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Abstract. In this paper we consider a new approach for single object segmentation in 3D images. Our method

improves the classical geodesic active surface model. It greatly simplifies the model initialization and naturally

avoids local minima by incorporating user extra information into the segmentation process. The initialization

procedure is reduced to introducing 3D curves into the image. These curves are supposed to belong to the

surface to extract and thus, also constitute user given information. Hence, our model finds a surface that has

these curves as boundary conditions and that minimizes the integral of a potential function that corresponds

to the image features. Our goal is achieved by using globallyminimal paths. We approximate the surface to

extract by a discrete network of paths. Furthermore, an interpolation method is used to build a mesh or an

implicit representation based on the information retrieved from the network of paths. Our paper describes a

fast construction obtained by exploiting the Fast Marchingalgorithm and a fast analytical interpolation method.

Moreover, a Level set method can be used to refine the segmentation when higher accuracy is required. The

algorithm has been successfully applied to 3D medical images and synthetic images.
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1. Introduction

Since their introduction by Kass et al. [12], deformable models have been extensively used

to find single and multiple objects in 2D and 3D images. The common use of these models

consists in introducing an initial object in the image and transforming it until it reaches a

wanted target. In most applications, the evolution of the object is done in order to minimize an

energy attached to the image data, until a steady state is reached. One of the main drawbacks

of this approach is that it suffers from local minima ‘traps’. This happens when the steady

state, reached by the active object, does not correspond to the target but to another local

minimum of the energy. Thus, the active object initialization is a fundamental step, if it is too

far from the target, local minima can block the active objectevolution, and the target is never

reached. On the other hand, when image quality is very low, the information contained in any

energy derived from the image, may not lead to the desired segmentation. The model should

then be able to take into account additional information given by the user.

Since the publication of [12], much work has been done in order to free active models from

the problem of local minima. A balloon force was early proposed in [5] to make the model

more active and to cope with the shrinking problem, but this force supposed a known direction

in the evolution. The introduction of region dependent energies [14, 6] and the use of shape

priors approaches [19, 9, 17], contributed to create a more robust framework. Nonetheless,

when looking for a precise object (like the left ventricle in3D ultrasound images) if the ini-

tialization of the model is made by simple geometric objects(spheres, cylinders), too far from

the targeted shape, most of the present models will fail. Tedious hand drawing initializations

are thus often needed. In this work, we focus on a novel approach for 3D single object seg-

mentation having a cylinder-like topology. Our contribution consists in exploiting two curves,

introduced in the image by the user, in order to segment the object by a first approximation of

a minimal energy surface that avoids unwanted local minima.The given curves are supposed

to be drawn on the surface of the object to be segmented. They constitute the initialization of

the 3D model, and the information they provide (for being drawn on the object to extract) is

highly exploited, since the surface our algorithm generates is constrained to contain them. In

order to avoid local minima ‘traps’, our algorithm builds a network of globally minimal paths,

then a surface is interpolated by a novel analytical interpolation method we have developed.

As an illustration of the situation we are working on, we give, in figure 1, an example of

the user input to our algorithm for the segmentation of a 3D ultrasound volume of the left

ventricle.
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Figure 1. Three different slices of a 3D ultrasound volume of a left ventricle and the two user given curvesC1

andC2. (a) and (b) show the two parallel slices where the curves aredrawn. (c) shows a perpendicular slice to

the curves in order to show their position with respect to theventricle.

The outline of our paper is as follows: we begin in section 2 byrecalling the principles

of geodesic active contours and surfaces as well as the global minimal paths framework. In

section 3 we explain how minimal paths can be used to build a network of paths that discretely

approximates the surface to be segmented and that is not sensitive to the problem of local

minima traps. In section 4 we give the final step of our algorithm which is the generation

of the surface from the network of paths. At last, in section 5we show some examples on

synthetic data and real medical images.

2. Active Surfaces and Minimal Paths

2.1. EVOLUTION EQUATIONS

Active surfaces as well as minimal paths resulted from deformable models introduced with

the snakes model [12]. This model consisted in introducing acurveg into the image and

making it evolve in order to minimize the energy,

E(g) =

∫

α. ‖g′(s)‖
2
+ β. ‖g′′(s)‖

2
+ P(g(s))ds.

The two first terms maintained the regularity of the curve andthe last one was the data

attachment term. The potential functionP, usually represented an edge detector that had
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lower values on edges. For exampleP = (1 + |∇I|2)−1 if I is the image.

Caselleset al improved the energy formulation in [3, 4] by introducing thegeodesic active

contour model and its surface extension. In their approach the evolution of an initial curveg0

or surfaceS0 was driven by the minimization of the geodesic energies

E (g) =

∫

P
(

g(s)
)

‖g′(s)‖ ds and E (S) =

∫ ∫

P(S(u, v)) ‖Su × Sv‖ dudv (1)

Hence, their model is geometrical, since it is no longer dependent on parameterization. Even

though these models are only edge-driven, most of current approaches that integrate other

information (region, texture, shape knowledge) are actually extensions. The most popular

approach for solving the minimization problems (1) is to consider Euler-Lagrange equations

(first variation of the energy) and derive from them the corresponding descent schemes:
{

∂g

∂t
= (Pκ −∇P.~n)~n, g(·, 0) = g0

}

and

{

∂S

∂t
=

(

PH −∇P. ~N
)

~N, S(·, ·, 0) = S0

}

(2)

whereH andκ are respectively the mean curvature of the surface and the curvature of the

curve. ~N and~n are their inward normals. This approach is limited by the fact that it can lead

to local minima of the energy. This is of course true for theirlevel set formulation as well

(see for example [3, 13]). Therefore, in the next section we recall a method introduced in [8]

that allows to find the global minimum for the active contour energy (1) when imposing the

two end points. This formulation does not use the curve evolution equation in (2).

2.2. GLOBAL MINIMAL PATHS BETWEEN TWO POINTS

Cohen and Kimmel give in [8] a method to find the global minimalpath, connecting two

pointsp1 andp2, with respect to a given cost functionP. In other words, they find the global

minimum of the geodesic active contour’s energy (1) when imposing to the curve its two

end points. They show that this globally minimal curve is obtained by following the opposite

gradient direction on the minimal action mapUp1
,

Up1
(q) = inf

g(0)=p1,g(L)=q

{
∫ L

0

P
(

g(s)
)

ds

}

, whereL is the length ofg. (3)

The minimal path betweenp2 andp1 is thus obtained by solving the problem:

dg

ds
(s) = −∇Up1

(g(s)) with g(0) = p2. (4)

In order to computeUp1
, Cohen and Kimmel [8] use the fact that this map is solution tothe

well known eikonal equation (a proof of this fact can be foundin [2]):

‖∇Up1
‖ = P andUp1

(p1) = 0. (5)
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Equation (4) can be numerically solved by simple ordinary differential equations techniques

like Newton’s or Runge-Kutta’s. To numerically solve equation (5), classic finite differences

schemes tend to be unstable. In [18] Tsitsiklis introduced anew method that was indepen-

dently reformulated by Sethian in [15]. It relies on a one-sided derivative looking in the

direction of the information flow, and it gives a consistent approximation of the weak solution

to equation (5). This algorithm is known as the Fast Marchingalgorithm and is now widely

used and understood. It was used in [8] to solve equation (5) and find globally minimizing

contours in images. More details on its background and implementation can be found in

[16, 7]. It is important to highlight a major advantage of this algorithm: it has anO(N log(N))

complexity on a grid ofN nodes, and only one grid pass is needed to give a first order

approximation of the solution. An extension to 3D of Fast Marching and minimal paths is

straightforward. The authors of [10] used it to find centerlines in 3D tubular structures. The

minimal path is obtained by gradient descent, solving equation (4), like in the 2D case.

To summarize, we are able, by imposing its two end points, to build a 3D global minimum

path for the energy, without using an evolution equation subject to unwanted local minima

traps. On the other hand, the goal of active surfaces is to locate a certain local minimum

of energy (1) that agrees with the user’s criteria. The problem is that during the evolution

process the surface can be trapped by other local minima, or,additional information could be

necessary in order to complete image information and achieve a new wanted minimum.

In what follows, we propose to use the global minimum property of the paths to generate a

segmentation surfaceS0 from two curves drawn by the user. We reduce the 3D initialization

to drawing these curves, instead of complicated volumes in the case of difficult images. We

also use these curves as additional user information for avoiding unwanted local minima.

3. From global minimal paths to 3D surface

We propose to use a set of minimal paths, built between two constraining curvesC1 andC2,

to define a first approximation of an energy minimizing surfaceS0. The intuition behind this

approach is that this set of global minimal paths is contained in a surface that would qualify

for a good segmentation approach if, in the beginning,C1 andC2 are well located in the 3D

image.
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3.1. MINIMAL PATH NETWORK

We wish to build a set of global minimal paths between the two constraining curves using

the method outlined in the previous section. A naive numerical approach for this construction

is to build minimal paths between all the points of the discretized versions ofC1 and C2.

Hence, each point ofC1 would be associated to all the points ofC2. Clearly this would be

computationally expensive (at leastn actions maps to build andn×n gradient descents, ifn

is the number of points of the discretized versions ofC1 andC2), and many of this numerous

associations would not be relevant. Thus, we consider the following approach: We shall say

thatg is a path between a pointp1 and a curveC1 if g(0) = p1 andg(L) ∈ C1. We then define

surfaceS0 as the set of minimal energy paths
{

g
p
C1

}

between curveC1 and all pointsp of the

curveC2. More precisely,S0 =
⋃

p∈C2

{

g
p
C1

}

.

As recalled in [1], the problem of computinggp
C1

, minimal path betweenC1 andp, can be

addressed by performing a gradient descent on the action mapUC1
, defined by

UC1
(p) = inf

{g between p and C1}

{
∫ L

0

P(g(s))ds

}

. (6)

Furthermore it is easy to see thatUC1
(p) = inf

q∈C1

{Uq(p)} , whereUq is the action map as-

sociated to pointq defined in section 2.2 by equation (3). This implies that the numerical

estimation ofUC1
can also be done using the Fast marching algorithm, initializing UC1

by

UC1
(p) = 0 if p ∈ C1 (a discretized version of it) andUC1

(p) = ∞ otherwise. Indeed, this

can be understood by recalling the fact that the value ofUi,j,k only depends on points among

its six nearest neighbors whose values ofU are inferior. Thus, when marching away from the

points ofC1, Fast marching will automatically computeinf
q∈C1

{Uq(p)}.

UsingUC1
, we can now estimateS0. Consider a discretized version ofC2 containingn2 points

{pi}i=1...n2
. For each and every pointpi, by gradient descent onUC1

, we build the minimal

path between this point andC1, thus generating a finite set of paths fromC1 toC2:
{

gi
C1

}

i=1...n2
.

The final numerical approximation ofS0 will be the result of the interpolation of this network

and concerns section 4 of this paper. An illustration ofS0 is given in figures 2.a and 2.b on a

synthetic image. A potential adapted to finding the surface of the vase shown in figure 2.a is

used. The network, shown in figure 2.b, is built between two curvesC1 andC2 drawn on the

surface of the vase.

An important remark is that the definition of surfaceS0 is not symmetric. Indeed, in general
⋃

p∈C2

{

g
p
C1

}

6=
⋃

p∈C1

{

g
p
C2

}

, and of course, the set of paths
{

gi
C1

}

i=1...n2
is different from its

homologue set
{

gi
C2

}

i=1...n1
. One could think of using this feature to generate a denser set of
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Figure 2. (a) is the original vase surface from which a 3D test image is generated. We also show the position

of the constraining curves that are given by the user. (b) is the set of minimal paths (S0) generated between the

two constraining curves. The paths are minimal with respectto a potential that takes small values on the vase’s

boundaries. Note that the paths ofS0 lay on the vase’s surface. (c) Set of Minimal Paths in the degenerated case:

between a point and a curve lying on a closed cylinder. Pointp0 is located on the center of the upper face of

the cylinder, it is the farthest point on the surface of the cylinder from curveC2. In (d) we superimposed to the

network of paths the cost functionP used for its construction.

paths by looking for a surface that would be defined as the union of both networks. However,

in practice, this symmetrical construction does not give satisfactory results.

An interesting particular case of the previous construction is obtained when curveC1 is

reduced to a single pointp0. However, in this degenerated case, in order to obtain a coherent

networkS0, p0 has to be situated in a specific location of the object to segment. This position

corresponds to the maximum of the action mapUC2
(solution to the eikonal equation taking

zero values at curveC2) on the surface of the object to extract. This location is very difficult to

find automatically, since the object is unknown; for the user, this point corresponds to the one

being the farthest away fromC2 on the surface. On figures 2.c and 2.d we give an illustration

of this case on a synthetic image of a closed cylinder. As shown in figure 2.d (where two slices

of the 3D cost function are shown), pointp0 is the center of the upper part of the cylinder and

curveC2 is drawn on the opposite side.

3.2. PROJECTING THE MINIMAL PATHS

Recall that functionalE(g) =
∫ L

0
P

(

g(s)
)

ds is built by summing the cost function (P) along

the curveg. Hence, a minimal curve with respect toE establishes a balance between reducing

its length, and following weak values ofP. In order to clarify the explanation that follows, we

first consider a 2D situation, which corresponds to the illustration given on figure 3.a. The cost
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Figure 3. (a) Minimal path between pointsp1 andp2 that avoids a concavity of the object to segment.hconcavity

is the characteristic size of the concavity. (b) representsa half-sphere blended on a plane (transparent visualiza-

tion) andC1 andC2 (black segments). (c) Result without constraints, set of paths
{

gi
C1

}

i=1...n2

taking a short

cut around the sphere. (d) Result with constraints, sphere recovered.

function is derived from a 2D image that contains an object wewish to extract. Suppose that

this object presents a strong curvature on the neighborhoodof a certain pointp. Consider two

other points,p1 andp2, also positioned on this object, and relatively far fromp with respect

to a characteristic size of the concavity. Then, as illustrated in figure 3.a, a minimal path

betweenp1 andp2 will tend to avoid this concavity by ‘cutting through’ stronger values ofP,

its length being too penalizing otherwise. In the 3D case, minimal paths ofS0 have a similar

behavior: if the surface of the object we wish to extract presents a strong localized mean

curvature, the elements ofS0 will tend to circumvent it. This constitutes a drawback in the

use ofS0 for a segmentation task: areas of the surface to extract presenting strong curvature,

can be omitted by the minimal path network. Figure 3 illustrates a simple situation where

the network
{

gi
C1

}

is unable to recover the expected surface. The cost functionis constant

on a surface which is the blending of a plane and half a sphere and has higher values on the

background. Minimal paths tend to take a short cut around thesphere rather than ‘climbing’

on it, P has no influence (being constant on the surface) and the pathswill minimize their

length. In order to cope with this problem, we propose another approach for the construction

of a segmenting surfaceS0, in the particular case where the user given curves,C1 andC2, do
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Figure 4. (a) Illustration of the construction of a projected path, itis done by projecting the vector field∇UC1

on planeπp. (b) Shows the minimal path network obtained on an ultrasound image of the left ventricle without

projecting. In transparency we gave three slices of the 3D volume. (c) is the projected network obtained in the

same conditions.

not intersect. Consider a family of planesΠ = {πp}p∈C2
, such that, for everyp of C2, plane

πp contains this point and has a none empty intersection withC1. If
→
np is the unit normal

vector of planeπp of Π, we call the projected minimal path̃gp
C1

, the solution of the following

ordinary differential equation:

dg

ds
(s) = −∇UC1

(g) +
(

∇UC1
(g).

→
np

)

.
→
np,

with g(0) = p. As it is shown in figure 4.a, this equation is obtained by replacing the vector

field ∇UC1
in equation (4) by its projection on planeπp (whose normal is

→
np). S0 will be

now defined as the union of the ‘projected minimal paths’:S0 =
⋃

p∈C2

{

g̃
p
C1

}

. Figure 3.c

illustrates the network
{

g̃i
C1

}

of projected paths obtained with our half sphere.Π is the family

of parallel planes which are orthogonal toC1 andC2 (np does not depend onp andπp contains

point p of C2). In practice, ifC1 andC2 are two planar Jordan’s curves, for each pointpi of

C2, good choices for planesπpi
are the planes passing through the following three points:G1,

belonging to the interior ofC1, G2 belonging to the interior ofC2 andpi. The normal vectors

are then defined by,
→
npi

= (
→

G1G2 ∧
→

G1pi)(||
→

G1G2 ∧
→

G1pi ||)
−1.

In spite of the simplicity of this approach, the class of surfaces that can be segmented by

evaluating their intersection with a plane, is quite large.This class contains at least those

surfaces whose intersections with planes{πpi
} are connected.

In figure 4 we used this approach with a noisy ultrasound imageof the left ventricle. Figure

4.b shows the minimal path network obtained without the projected approach. Noise and
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the structure of the surface create strong curvature and many areas of the surface to extract

are avoided by the network, the segmentation generated fromthis network will be of less

precision. Here, the projection to planes is of great use dueto the particular geometry of the

ventricle: figure 4.c shows how we manage to recover the areasthat where missed by the

unprojected network.

4. From the network to the surface

The final step for the generation ofS0 is its construction through the interpolation of the

network of paths. We consider two different approaches to generateS0. The first one is

a novel analytical interpolation that uses the unprojectednetwork of paths
{

gi
C1

}

i=1...n1
; it

exploits its particular structure which derives from the fact that minimal paths cannot cross

without merging. This method is fast and guaranties that theinterpolated surface strictly

contains all the paths of the network and the curves given by the user. The second, uses

the variational approach proposed in [20]. It can be appliedto both, the unprojected and the

projected network (
{

g̃i
C1

}

i=1...n1
), but only ensures that the interpolated surface is close tothe

network but may not strictly contain all its paths.

4.1. ANALYTICAL PATH INTERPOLATION

In this section we present the construction of the interpolated surface from the unprojected

network
{

gi
C1

}

i=1...n2
(henceforth noted{gi}i=1...n for simplicity). When the goal is to rapidly

generate an approximation of the segmented surface (since we could miss areas of high

curvature), this approach will be a good compromise betweenprecision and efficiency. Be-

ing minimal paths, two paths belonging to{gi} may either have an empty intersection or

merge (note that this is not the case for the elements of
{

g̃i
C1

}

i=1...n1
). This particular con-

figuration (see figure 5.a for a schematic representation) ofthe network suggests to create

sectors and interpolate the surface sector by sector (see definition below). Lets1 ands2 be

parameterizations ofC1 andC2 defined on the interval[0, 1]. Points{P i
1} and{P i

2} will be the

intersection points ofC1 andC2 with the network{gi} (see figure 5.a). And{pi
1} and{pi

2} two

families belonging to[0, 1] satisfyingC1(s1 = pi
1) = P i

1 andC2(s2 = pi
2) = P i

2. For every

i ∈ {1 . . . n} we define a sector as the following set of curves{gi, gi+1, Ci
1, C

i
2} (as is shown

on figure 5.b).Ci
1 andCi

2 are the restrictions of curvesC1 andC2 to the intervals
[

pi
1, p

i+1
1

]

and
[

pi
2, p

i+1
2

]

respectively.
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Figure 5. (a) Scheme illustrating a network that satisfies all the conditions for applying the analytical interpola-

tion. (b) Illustrates our definition of a sector and (c) showsthe interpolated surface, generated with our analytical

method.

Our aim is to generate a parameterized surfaceS0 : [0, 1]2 → IR3; (u, v) → S0(u, v), such

that∃ {pi}1≤i≤n ∈ [0, 1]n, verifying

(Cond1) : ∀i ∈ {1....n} S0

(

., v = pi
)

≡ gi, S0

(

u = 0, .
)

≡ C1 and S0

(

u = 1, .
)

≡ C2

meaning that the essential constraint onS0 is to contain curvesC1, C2 and all paths{gi}.

Moreover, consider the restrictionsSi
0 of S0 to the sets[0, 1] ×

[

pi
1, p

i+1
1

]

. By imposing toS0

the following condition,∀u ∈ [0, 1] and∀i = 1 . . . n − 1.

(Cond2) : ∂vS
i
0

(

u, v = pi+1
)

= ∂vS
i+1
0

(

u, v = pi+1
)

we can build it locally continuously differentiable. In fact, it is easy to buildS0 of classC1 in

the interior of each sector, difficulty arises only on the boundaries. The analytical construction

that follows will guaranty thatS0 will stay first order differentiable at the borders of each

sector if paths do not merge, and continuous if they do.

The first step of the analytical interpolation is the introduction of a common parameterization

on C1 andC2 (that will be notedv), and another (notedu) on all paths{gi}. Parameteru is

easy to find, it will be chosen as the normalized arc-length oneach path{gi} . In order to find

v, let σ be an increasing one-to-one function on[0, 1], such that for everyi, σ(pi
1) = pi

2. We

perform a remapping ofC2 byσ and the new curvẽC2 = C2 ◦ σ, satisfies for everyi ∈ {1...n}

C̃2(p
i
1) = C2 ◦ σ(pi

1) = C2(p
i
2) = P i

2. Which means that the same parameter values on[0, 1]n

({pi
1}) correspond in each curveC1 andC̃2 to the intersection points with the set{gi}. This

leads us to choosing parameterizationv = s1 and henceforth working withC1 andC̃2. Finding

an adequateσ function is a problem of a 1D constraint interpolation (since σ ought to be

increasing). We use a piecewise cubic hermite interpolation [11] to solve the problem. This

function reflects the correspondence generated by the minimal paths between the two curves.
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Figure 6. (a) Test network of four paths synthetically produced,C1 andC2 are the lower and upper curves. (b)

Interpolated surface. (c) is the network of minimal paths obtained from an ultrasound image of the left ventricle.

The user initialized the model by drawing the upper and lowerclosed curves. (d) is the analytically interpolated

surface.

We are now able to give an analytical expression of functionS0 that satisfies conditions

(Cond1) and (Cond2). For each sectori, we define the x-coordinate of the restriction ofS0 by

Si
0x(u, v) = Ci

x(u, v) + (1 − αi
x(u, v))(gi

x(u) − Ci
x(u, pi)) + αi

x(u, v)(gi+1
x (u) − Ci

x(u, pi+1))

whereCi
x(u, v) = (1− f(u))Ci

1x(v) + f(u)C̃i
2x(v) (convex combination of the given curves).

Functionf can be chosen among all the differentiable functions on[0, 1] and must satisfy

f(0) = 0 andf(1) = 1 (take for example f(u)=u). Each scalarαi
x is the x-coordinate of

a functionαi, which is tailored for satisfying (P1) and (P2); it is defined on the interval
[

pi
1, p

i+1
1

]

by

αi
x(u, v) = v−pi

pi+1−pi

(

1 + pi+1−v

pi+1−pi

(

v−pi

pi+1−pi .
[

2 − (Gi+1
x (u) + Gi−1

x (u))
]

+(Gi−1
x (u) − 1)

))

.

with

Gi
x(u) = gi+1

x (u) − gi
x(u) − (Ci

x(u, pi+1) − Ci
x(u, pi)) , ∀i ∈ {1 . . . n − 1}

Gn
x(u) = G0

x(u) = g1
x(u) − gn

x(u) − (Cn
x (u, p1) − Cn

x (u, pn))

Gn+1
x (u) = G1

x(u)

The other two coordinates are obtained using the same formulas replacing x by y and then

by z. Figure 5.c shows the interpolated mesh generated from the set of curves in figure 5.a. A

major advantage of this interpolation method is its calculation speed. Only elementary calcu-

lations are needed to generate the surface (there is no matrix inversion) and both information

from the paths and from the initial curves are integrated in the process.

In figures 6 we show two interpolated surfaces generated by this method. Figure 6.a and 6.b

illustrate the fact that the interpolation combines both information coming from the network
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and from curvesC1 andC2. Even when taking only four paths, the obtained surface is coher-

ent with the shape of the user given curves. Figure 6.c shows set {gi} obtained from a left

ventricle image, figure 6.d illustrates the interpolated surface.

4.2. VARIATIONAL INTERPOLATION

As was pointed out earlier, the analytical interpolation method can only be applied with the

unprojected network
{

gi
C1

}

i=1...n1
, since its particular structure (paths cannot cross without

merging) is necessary. Nevertheless, considering the projected networks can improve results

(see Fig. 4.b). Unfortunately, a sector by sector approach can no longer be considered, for

paths can cross without merging. In these situations one canhardly exploit the structure of

the network, hence, a scattered data points interpolation has to be considered. We use the

method proposed by Zhaoet. alin [20]. We compute from the network
{

g̃i
C1

}

i=1...n1
a distance

functiond and we look for the surfaceS0 that minimizes energyE(S) =
s

S
(d(x, y))2dxdy.

This is done by a gradient descent method similar to equation(2) and we have used a level set

implementation. When using projected networks, this method gives satisfactory results since

one can control the density of the paths by varying the numberof points onC1 andC2.

5. Initializing active surface with S0, applications

Having generatedS0 by any of the previous methods, we may use it as the initial condition

of the evolution equation (2). We have chosen a level set method for our implementations. If

the analytical interpolation method is used, the construction of a higher dimensional function,

φ0 : IR3 → IR such thatφ−1
0 (0) = S0, is needed.φ0 can be computed as a signed distance

map using Fast marching initialized withS0. The evolution of the level set will be done

following ∂φ

∂t
= div

(

P. ∇φ

‖∇φ‖

)

‖∇φ‖, which is exactly the gradient descent of the geodesic

active surface (1) in its level set formulation. For convergence, few iterations ofφ will be

needed, sinceS0 is already close to image features. Compared to using a levelset approach

from the beginning, our approach is much faster, needs no tedious 3D initializations, and

avoids local minima by exploiting curvesC1 andC2. Figure 7.a presents a good example of a

difficult to segment image because of the presence of many local minima. It is generated by

three ‘S’ shaped tubes one inside the other. If one wishes to obtain the middle ’S’ shaped tube,

classical variational methods will fail (unless a very close initialization is given). Our method
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manages to extract the object when initialized by two curvesgiven on the surface to extract.

We compare it with the result of a geodesic active surface initialized with a cylinder (figures

7.e, 7.f), and we observe in figures 7.g and 7.h that the model gets trapped by other local

minima. Concerning ultrasound heart imaging, our method only needs two slices in order to

build the entire volume of the left ventricle; this two curves can be, for example, two short

axis segmentations as in figures 1.a and 1.b. Figures 7.i to 7.j show the segmentation obtained.

For this image of size1283, the generation ofS0 took 25 seconds, the final segmentation 20

seconds more, on a 1.4 Ghz machine (512 MBy of RAM). In figures 8.a to 8.d , we show

results on a MR image of an aneurysm. As for other previous examples, the user simply

initialized the model by drawing two curves on two (non parallel) slices of the 3D image. On

this image (192× 168× 152)), the total segmentation took 70 seconds on the same machine.

6. Conclusion

In this paper we have presented a method that generalizes globally minimal paths to surfaces.

Our method allows to greatly simplify the initialization process of active surfaces. The model

is initialized by two curves (eventually a curve and a well positioned point) instead of a vol-

ume. Our approach takes a maximum advantage of the information given by the user through

the initialization curves, since the surface it generates is constrained to include those curves.

Our method uses globally minimal paths to define and generatea surface which is a final

segmentation or an initialization of an active surface model. Hence, in both cases, the final

surface is not concerned by the problem of the local minima traps as all other active objects

approach do. It is particularly well suited for medical image segmentation, in particular for

ultrasound images segmentation. In cases where the image quality is very poor, our approach

handles the introduction of additional information comingfrom the practitioner in a very

natural manner. A few 2D segmentations can be enough to generate a coherent complete

surface. We have also presented a novel interpolation method which is characterized by its

simplicity and its efficiency.
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