3D medical imagel synthetic images.
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1. Introduction

Since their introduction by Kass et al. [12], deformable elechave been extensively used
to find single and multiple objects in 2D and 3D images. Themmom use of these models
consists in introducing an initial object in the image armhsforming it until it reaches a
wanted target. In most applications, the evolution of theatis done in order to minimize an
energy attached to the image data, until a steady statedsedaOne of the main drawbacks
of this approach is that it suffers from local minima ‘trapshis happens when the steady
state, reached by the active object, does not corresporftettatget but to another local
minimum of the energy. Thus, the active object initialipatis a fundamental step, if it is too
far from the target, local minima can block the active ob@ailution, and the target is never
reached. On the other hand, when image quality is very laninformation contained in any
energy derived from the image, may not lead to the desiresheptation. The model should
then be able to take into account additional informatioregitay the user.

Since the publication of [12], much work has been done inotaléree active models from
the problem of local minima. A balloon force was early progb# [5] to make the model
more active and to cope with the shrinking problem, but thisé supposed a known direction
in the evolution. The introduction of region dependent gies[14, 6] and the use of shape
priors approaches [19, 9, 17], contributed to create a nwvast framework. Nonetheless,
when looking for a precise object (like the left ventricle3D ultrasound images) if the ini-
tialization of the model is made by simple geometric objéspheres, cylinders), too far from
the targeted shape, most of the present models will failiolexchand drawing initializations
are thus often needed. In this work, we focus on a novel apprta 3D single object seg-
mentation having a cylinder-like topology. Our contrilauticonsists in exploiting two curves,
introduced in the image by the user, in order to segment tfeebby a first approximation of
a minimal energy surface that avoids unwanted local minifha.given curves are supposed
to be drawn on the surface of the object to be segmented. Trejitute the initialization of
the 3D model, and the information they provide (for beingadran the object to extract) is
highly exploited, since the surface our algorithm genereggeonstrained to contain them. In
order to avoid local minima ‘traps’, our algorithm buildsetwork of globally minimal paths,
then a surface is interpolated by a novel analytical intiatpmn method we have developed.
As an illustration of the situation we are working on, we giwrefigure 1, an example of
the user input to our algorithm for the segmentation of a 3itasbund volume of the left
ventricle.



(a) (b) (c)

Figure 1. Three different slices of a 3D ultrasound volume of a lefttviete and the two user given curvés
andCs. (a) and (b) show the two parallel slices where the curveslaen. (c) shows a perpendicular slice to
the curves in order to show their position with respect tovémtricle.

The outline of our paper is as follows: we begin in section 2dwalling the principles
of geodesic active contours and surfaces as well as thelgtobhanal paths framework. In
section 3 we explain how minimal paths can be used to buildwork of paths that discretely
approximates the surface to be segmented and that is notigens the problem of local
minima traps. In section 4 we give the final step of our algonitwhich is the generation
of the surface from the network of paths. At last, in sectiomesshow some examples on
synthetic data and real medical images.

2. Active Surfaces and Minimal Paths

2.1. B/OLUTION EQUATIONS

Active surfaces as well as minimal paths resulted from ceédnle models introduced with
the snakes model [12]. This model consisted in introducirayre g into the image and
making it evolve in order to minimize the energy,

B(g) = / o lg' ()2 + B. 19" () + Pg(s))ds.

The two first terms maintained the regularity of the curve #mal last one was the data
attachment term. The potential functi@h usually represented an edge detector that had



lower values on edges. For examfle= (1 + |VI|?)~' if I is the image.

Casellesst alimproved the energy formulation in [3, 4] by introducing tipeodesic active
contour model and its surface extension. In their approagkevolution of an initial curve,
or surfaceS, was driven by the minimization of the geodesic energies

B(g) = / Plg(s)) g/ () ds and E(S / / DIIS. % S|l dudv (1)

Hence, their model is geometrical, since it is no longer ddpat on parameterization. Even
though these models are only edge-driven, most of currgmtoaphes that integrate other
information (region, texture, shape knowledge) are abtuaitensions. The most popular
approach for solving the minimization problems (1) is tosider Euler-Lagrange equations
(first variation of the energy) and derive from them the cgpmding descent schemes:
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where H andx are respectively the mean curvature of the surface and tivatcwe of the
curve.N andi are their inward normals. This approach is limited by the faat it can lead
to local minima of the energy. This is of course true for theirel set formulation as well
(see for example [3, 13]). Therefore, in the next sectioneaalt a method introduced in [8]
that allows to find the global minimum for the active contonergy (1) when imposing the
two end points. This formulation does not use the curve éarequation in (2).

2.2. (G.OBAL MINIMAL PATHS BETWEEN TWO POINTS

Cohen and Kimmel give in [8] a method to find the global minirpath, connecting two
pointsp; andp,, with respect to a given cost functign In other words, they find the global
minimum of the geodesic active contour’s energy (1) whendsimg to the curve its two
end points. They show that this globally minimal curve isaoiéd by following the opposite
gradient direction on the minimal action mafp,,

L
Uy, (q) = inf {/ P(g(s))ds}, whereL is the length of;. (3)
9(0)=p1,9(L)=q | Jg
The minimal path betweem, andp; is thus obtained by solving the problem:
d .
L (s) = =Vl (9(s)) with g(0) = p2. (4)

In order to computé/,,, Cohen and Kimmel [8] use the fact that this map is solutioth&®
well known eikonal equation (a proof of this fact can be foum{R]):

||Vup1 || =P andupl (pl) = 0. (5)
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Equation (4) can be numerically solved by simple ordinaffedential equations techniques
like Newton’s or Runge-Kutta’s. To numerically solve eqaat(5), classic finite differences
schemes tend to be unstable. In [18] Tsitsiklis introducee\a method that was indepen-
dently reformulated by Sethian in [15]. It relies on a ondesi derivative looking in the
direction of the information flow, and it gives a consistgmpeoximation of the weak solution
to equation (5). This algorithm is known as the Fast Marchalggprithm and is now widely
used and understood. It was used in [8] to solve equationn®)fiad globally minimizing
contours in images. More details on its background and imetgation can be found in
[16, 7]. Itis important to highlight a major advantage ofthlgorithm: it has at (N log(N))
complexity on a grid ofN nodes, and only one grid pass is needed to give a first order
approximation of the solution. An extension to 3D of Fast &hémng and minimal paths is
straightforward. The authors of [10] used it to find centez$ in 3D tubular structures. The
minimal path is obtained by gradient descent, solving equd#), like in the 2D case.

To summarize, we are able, by imposing its two end pointsutfa 3D global minimum
path for the energy, without using an evolution equationexttio unwanted local minima
traps. On the other hand, the goal of active surfaces is t@tdoa certain local minimum
of energy (1) that agrees with the user’s criteria. The mwbis that during the evolution
process the surface can be trapped by other local minimaglditional information could be
necessary in order to complete image information and aelaevew wanted minimum.

In what follows, we propose to use the global minimum propeftthe paths to generate a
segmentation surfac&, from two curves drawn by the user. We reduce the 3D inititibra
to drawing these curves, instead of complicated volumekearcase of difficult images. We
also use these curves as additional user information fadeagpunwanted local minima.

3. From global minimal pathsto 3D surface

We propose to use a set of minimal paths, built between twstcaining curveg; andC,,
to define a first approximation of an energy minimizing sugf8g. The intuition behind this
approach is that this set of global minimal paths is conthinea surface that would qualify
for a good segmentation approach if, in the beginnihgandC, are well located in the 3D
image.



3.1. MINIMAL PATH NETWORK

We wish to build a set of global minimal paths between the tanstraining curves using
the method outlined in the previous section. A naive nunaéapproach for this construction
is to build minimal paths between all the points of the diseesl versions of’; andCs.
Hence, each point af1 would be associated to all the points@f Clearly this would be
computationally expensive (at leastictions maps to build andx n gradient descents, if

is the number of points of the discretized version§0&ndC,), and many of this numerous
associations would not be relevant. Thus, we consider tl@vimg approach: We shall say
thatg is a path between a poipt and a curve; if g(0) = p; andg(L) € C,. We then define
surfaceS, as the set of minimal energy pat{@gl} between curv€; and all pointgp of the
curveC,. More preciselySy = ¢, {9¢, } -

As recalled in [1], the problem of computing , minimal path betweed; andp, can be
addressed by performing a gradient descent on the actiorifnagefined by

e = ot R} ©

{g between p and C1 }

Furthermore it is easy to see thd#t, (p) = qlélcfl {U,(p)}, wherel{, is the action map as-
sociated to poiny defined in section 2.2 by equation (3). This implies that thenerical
estimation ofi/;, can also be done using the Fast marching algorithm, irgirait/., by
Ue, (p) = 0if p € C; (a discretized version of it) aride, (p) = oo otherwise. Indeed, this
can be understood by recalling the fact that the valug, ¢f only depends on points among
its six nearest neighbors whose value#/aire inferior. Thus, when marching away from the
points ofC;, Fast marching will automatically compuqteecf1 {U,(p)}-

Usingl,, , we can now estimat&,. Consider a discretized version@f containingn, points
{pi}i_1._.,- FOr each and every poipt, by gradient descent d,, we build the minimal
path between this point aidd, thus generating a finite set of paths frépto Cs: {gé1 }2‘:1...712'
The final numerical approximation &% will be the result of the interpolation of this network
and concerns section 4 of this paper. An illustratiogfs given in figures 2.a and 2.b on a
synthetic image. A potential adapted to finding the surfddb@vase shown in figure 2.a is
used. The network, shown in figure 2.b, is built between twwesC; andC, drawn on the
surface of the vase.

An important remark is that the definition of surfaSgis not symmetric. Indeed, in general
Usec, 196, # Upee, {96, } » and of course, the set of patlﬁgél}i:l_m is different from its

homologue se{ggz} ny One could think of using this feature to generate a dense&fse

i=1...



Cost function P

(a) (b) () (d)

Figure 2. (a) is the original vase surface from which a 3D test imageeisegated. We also show the position
of the constraining curves that are given by the user. (f)aset of minimal pathsS;) generated between the
two constraining curves. The paths are minimal with resfzeatpotential that takes small values on the vase’s
boundaries. Note that the paths®flay on the vase’s surface. (c) Set of Minimal Paths in the degeted case:
between a point and a curve lying on a closed cylinder. Pgjn$ located on the center of the upper face of
the cylinder, it is the farthest point on the surface of thiincler from curveCs. In (d) we superimposed to the
network of paths the cost functio? used for its construction.

paths by looking for a surface that would be defined as thenunfidoth networks. However,
in practice, this symmetrical construction does not gitestectory results.

An interesting particular case of the previous construct®obtained when curvé; is
reduced to a single poipt. However, in this degenerated case, in order to obtain areohe
networkS,, po has to be situated in a specific location of the object to segiiéis position
corresponds to the maximum of the action mi&p (solution to the eikonal equation taking
zero values at curug,) on the surface of the object to extract. This location iy \efficult to
find automatically, since the object is unknown; for the pes point corresponds to the one
being the farthest away frof, on the surface. On figures 2.c and 2.d we give an illustration
of this case on a synthetic image of a closed cylinder. As shovigure 2.d (where two slices
of the 3D cost function are shown), popmtis the center of the upper part of the cylinder and
curve(, is drawn on the opposite side.

3.2. FROJECTING THE MINIMAL PATHS

Recall that functionakl(g) = fOL P(g(s))ds is built by summing the cost functioP} along

the curvey. Hence, a minimal curve with respectibestablishes a balance between reducing
its length, and following weak values &%. In order to clarify the explanation that follows, we
first consider a 2D situation, which corresponds to thetitat®on given on figure 3.a. The cost



Strong Curvature ———= \
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Figure 3. (a) Minimal path between pointg andp, that avoids a concavity of the object to segmeéns,,cqvity
is the characteristic size of the concavity. (b) represaialf-sphere blended on a plane (transparent visualiza-

tion) andC; andC, (black segments). (¢) Result without constraints, set ﬁﬁspégél} , taking a short

1=1...n
cut around the sphere. (d) Result with constraints, splee@/ered.

function is derived from a 2D image that contains an objectwigh to extract. Suppose that
this object presents a strong curvature on the neighborbbadertain poinp. Consider two
other pointsp; andp,, also positioned on this object, and relatively far frpwith respect
to a characteristic size of the concavity. Then, as illusttan figure 3.a, a minimal path
betweernp; andp, will tend to avoid this concavity by ‘cutting through’ strger values ofP,

its length being too penalizing otherwise. In the 3D caseimal paths ofS, have a similar
behavior: if the surface of the object we wish to extract pnés a strong localized mean
curvature, the elements &%, will tend to circumvent it. This constitutes a drawback i th
use ofS, for a segmentation task: areas of the surface to extractptiag strong curvature,
can be omitted by the minimal path network. Figure 3 illugtsaa simple situation where
the network{gél} Is unable to recover the expected surface. The cost funigioanstant
on a surface which is the blending of a plane and half a sphetdas higher values on the
background. Minimal paths tend to take a short cut aroundphere rather than ‘climbing’
on it, P has no influence (being constant on the surface) and the pdthminimize their
length. In order to cope with this problem, we propose anadbgeroach for the construction
of a segmenting surfac®,, in the particular case where the user given curdesnd(,, do



Figure 4. (a) lllustration of the construction of a projected pathisiione by projecting the vector fieMi4c,

on planer,. (b) Shows the minimal path network obtained on an ultradoomage of the left ventricle without
projecting. In transparency we gave three slices of the 3Dme. (c) is the projected network obtained in the
same conditions.

not intersect. Consider a family of planEs= {7, } such that, for every of C,, plane

peCy’
7, contains this point and has a none empty intersection @itHf TTP is the unit normal
vector of planer, of I1, we call the projected minimal pag , the solution of the following

ordinary differential equation:

W () = ~Vthe,(9) + (Ve (). ) -
with ¢(0) = p. As it is shown in figure 4.a, this equation is obtained by aepig the vector
field Vi4e, in equation (4) by its projection on plang (whose normal is,). S, will be
now defined as the union of the ‘projected minimal pati#s:= (J,, {ggl}. Figure 3.c
illustrates the networl{ gél} of projected paths obtained with our half sphéfes the family

of parallel planes which are orthogonaldpandC, (n, does not depend gnandr, contains
point p of Cy). In practice, ifC; andC, are two planar Jordan’s curves, for each poinof

C,, good choices for planes, are the planes passing through the following three podits:
belonging to the interior od?l, Gy belonglng to the |nter|or af, andp;. The normal vectors
are then defined by, = (G1G2 A Glp,)(|| Gng A Glpl )~

In spite of the simplicity of this approach, the class of aoéls that can be segmented by
evaluating their intersection with a plane, is quite largbis class contains at least those
surfaces whose intersections with plages, } are connected.

In figure 4 we used this approach with a noisy ultrasound intddlee left ventricle. Figure
4.b shows the minimal path network obtained without the gutgd approach. Noise and
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the structure of the surface create strong curvature ang sr@as of the surface to extract
are avoided by the network, the segmentation generated thaametwork will be of less
precision. Here, the projection to planes is of great usetaltiee particular geometry of the
ventricle: figure 4.c shows how we manage to recover the dhedsvhere missed by the
unprojected network.

4. From the network to the surface

The final step for the generation 6§ is its construction through the interpolation of the
network of paths. We consider two different approaches toegeeS,. The first one is
a novel analytical interpolation that uses the unprojectetivork of paths{ggl}izlmm; it
exploits its particular structure which derives from thetfthat minimal paths cannot cross
without merging. This method is fast and guaranties thatikerpolated surface strictly
contains all the paths of the network and the curves giverhbyuser. The second, uses
the variational approach proposed in [20]. It can be appbeadbth, the unprojected and the
projected network{@é1 }¢:1...n1)’ but only ensures that the interpolated surface is clofiesto

network but may not strictly contain all its paths.

4.1. ANALYTICAL PATH INTERPOLATION

In this section we present the construction of the intefedlagurface from the unprojected
network{g}Zl }i:lmn2 (henceforth notedlg'}, for simplicity). When the goal is to rapidly

generate an approximation of the segmented surface (sieceowid miss areas of high

=1l..n

curvature), this approach will be a good compromise betweeaision and efficiency. Be-
ing minimal paths, two paths belonging {g’} may either have an empty intersection or
merge (note that this is not the case for the eIement{ang}izl__m). This particular con-
figuration (see figure 5.a for a schematic representatiothehetwork suggests to create
sectors and interpolate the surface sector by sector ($edtida below). Lets; ands, be
parameterizations @f, andC, defined on the intervd, 1]. Points{ P} } and{ P;} will be the
intersection points af; andC, with the network{¢*} (see figure 5.a). An¢lp’ } and{p5} two
families belonging tdo, 1] satisfyingC;(s; = p}) = Pj andCy(s, = p}) = Pi. For every

i € {1...n} we define a sector as the following set of curyes ¢"*!,Ci, Ci} (as is shown
on figure 5.b)C} andC} are the restrictions of curvés andC, to the intervalgpi,pi™'] and
[p4, p51] respectively.



10

(a) (b) (c)
Figure 5. (a) Scheme illustrating a network that satisfies all the @@t for applying the analytical interpola-

tion. (b) lllustrates our definition of a sector and (c) shomesinterpolated surface, generated with our analytical

method.

Our aim is to generate a parameterized surface(0, 1]> — R?; (u,v) — So(u,v), such
that3 {p'}, ., € [0,1]", verifying

(Condy): Vie {l..n}So(,v=p")=¢", So(u=0,.)=Crand So(u=1,.) =C,

meaning that the essential constraint&nis to contain curveg;, C; and all paths{g’}.
Moreover, consider the restrictiod of S, to the sets0, 1] x [pi, pi*']. By imposing toS,
the following conditionvu € [0, 1] andVi =1...n — 1.

(Conds) : &,Sé (u, v = pi+1) = &;«S‘éﬂ (Ua v = PiH)

we can build it locally continuously differentiable. In fait is easy to buildS, of classC"! in
the interior of each sector, difficulty arises only on thehdaries. The analytical construction
that follows will guaranty thatS, will stay first order differentiable at the borders of each
sector if paths do not merge, and continuous if they do.

The first step of the analytical interpolation is the introtlon of a common parameterization
on C; and(, (that will be notedv), and another (noted) on all paths{g’}. Parameter: is
easy to find, it will be chosen as the normalized arc-lengtbawh patH ¢} . In order to find

v, leto be an increasing one-to-one function [on1], such that for every, o(p}) = pi. We
perform a remapping af, by o and the new curvé, = C, o o, satisfies for every e {1..n}
Ca(ph) = Cy 0 o(p) = Co(ph) = Pi. Which means that the same parameter value$ i
({p%}) correspond in each cun@g and(, to the intersection points with the sgj’}. This
leads us to choosing parameterizatios s, and henceforth working witf, andC,. Finding
an adequate function is a problem of a 1D constraint interpolation (gmcought to be
increasing). We use a piecewise cubic hermite interpaidfid] to solve the problem. This
function reflects the correspondence generated by the ralpiaths between the two curves.
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Figure 6. (a) Test network of four paths synthetically produagdandC, are the lower and upper curves. (b)
Interpolated surface. (c) is the network of minimal pathsoted from an ultrasound image of the left ventricle.
The user initialized the model by drawing the upper and lavi@sed curves. (d) is the analytically interpolated

surface.

We are now able to give an analytical expression of functigrthat satisfies conditions
(Condy) and Cond,). For each sectar, we define the x-coordinate of the restrictionSyfby

Sa(uv) = Chlu,0) + (1 — ol (u,v))(gh (u) — Ci(u, p')) + o (w, 0) (g5 (u) — Ci(u, p™*))

whereCi (u,v) = (1 — f(u))Ci,(v) + f(u)Ci,(v) (convex combination of the given curves).
Function f can be chosen among all the differentiable functiongOom] and must satisfy
f(0) = 0 and f(1) = 1 (take for example f(u)=u). Each scalaf is the x-coordinate of
a functiona?, which is tailored for satisfying®,;) and (P,); it is defined on the interval

[p%, pi™'] by

o (u,v) = St (14 B (G2 [2 = (G () + G ()] +(GE () - 1) ).

pi+1,p1 pi+1,pz pi+1,p1
with

The other two coordinates are obtained using the same fasmeplacing x by y and then
by z. Figure 5.c shows the interpolated mesh generated fiersdt of curves in figure 5.a. A
major advantage of this interpolation method is its calitoiespeed. Only elementary calcu-
lations are needed to generate the surface (there is noxmmadersion) and both information
from the paths and from the initial curves are integratedhégrocess.

In figures 6 we show two interpolated surfaces generatedibyrbthod. Figure 6.a and 6.b
illustrate the fact that the interpolation combines bofoimation coming from the network



12

and from curveg’; andC,. Even when taking only four paths, the obtained surface heco
ent with the shape of the user given curves. Figure 6.c shetvs;s obtained from a left
ventricle image, figure 6.d illustrates the interpolatedeaze.

4.2. VARIATIONAL INTERPOLATION

As was pointed out earlier, the analytical interpolatiorttme can only be applied with the
unprojected networK ggl}izlmm, since its particular structure (paths cannot cross withou
merging) is necessary. Nevertheless, considering thegisg networks can improve results
(see Fig. 4.b). Unfortunately, a sector by sector approachno longer be considered, for
paths can cross without merging. In these situations onédnaealy exploit the structure of
the network, hence, a scattered data points interpolatisntt be considered. We use the
method proposed by Zhast. alin [20]. We compute from the networ{l@él} @ distance
functiond and we look for the surfac§, that minimizes energ¥ (S) = [/ (d(x,y))*dzdy.
This is done by a gradient descent method similar to equé:tband we have used a level set
implementation. When using projected networks, this meétfives satisfactory results since
one can control the density of the paths by varying the nurabpoints onC; andCs.

5. Initializing active surface with Sy, applications

Having generated, by any of the previous methods, we may use it as the initiatlitmm

of the evolution equation (2). We have chosen a level setodibr our implementations. If
the analytical interpolation method is used, the consaaif a higher dimensional function,
¢o : R® — IR such thatp,'(0) = Sy, is needed¢, can be computed as a signed distance
map using Fast marching initialized witfy. The evolution of the level set will be done
following 3 ‘% = div (7? %) IIVo|l, which is exactly the gradient descent of the geodesic
active surface (1) in its level set formulation. For conesrge, few iterations op will be
needed, sincé, is already close to image features. Compared to using asetelpproach
from the beginning, our approach is much faster, needs rnous@D initializations, and
avoids local minima by exploiting curveél andC,. Figure 7.a presents a good example of a
difficult to segment image because of the presence of mamy toimima. It is generated by
three ‘S’ shaped tubes one inside the other. If one wishesttorothe middle 'S’ shaped tube,
classical variational methods will fail (unless a very easitialization is given). Our method
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manages to extract the object when initialized by two cugresn on the surface to extract.
We compare it with the result of a geodesic active surfad@li@ed with a cylinder (figures
7.e, 7.f), and we observe in figures 7.g and 7.h that the maetsltgapped by other local
minima. Concerning ultrasound heart imaging, our methdg needs two slices in order to
build the entire volume of the left ventricle; this two cusvean be, for example, two short
axis segmentations as in figures 1.aand 1.b. Figures 7jigbdlv the segmentation obtained.
For this image of siz&283, the generation of, took 25 seconds, the final segmentation 20
seconds more, on a 1.4 Ghz machine (512 MBy of RAM). In figurest® 8.d , we show
results on a MR image of an aneurysm. As for other previousngles, the user simply
initialized the model by drawing two curves on two (non piaiaklices of the 3D image. On
this image (92 x 168 x 152)), the total segmentation took 70 seconds on the same machine

6. Conclusion

In this paper we have presented a method that generalizesliyloninimal paths to surfaces.
Our method allows to greatly simplify the initializationqmess of active surfaces. The model
is initialized by two curves (eventually a curve and a wekiioned point) instead of a vol-
ume. Our approach takes a maximum advantage of the infamgitren by the user through
the initialization curves, since the surface it generae®nstrained to include those curves.
Our method uses globally minimal paths to define and generataface which is a final
segmentation or an initialization of an active surface nhadence, in both cases, the final
surface is not concerned by the problem of the local minimpsias all other active objects
approach do. It is particularly well suited for medical ireagegmentation, in particular for
ultrasound images segmentation. In cases where the imadjg/asivery poor, our approach
handles the introduction of additional information comiingm the practitioner in a very
natural manner. A few 2D segmentations can be enough to afenarcoherent complete
surface. We have also presented a novel interpolation rdetinich is characterized by its
simplicity and its efficiency.
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