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CEREMADE, UMR 7534 Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny,

75775 Paris cedex 16, France
7
8

cohen@ceremade.dauphine.fr9

Received April 7, 2004; Revised November 12, 2004; Accepted November 23, 200410

First online version published in xxx11

Abstract. In this paper we consider a new approach for single object segmentation in 3D images. Our method
improves the classical geodesic active surface model. It greatly simplifies the model initialization and naturally
avoids local minima by incorporating user extra information into the segmentation process. The initialization
procedure is reduced to introducing 3D curves into the image. These curves are supposed to belong to the surface
to extract and thus, also constitute user given information. Hence, our model finds a surface that has these curves as
boundary conditions and that minimizes the integral of a potential function that corresponds to the image features.
Our goal is achieved by using globally minimal paths. We approximate the surface to extract by a discrete network
of paths. Furthermore, an interpolation method is used to build a mesh or an implicit representation based on the
information retrieved from the network of paths. Our paper describes a fast construction obtained by exploiting
the Fast Marching algorithm and a fast analytical interpolation method. Moreover, a Level set method can be used
to refine the segmentation when higher accuracy is required. The algorithm has been successfully applied to 3D
medical images and synthetic images.
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1. Introduction25

Since their introduction by Kass et al. (1998) de-26
formable models have been extensively used to find27
single and multiple objects in 2D and 3D images. The28
common use of these models consists in introducing29
an initial object in the image and transforming it un-30
til it reaches a wanted target. In most applications, the31
evolution of the object is done in order to minimize an32
energy attached to the image data, until a steady state is33
reached. One of the main drawbacks of this approach is34

that it suffers from local minima ‘traps’. This happens 35
when the steady state, reached by the active object, does 36
not correspond to the target but to another local mini- 37
mum of the energy. Thus, the active object initialization 38
is a fundamental step, if it is too far from the target, local 39
minima can block the active object evolution, and the 40
target is never reached. On the other hand, when image 41
quality is very low, the information contained in any en- 42
ergy derived from the image, may not lead to the desired 43
segmentation. The model should then be able to take 44
into account additional information given by the user. 45
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Since the publication of Kass et al. (1998), much46
work has been done in order to free active models from47
the problem of local minima. A balloon force was early48
proposed in Cohen (1991) to make the model more ac-49
tive and to cope with the shrinking problem, but this50
force supposed a known direction in the evolution. The51
introduction of region dependent energies (Paragios,52
2000; Cohen, 1997) and the use of shape priors ap-53
proaches (Yuille et al., 1992; Cremers and Schnörr54
2003; Tsai et al., 2003), contributed to create a more55
robust framework. Nonetheless, when looking for a56
precise object (like the left ventricle in 3D ultrasound57
images) if the initialization of the model is made by58
simple geometric objects (spheres, cylinders), too far59
from the targeted shape, most of the present models will60
fail. Tedious hand drawing initializations are thus of-61
ten needed. In this work, we focus on a novel approach62
for 3D single object segmentation having a cylinder-63
like topology. Our contribution consists in exploiting64
two curves, introduced in the image by the user, in or-65
der to segment the object by a first approximation of66
a minimal energy surface that avoids unwanted local67
minima. The given curves are supposed to be drawn68
on the surface of the object to be segmented. They69
constitute the initialization of the 3D model, and the70
information they provide (for being drawn on the ob-71
ject to extract) is highly exploited, since the surface72
our algorithm generates is constrained to contain them.73
In order to avoid local minima ‘traps’, our algorithm74
builds a network of globally minimal paths, then a75
surface is interpolated by a novel analytical interpo-76

Figure 1. Three different slices of a 3D ultrasound volume of a left ventricle and the two user given curves C1 and C2. (a) and (b) show the
two parallel slices where the curves are drawn. (c) shows a perpendicular slice to the curves in order to show their position with respect to the
ventricle.

lation method we have developed. As an illustration 77
of the situation we are working on, we give, in Fig. 1, 78
an example of the user input to our algorithm for the 79
segmentation of a 3D ultrasound volume of the left 80
ventricle. 81

The outline of our paper is as follows: we begin in 82
Section 2 by recalling the principles of geodesic active 83
contours and surfaces as well as the global minimal 84
paths framework. In Section 3 we explain how mini- 85
mal paths can be used to build a network of paths that 86
discretely approximates the surface to be segmented 87
and that is not sensitive to the problem of local min- 88
ima traps. In Section 4 we give the final step of our 89
algorithm which is the generation of the surface from 90
the network of paths. At last, in Section 5 we show 91
some examples on synthetic data and real medical 92
images. 93

2. Active Surfaces and Minimal Paths 94

2.1. Evolution Equations 95

Active surfaces as well as minimal paths re-
sulted from deformable models introduced with the
snakes model (kass et al., 1988). This model con-
sisted in introducing a curve g into the image
and making it evolve in order to minimize the
energy,

E(g) =
∫

α.‖g′(s)‖2 + β.‖g′′(s)‖2 + P(g(s))ds.
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The two first terms maintained the regularity of the96
curve and the last one was the data attachment term.97
The potential function P , usually represented an edge98
detector that had lower values on edges. For example99
P = (1 + |∇ I |2)−1 if I is the image.100

Caselles et al. improved the energy formulation in101
Caselles et al. (1997a,b) by introducing the geodesic102
active contour model and its surface extension. In their103
approach the evolution of an initial curve g0 or sur-104
face S0 was driven by the minimization of the geodesic105
energies106

E(g) =
∫

P(g(s)l)‖g′(s)‖ds and

E(S) =
∫ ∫

P(s(u, v))‖Su × Sv‖dudv (1)

Hence, their model is geometrical, since it is no107
longer dependent on parameterization. Even though108
these models are only edge-driven, most of current ap-109
proaches that integrate other information (region, tex-110
ture, shape knowledge) are actually extensions. The111
most popular approach for solving the minimization112
problems (1) is to consider Euler-Lagrange equations113
(first variation of the energy) and derive from them the114
corresponding descent schemes:115

{
∂g

∂t
= (Pκ − ∇P.�n)�n, g(·, 0) = g0

}
and{

∂S
∂t

= (PH − ∇P. �N ) �N , S(·, ·, 0) = S0

}
(2)

where H and κ are respectively the mean curvature of116
the surface and the curvature of the curve. �N and �n117
are their inward normals. This approach is limited by118
the fact that it can lead to local minima of the energy.119
This is of course true for their level set formulation as120
well (see for example Caselles et al. (1997a) Osher and121
Sethian (1988)). Therefore, in the next section we recall122
a method introduced in Cohen and Kimmel (1997) that123
allows to find the global minimum for the active contour124
energy (1) when imposing the two end points. This125
formulation does not use the curve evolution equation126
in (2).127

2.2. Global Minimal Paths Between Two Points128

Cohen and Kimmel give in Cohen and Kimmel (1997) a129
method to find the global minimal path, connecting two130
points p1 and p2, with respect to a given cost function131

P . In other words, they find the global minimum of the 132
geodesic active contour’s energy (1) when imposing 133
to the curve its two end points. They show that this 134
globally minimal curve is obtained by following the 135
opposite gradient direction on the minimal action map 136
Up1 , 137

Up1 (q) = inf
g(0)=p1,g(L)=q

{ ∫ L

0
P

(
g(s)

)
ds

}
,

where L is the length of g. (3)

The minimal path between p2 and p1 is thus obtained 138
by solving the problem: 139

dg

ds
(s) = −∇Up1 (g(s)) with g(0) = p2. (4)

In order to compute Up1 , Cohen and Kimmel (1997) 140
use the fact that this map is solution to the well known 141
eikonal equation (a proof of this fact can be found in 142
Bruckstein (1988)): 143

‖∇Up1‖ = P and Up1 (p1) = 0. (5)

Equation (4) can be numerically solved by simple or- 144
dinary differential equations techniques like Newton’s 145
or Runge-Kutta’s. To numerically solve Eq. (5), clas- 146
sic finite differences schemes tend to be unstable. In 147
Tsitsiklis (1995) Tsitsiklis introduced a new method 148
that was independently reformulated by Sethian in 149
Sethian (1996). It relies on a one-sided derivative look- 150
ing in the direction of the information flow, and it gives 151
a consistent approximation of the weak solution to 152
Eq. (5). This algorithm is known as the Fast Marching 153
algorithm and is now widely used and understood. It 154
was used in Cohen and Kimmel (1997) to solve Eq. (5) 155
and find globally minimizing contours in images. More 156
details on its background and implementation can be 157
found in Sethian (1999) and Cohen (2001). It is impor- 158
tant to highlight a major advantage of this algorithm: it 159
has an O(N log(N )) complexity on a grid of N nodes, 160
and only one grid pass is needed to give a first order 161
approximation of the solution. An extension to 3D of 162
Fast Marching and minimal paths is straightforward. 163
The authors of Deschamps and Cohen (2001) used it to 164
find centerlines in 3D tubular structures. The minimal 165
path is obtained by gradient descent, solving Eq. (4), 166
like in the 2D case. 167

To summarize, we are able, by imposing its two end 168
points, to build a 3D global minimum path for the 169
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energy, without using an evolution equation subject170
to unwanted local minima traps. On the other hand,171
the goal of active surfaces is to locate a certain local172
minimum of energy (1) that agrees with the user’s cri-173
teria. The problem is that during the evolution process174
the surface can be trapped by other local minima, or,175
additional information could be necessary in order to176
complete image information and achieve a new wanted177
minimum.178

In what follows, we propose to use the global mini-179
mum property of the paths to generate a segmentation180
surface S0 from two curves drawn by the user. We re-181
duce the 3D initialization to drawing these curves, in-182
stead of complicated volumes in the case of difficult183
images. We also use these curves as additional user184
information for avoiding unwanted local minima.185

3. From Global Minimal Paths to 3D Surface186

We propose to use a set of minimal paths, built be-187
tween two constraining curves C1 and C2, to define a188
first approximation of an energy minimizing surface189
S0. The intuition behind this approach is that this set190
of global minimal paths is contained in a surface that191
would qualify for a good segmentation approach if, in192
the beginning, C1 and C2 are well located in the 3D193
image.194

3.1. Minimal Path Network195

We wish to build a set of global minimal paths between196
the two constraining curves using the method outlined197
in the previous section. A naive numerical approach198
for this construction is to build minimal paths between199
all the points of the discretized versions of C1 and C2.200
Hence, each point of C1 would be associated to all the201
points of C2. Clearly this would be computationally202
expensive (at least n actions maps to build and n ×n203
gradient descents, if n is the number of points of the204
discretized versions of C1 and C2), and many of this205
numerous associations would not be relevant. Thus,206
we consider the following approach: We shall say that207
g is a path between a point p1 and a curve C1 if g(0) =208
p1 and g(L) ∈ C1. We then define surface S0 as the209
set of minimal energy paths {g p

C1
} between curve C1210

and all points p of the curve C2. More precisely, S0 =211 ⋃
p∈C2

{g p
C1

}.212
As recalled in Ardon and Cohen (2003), the problem213

of computing g p
C1

, minimal path between C1 and p, can214

be addressed by performing a gradient descent on the 215
action map UC1 , defined by 216

UC1 (p) = inf
{g between p and C1}

{ ∫ L

0
P(g(s))ds

}
. (6)

Furthermore it is easy to see that UC1 (p) = 217
infq∈C1{Uq (p)}, where Uq is the action map associated 218
to point q defined in Section 2.2 by Eq. (3). This implies 219
that the numerical estimation of UC1 can also be done 220
using the Fast marching algorithm, initializing UC1 by 221
UC1 (p) = 0 if p ∈ C1 (a discretized version of it) and 222
UC1 (p) = ∞ otherwise. Indeed, this can be understood 223
by recalling the fact that the value ofUi, j,k only depends 224
on points among its six nearest neighbors whose values 225
of U are inferior. Thus, when marching away from the 226
points of C1, Fast marching will automatically compute 227
infq∈C1{Uq (p)}. 228

Using UC1 , we can now estimate S0. Consider a dis- 229
cretized version of C2 containing n2 points {pi }i=1...n2 . 230
For each and every point pi , by gradient descent on 231
UC1 , we build the minimal path between this point and 232
C1, thus generating a finite set of paths from C1 to C2: 233
{gi

C1
}i=1...n2 . The final numerical approximation of S0 234

will be the result of the interpolation of this network 235
and concerns Section 4 of this paper. An illustration of 236
S0 is given in Figs. 2(a) and (b) on a synthetic image. 237
A potential adapted to finding the surface of the vase 238
shown in Fig. 2(a) is used. The network, shown in Fig. 239
2(b), is built between two curves C1 and C2 drawn on 240
the surface of the vase. 241

An important remark is that the definition of surface 242
S0 is not symmetric. Indeed, in general

⋃
p∈C2

{g p
C1

} �= 243⋃
p∈C1

{g p
C2

}, and of course, the set of paths {gi
C1

}i=1...n2 244
is different from its homologue set {gi

C2
}i=1...n1 . One 245

could think of using this feature to generate a denser 246
set of paths by looking for a surface that would be 247
defined as the union of both networks. However, in 248
practice, this symmetrical construction does not give 249
satisfactory results. 250

An interesting particular case of the previous con- 251
struction is obtained when curve C1 is reduced to a 252
single point p0. However, in this degenerated case, in 253
order to obtain a coherent network S0, p0 has to be 254
situated in a specific location of the object to segment. 255
This position corresponds to the maximum of the ac- 256
tion map UC2 (solution to the eikonal equation taking 257
zero values at curve C2) on the surface of the object to 258
extract. This location is very difficult to find automat- 259
ically, since the object is unknown; for the user, this 260
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Figure 2. (a) is the original vase surface from which a 3D test image is generated. We also show the position of the constraining curves that
are given by the user. (b) is the set of minimal paths (S0) generated between the two constraining curves. The paths are minimal with respect to
a potential that takes small values on the vase’s boundaries. Note that the paths of S0 lay on the vase’s surface. (c) Set of Minimal Paths in the
degenerated case: between a point and a curve lying on a closed cylinder. Point p0 is located on the center of the upper face of the cylinder, it is
the farthest point on the surface of the cylinder from curve C2. In (d) we superimposed to the network of paths the cost function P used for its
construction.

point corresponds to the one being the farthest away261
from C2 on the surface. On Fig. 2(c) and (d) we give an262
illustration of this case on a synthetic image of a closed263
cylinder. As shown in Fig. 2(d) (where two slices of the264
3D cost function are shown), point p0 is the center of265
the upper part of the cylinder and curve C2 is drawn on266
the opposite side.267

3.2. Projecting the Minimal Paths268

Recall that functional E(g) = ∫ L
0 Pl(g(s)l)ds is built269

by summing the cost function (P) along the curve g.270
Hence, a minimal curve with respect to E establishes271

Figure 3. (a) Minimal path between points p1 and p2 that avoids a concavity of the object to segment. hconcavi t y is the characteristic size of
the concavity. (b) represents a half-sphere blended on a plane (transparent visualization) and C1 and C2 (black segments). (c) Result without
constraints, set of paths {gi

C1
}i=1...n2 taking a short cut around the sphere. (d) Result with constraints, sphere recovered.

a balance between reducing its length, and following 272
weak values of P . In order to clarify the explanation 273
that follows, we first consider a 2D situation, which 274
corresponds to the illustration given on Fig. 3(a). The 275
cost function is derived from a 2D image that contains 276
an object we wish to extract. Suppose that this object 277
presents a strong curvature on the neighborhood of a 278
certain point p. Consider two other points, p1 and p2, 279
also positioned on this object, and relatively far from 280
p with respect to a characteristic size of the concav- 281
ity. Then, as illustrated in Fig. 3(a), a minimal path 282
between p1 and p2 will tend to avoid this concavity 283
by ‘cutting through’ stronger values of P , its length 284
being toopenalizing otherwise. In the 3D case, minimal
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Figure 4. (a) Illustration of the construction of a projected path, it is done by projecting the vector field ∇UC1 on plane πp . (b) Shows the
minimal path network obtained on an ultrasound image of the left ventricle without projecting. In transparency we gave three slices of the 3D
volume. (c) is the projected network obtained in the same conditions.

paths of S0 have a similar behavior: if the surface of285
the object we wish to extract presents a strong local-286
ized mean curvature, the elements of S0 will tend to287
circumvent it. This constitutes a drawback in the use288
of S0 for a segmentation task: areas of the surface to289
extract presenting strong curvature, can be omitted by290
the minimal path network. Figure 3 illustrates a simple291
situation where the network {gi

C1
} is unable to recover292

the expected surface. The cost function is constant on293
a surface which is the blending of a plane and half a294
sphere and has higher values on the background. Min-295
imal paths tend to take a short cut around the sphere296
rather than ‘climbing’ on it, P has no influence (be-297
ing constant on the surface) and the paths will mini-298
mize their length. In order to cope with this problem,299
we propose another approach for the construction of a300
segmenting surface S0, in the particular case where the301
user given curves, C1 and C2, do not intersect. Consider302
a family of planes � = {πp}p∈C2 , such that, for every303
p of C2, plane πp contains this point and has a none304

empty intersection with C1. If
→
n p is the unit normal305

vector of plane πp of �, we call the projected min-306
imal path g̃ p

C1
, the solution of the following ordinary307

differential equation:308

dg

ds
(s) = −∇UC1 (g) + (∇UC1 (g).

→
n p).

→
n p,

with g(0) = p. As it is shown in Fig. 4(a), this equation309
is obtained by replacing the vector field ∇UC1 in Eq. (4)310

by its projection on plane πp (whose normal is
→
n p). S0311

will be now defined as the union of the ‘projected min-312
imal paths’: S0 = ⋃

p∈C2
{g̃ p

C1
}. Figure 3(c) illustrates313

the network {g̃i
C1

} of projected paths obtained with our314
half sphere. � is the family of parallel planes which315

are orthogonal to C1 and C2 (n p does not depend on p 316
and πp contains point p of C2). In practice, if C1 and 317
C2 are two planar Jordan’s curves, for each point pi 318
of C2, good choices for planes πpi are the planes pass- 319
ing through the following three points: G1, belonging 320
to the interior of C1, G2 belonging to the interior of 321
C2 and pi . The normal vectors are then defined by, 322
→
n pi = (

→
G1G2 ∧

→
G1 pi )(||

→
G1G2 ∧

→
G1 pi ||)−1. 323

In spite of the simplicity of this approach, the class 324
of surfaces that can be segmented by evaluating their 325
intersection with a plane, is quite large. This class con- 326
tains at least those surfaces whose intersections with 327
planes {πpi } are connected. 328

In Fig. 4 we used this approach with a noisy ultra- 329
sound image of the left ventricle. Figure 4(b) shows the 330
minimal path network obtained without the projected 331
approach. Noise and the structure of the surface cre- 332
ate strong curvature and many areas of the surface to 333
extract are avoided by the network, the segmentation 334
generated from this network will be of less precision. 335
Here, the projection to planes is of great use due to the 336
particular geometry of the ventricle: Fig. 4(c) shows 337
how we manage to recover the areas that where missed 338
by the unprojected network. 339

4. From the Network to the Surface 340

The final step for the generation of S0 is its construc- 341
tion through the interpolation of the network of paths. 342
We consider two different approaches to generate S0. 343
The first one is a novel analytical interpolation that 344
uses the unprojected network of paths {gi

C1
}i=1...n1 ; it 345

exploits its particular structure which derives from the 346
fact that minimal paths cannot cross without merging. 347
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This method is fast and guaranties that the interpolated348
surface strictly contains all the paths of the network349
and the curves given by the user. The second, uses the350
variational approach proposed in Zhao et al. (2001). It351
can be applied to both, the unprojected and the pro-352
jected network ({g̃i

C1
}i=1...n1 ), but only ensures that the353

interpolated surface is close to the network but may not354
strictly contain all its paths.355

4.1. Analytical Path Interpolation356

In this section we present the construction of the357
interpolated surface from the unprojected network358
{gi

C1
}i=1...n2 (henceforth noted {gi }i=1...n for simplicity).359

When the goal is to rapidly generate an approximation360
of the segmented surface (since we could miss areas of361
high curvature), this approach will be a good compro-362
mise between precision and efficiency. Being minimal363
paths, two paths belonging to {gi } may either have an364
empty intersection or merge (note that this is not the365
case for the elements of {g̃i

C1
}i=1...n1 ). This particular366

configuration (see Fig. 5(a) for a schematic represen-367
tation) of the network suggests to create sectors and368
interpolate the surface sector by sector (see definition369
below). Let s1 and s2 be parameterizations of C1 and C2370
defined on the interval [0, 1]. Points {Pi

1} and {Pi
2} will371

be the intersection points of C1 and C2 with the network372
{gi } (see Fig. 5(a)). And {pi

1} and {pi
2} two families373

belonging to [0, 1] satisfying C1(s1 = pi
1) = Pi

1 and374
C2(s2 = pi

2) = Pi
2 . For every i ∈ {1 . . . n} we define a375

sector as the following set of curves {gi , gi+1, Ci
1, Ci

2}376
(as is shown on Fig. 5(b)). Ci

1 and Ci
2 are the restric-377

tions of curves C1 and C2 to the intervals [pi
1, pi+1

1 ] and378
[pi

2, pi+1
2 ] respectively.379

Our aim is to generate a parameterized surface380
S0 : [0, 1]2 → IR3; (u, v) → S0(u, v), such that381

Figure 5. (a) Scheme illustrating a network that satisfies all the conditions for applying the analytical interpolation. (b) Illustrates our definition
of a sector and (c) shows the interpolated surface, generated with our analytical method.

∃{pi }1≤i≤n ∈ [0, 1]n , verifying 382

(Cond1) : ∀i ∈ {1....n}S0(., v = pi ) ≡ gi ,

S0(u = 0, .) ≡ C1 and S0(u = 1, .) ≡ C2

meaning that the essential constraint on S0 is to con- 383
tain curves C1, C2 and all paths {gi }. Moreover, consider 384
the restrictions S i

0 of S0 to the sets [0, 1] × [pi
1, pi+1

1 ]. 385
By imposing to S0 the following condition, ∀u ∈ 386
[0, 1] and ∀i = 1 . . . n − 1. 387

(Cond2) : ∂vS i
0(u, v = pi+1) = ∂vS i+1

0 (u, v = pi+1)

we can build it locally continuously differentiable. In 388
fact, it is easy to build S0 of class C1 in the interior 389
of each sector, difficulty arises only on the boundaries. 390
The analytical construction that follows will guaranty 391
that S0 will stay first order differentiable at the borders 392
of each sector if paths do not merge, and continuous if 393
they do. 394

The first step of the analytical interpolation is the 395
introduction of a common parameterization on C1 and 396
C2 (that will be noted v), and another (noted u) on all 397
paths {gi }. Parameter u is easy to find, it will be cho- 398
sen as the normalized arc-length on each path {gi }. In 399
order to find v, let σ be an increasing one-to-one func- 400
tion on [0, 1], such that for every i , σ (pi

1) = pi
2. We 401

perform a remapping of C2 by σ and the new curve 402
C̃2 = C2 ◦ σ , satisfies for every i ∈ {1...n} C̃2(pi

1) = 403
C2 ◦ σ (pi

1) = C2(pi
2) = Pi

2 . Which means that the 404
same parameter values on [0, 1]n ({pi

1}) correspond in 405
each curve C1 and C̃2 to the intersection points with 406
the set {gi }. This leads us to choosing parameterization 407
v = s1 and henceforth working with C1 and C̃2. Find- 408
ing an adequate σ function is a problem of a 1D con- 409
straint interpolation (since σ ought to be increasing). 410
We use a piecewise cubic hermite interpolation (Fritsch 411
and Carlson, 1980) to solve the problem.This function
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reflects the correspondence generated by the minimal412
paths between the two curves. We are now able to give413
an analytical expression of function S0 that satisfies414
conditions (Cond1) and (Cond2). For each sector i , we415
define the x-coordinate of the restriction of S0 by416

S i
0x (u, v) = Ci

x (u, v) + (
1 − αi

x (u, v))
(
gi

x (u) − Ci
x (u, pi )

)
+ αi

x (u, v)
(
gi+1

x (u) − Ci
x (u, pi+1)

)
where Ci

x (u, v) = (1− f (u))Ci
1x (v)+ f (u)C̃i

2x (v) (con-417
vex combination of the given curves). Function f can418
be chosen among all the differentiable functions on419
[0, 1] and must satisfy f (0) = 0 and f (1) = 1 (take for420
example f (u) = u). Each scalar αi

x is the x-coordinate421
of a function αi , which is tailored for satisfying (P1)422
and (P2); it is defined on the interval [pi

1, pi+1
1 ] by423

αi
x (u, v)= v − pi

pi+1 − pi

(
1 + pi+1 − v

pi+1 − pi

(
v − pi

pi+1 − pi
.

[
2 − (

Gi+1
x (u) + Gi−1

x (u)
)] + (

Gi−1
x (u) − 1

)))
.

with
Gi

x (u) =gi+1
x (u) − gi

x (u) − (
Ci

x (u, pi+1) − Ci
x (u, pi )

)
,

∀i ∈ {1 . . . n − 1}
Gn

x (u) =G0
x (u) = g1

x (u) − gn
x (u) − (

Cn
x (u, p1) − Cn

x (u, pn)
)

Gn+1
x (u)=G1

x (u)

The other two coordinates are obtained using the same424
formulas replacing x by y and then by z. Figure 5(c)425
shows the interpolated mesh generated from the set of426
curves in Fig. 5(a). A major advantage of this interpo-427
lation method is its calculation speed. Only elementary428
calculations are needed to generate the surface (there429
is no matrix inversion) and both information from the430
paths and from the initial curves are integrated in the431
process.432

In Fig. 6 we show two interpolated surfaces gener-433
ated by this method. Fig. 6(a) and (b) illustrate the fact434
that the interpolation combines both information com-435
ing from the network and from curves C1 and C2. Even436

Figure 6. (a) Test network of four paths synthetically produced, C1 and C2 are the lower and upper curves. (b) Interpolated surface. (c) is the
network of minimal paths obtained from an ultrasound image of the left ventricle. The user initialized the model by drawing the upper and lower
closed curves. (d) is the analytically interpolated surface.

when taking only four paths, the obtained surface is 437
coherent with the shape of the user given curves. Fig- 438
ure 6(c) shows set {gi } obtained from a left ventricle 439
image, Fig. 6(d) illustrates the interpolated surface. 440

4.2. Variational Interpolation 441

As was pointed out earlier, the analytical interpolation 442
method can only be applied with the unprojected net- 443
work {gi

C1
}i=1...n1 , since its particular structure (paths 444

cannot cross without merging) is necessary. Neverthe- 445
less, considering the projected networks can improve 446
results (see Fig. 4(b)). Unfortunately, a sector by sec- 447
tor approach can no longer be considered, for paths 448
can cross without merging. In these situations one can 449
hardly exploit the structure of the network, hence, a 450
scattered data points interpolation has to be considered. 451
We use the method proposed by Zhao et al. in Zhao, 452
et al. (2001). We compute from the network {g̃i

C1
}i=1...n1 453

a distance function d and we look for the surfaceS0 that 454
minimizes energy E(S) = ∫∫

S(d(x, y))2dxdy. This is 455
done by a gradient descent method similar to Eq. (2) 456
and we have used a level set implementation. When us- 457
ing projected networks, this method gives satisfactory 458
results since one can control the density of the paths by 459
varying the number of points on C1 and C2. 460

5. Initializing Active Surface with S0, 461
Applications 462

Having generated S0 by any of the previous methods, 463
we may use it as the initial condition of the evolution 464
Eq. (2). We have chosen a level set method for our im- 465
plementations. If the analytical interpolation method is 466
used, the construction of a higher dimensional func- 467
tion, φ0 : IR3 → IR such that φ−1

0 (0) = S0, is needed.
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Figure 7. (a) View of different intersecting planes of a 3D volume with the two constraining curves drawn on it. (b) Network of paths obtained
with our method. (c) Interpolated surface. (d) Surface after a few iterations of a level set. (e) and (f) Simple initialization of an active object. (g)
surface after 150 iterations and (h) after 500 iterations. (i) A slice of the 3D ultrasound image, we also have drawn the projection of the user
given curves and the intersection of our interpolated surface with this plane. (j) Set of paths. (k) Interpolated surface. (l) final segmentation after
a few iterations of the level set, (m) Planar view of the same slice, intersection with the model evolved as a level set.

Figure 8. (a) Slice of a 3D MR image of an aneurysm. (b) Set of paths. (c) Interpolated surface. (d) final segmentation after a few iterations of
a level set.

φ0 can be computed as a signed distance map using Fast468
marching initialized with S0. The evolution of the level469
set will be done following ∂φ

∂t = div(P.
∇φ

‖∇φ‖ )|∇φ‖,470
which is exactly the gradient descent of the geodesic471
active surface (1) in its level set formulation. For con-472
vergence, few iterations of φ will be needed, since S0473
is already close to image features. Compared to using474
a level set approach from the beginning, our approach475
is much faster, needs no tedious 3D initializations, and476
avoids local minima by exploiting curves C1 and C2.477
Figure 7(a) presents a good example of a difficult to478

segment image because of the presence of many lo- 479
cal minima. It is generated by three ‘S’ shaped tubes 480
one inside the other. If one wishes to obtain the middle 481
‘S’ shaped tube, classical variational methods will fail 482
(unless a very close initialization is given). Our method 483
manages to extract the object when initialized by two 484
curves given on the surface to extract. We compare it 485
with the result of a geodesic active surface initialized 486
with a cylinder (Fig. 7(e) and (f), and we observe in 487
Fig. 7(g) and (h) that the model gets trapped by other 488
local minima. Concerning ultrasound heart imaging, 489
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our method only needs two slices in order to build the490
entire volume of the left ventricle; this two curves can491
be, for example, two short axis segmentations as in Fig.492
1(a) and (b). Figures 7(i) to (j) show the segmentation493
obtained. For this image of size 1283, the generation of494
S0 took 25 seconds, the final segmentation 20 seconds495
more, on a 1.4 Ghz machine (512 MBy of RAM). In496
Fig. 8(a) to (d) , we show results on a MR image of497
an aneurysm. As for other previous examples, the user498
simply initialized the model by drawing two curves on499
two (non parallel) slices of the 3D image. On this im-500
age (192×168×152)), the total segmentation took 70501
seconds on the same machine.502

6. Conclusion503

In this paper we have presented a method that gener-504
alizes globally minimal paths to surfaces. Our method505
allows to greatly simplify the initialization process of506
active surfaces. The model is initialized by two curves507
(eventually a curve and a well positioned point) instead508
of a volume. Our approach takes a maximum advan-509
tage of the information given by the user through the510
initialization curves, since the surface it generates is511
constrained to include those curves. Our method uses512
globally minimal paths to define and generate a surface513
which is a final segmentation or an initialization of an514
active surface model. Hence, in both cases, the final515
surface is not concerned by the problem of the local516
minima traps as all other active objects approach do. It517
is particularly well suited for medical image segmenta-518
tion, in particular for ultrasound images segmentation.519
In cases where the image quality is very poor, our ap-520
proach handles the introduction of additional informa-521
tion coming from the practitioner in a very natural man-522
ner. A few 2D segmentations can be enough to generate523
a coherent complete surface. We have also presented a524
novel interpolation method which is characterized by525
its simplicity and its efficiency.526
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