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Abstract- A new approach performing surface extraction
from 3D images under user defined geometrical constraints
is presented. The constraints are introduced through
boundary curves given by the user or by preprocessing.
Our approach is based on minimal paths that integrate the
information coming from the constraint curves and from
the image through a potential representing the features to
extract. The minimal paths build a network of curves that
represent a first approximation of the desired surface. An
interpolation method is then used to build a mesh or an
implicit representation based on the information retrieved
from the network of paths. Our paper describes a fast con-
struction obtained by exploiting the Fast Marching algo-
rithm and a fast analytical interpolation method. More-
over, a model extension as well as a Level set method can
be used to refine the segmentation when higher accuracy
is required. The algorithm has been successfully applied to
3D ultrasound heart images and synthetic images.

1 Introduction

Since their introduction by Kass et al. [9], deformable mod-
els have been extensively used to find objects in 2D and 3D
images through the minimization of an energy. Two of the
main difficulties these models suffer from are local minima
“traps” and integrating external information. Since the en-
ergy used for the minimization is not convex, the existence
of local minima can prevent the active object from finding
the wanted minimum. Moreover, when image quality is very
low, energy minima do not necessarily represent the desired
segmentation and the model should be able to take into ac-
count information given by the user.
In this article we address the problem of introducing the user
information and using it to build a global minimum of the en-
ergy. We consider a situation where the extra information is
given by 2D contours as segmentations in two parallel planes
extracted from the original 3D image. This is a common sit-
uation in medical imaging; figure 1 shows different views of
a 3D left ventricle ultrasound image with the two planar seg-
mentations.
The main idea of this work is to first estimate the surface as
a set of 3D minimal paths that join the two given curves. As
will be shown, it is possible to build minimal paths [7, 8]
as global minima of the energy. Thus our segmentation will

a) b)

c) d)

Figure 1:Ultrasound Example. a) and b) show constraint curves
as 2D segmentations of two slices of a 3D ultrasound heart image.
c) and d) show different views of the 3D image and the constraint
curves.

not suffer from local minima problems, as would other active
surface methods like [4, 3]. By constraining the extremities
of the paths to lie on the user defined curves we introduce
strong constraints on the resulting minimum. We thus obtain
a dense set of paths that perceptually reconstruct the surface
of the object of interest. In order to get the complete surface,
we introduced an adapted interpolation method. If needed, a
Level Set model [10, 3] can be used afterwards to refine the
segmentation since we now have a very close initialization.
While the example of figure 1 is typical, and could maybe be
dealt with a slice by slice method [4], our method works as
well on general surfaces as seen in figures 3 or 15. The ar-
ticle structure is as follows: we begin in section 2 by recall-
ing the principles of finding minimal paths between points
with respect to an image dependent energy. In section 3 we
extend this method to the construction of minimal paths be-



tween a point and a curve and we exploit this extension in the
construction of a network of feature-based minimal paths. In
section 4 we present a very fast interpolation method adapted
to our problem which allows to derive our segmenting sur-
face from the paths. In section 5 we show some examples on
synthetic images and ultrasound heart images.

2 Background on Minimal Paths

In this section we will present the main background to our
work. Section 2.1 recalls the method allowing to find min-
imal energy paths between two points in a 2D image in-
troduced in [7]. In section 2.2 we rapidly review the Fast
Marching method [12] and its 3D extension proposed in [8].

2.1 Minimal paths as global minima

A known classical approach to boundary segmentation was
proposed by authors of [9] who defined the active contour
energy by

E (C) =

∫

Ω

{α. ‖C′(s)‖ + β. ‖C′′(s)‖ ds} +

∫

Ω

P(C(s))ds,

(1)
whereC was a curve in a 2D image,Ω its definition domain
andP the data attraction potential. The deformation ofC
was driven by the minimization of this energy.
Authors of [7] proposed to use minimal paths to find the
global minimum of this energy. They showed that energy (1)
could be simplified and that the initialization ofC could be
reduced to giving only its two end points (p0 andp1). Their
simplified version,

E (C) =

∫ L

0

{ω + P(C(s))} ds =

∫ L

0

{

P̃(C(s))
}

ds,

(2)
whereL is the length ofC and P̃ = ω + P is assumed to
be positive, achieves the smoothing of the curve by the only
influence of the constantω.

The solution to this minimization problem is obtained
through the calculation of the minimal action mapU (which
is the minimal energy integrated along a path between the
starting pointp0 and any given pointp of the plane):

U(p) = inf
C∈Ap0p

{

∫ L

0

P̃(C(s)ds

}

(3)

whereAp0p is the set of all paths betweenp0 andp.
OnceU is obtained, the search of the minimal action path
connectingp0 and pointp1 consists in following the opposite
gradient direction onU starting fromp1 until p0 is reached,
solving:

dC

ds
(s) = −∇U , with C(0) = p1 andC(L) = p0 (4)

This back propagation procedure is a simple steepest gradi-
ent descent and can be performed as proposed in [7]. The

fundamental point of this algorithm is the calculation of the
minimal action mapU , this is done in a very effective manner
through the Fast Marching algorithm described in the next
section.

2.2 Fast Marching Resolution

As mentioned in [7], the problem of finding the mapU is di-
rectly related to the evolution of a curveL from an infinitesi-
mal circle shape aroundp0 and driven by the evolution equa-
tion

∂L

∂t
(s, t) =

1

P̃
.
→
n (s, t), (5)

where
→
n is the normal to the curve. More precisely, the level

sets ofU satisfy

∀t, U−1(t) =
{

p ∈ IR2 | U(p) = t
}

=
{

p ∈ IR2 | ∃s, L(s, t) = p
}

= L(., t),
(6)

thus the knowledge ofL implies the knowledge ofU . It is
straightforward to see thatU also satisfies the Eikonal equa-
tion

‖∇U‖ = P̃ andU(p0) = 0. (7)

To solve this equation numerically, classic finite differences
scheme tend to be unstable. The Fast Marching method in-
troduced in [12] relies on a one-sided derivative that looks
in the up-wind direction of the front, and gives the correct
viscosity solution. A similar algorithm was also proposed in
[13]. Details on this algorithm can be found for example in
[6, 8].
The principal interest of this method is its efficiency. Only
one pass is needed over the grid domain, and by using min-
heap data structure, anO(N log(N)) complexity can be en-
sured on a grid ofN nodes.
As shown in [8] the extension of the previous problem to a
3D image is straightforward. Using a 6-connexity neighbor-
hood, the Fast Marching method can be extended, allowing
to solve the problem with the same complexity as in the 2D
case, thus discretizing equation (7) on a square grid by

(max {u − Ui−1,j,k, u − Ui+1,j,k, 0})2

+ (max {u − Ui,j−1,k, u − Ui,j+1,k, 0})2

+ (max {u − Ui,j,k−1, u − Ui,j,k+1, 0})
2 = P2

i,j

(8)
For more details on the algorithm refer to [8].

In [5] the authors expanded the method presented in this
section to finding minimal paths between two regions. In
the next section we present an extension that allows to find
minimal paths with respect to a potential between a curve
and a point in a 3D space. Our new approach iterates this
process in order to obtain a set of paths which then generate
our segmenting surface.



3 Segmenting Paths

Our objective is to generate a surface that extracts an 3D
object from image features. This surface will also be con-
strained to contain two given 3D curves. We propose to build
a first approximation of the surface by a set of minimal paths.
In section 3.1 we present an extension of the methods pre-
sented in section 2 that allows to find minimal paths between
a point and a curve in a 3D domain. In section 3.2 we show
this leads to the construction of a set of minimal paths that
can perceptually rebuild a segmenting surface. In section 3.3
we present improvements on this approach.

3.1 Minimal paths between points and curves

Let us denote byγ a curve defined in a 3D image(γ : IR →
IR3) and byp a point ofIR3. We call path betweenγ andp,
a curveC such thatC(0) = p andC(L) ∈ γ (L being the
length ofC, parameterized by its arc-length).
In this case, the minimal action mapU is defined as the func-
tion that associates to each pointp ∈ IR3 the energy value of
the minimal path toγ

U(p) = inf
C∈H

{

∫ L

0

P̃(C(s))ds

}

(9)

whereH is the set of all paths betweenγ andp.
As for section 2.2 the problem of finding the mapU is the
same as solving the partial differential problem

∂Γ(u, v, t)

∂t
=

1

P̃
.
→
n (u, v, t) (10)

which is the evolution equation of a surface (Γ) evolving un-
der a normal force (1

P̃
.

→
n). Its initial state will be set to

be, for example, a tube aroundγ. The minimal action map
U satisfies, as in previous section, the Eikonal equation (7),
with U = 0 onγ.

Numerically, this equation can also be solved by applying
the Fast Marching algorithm, only a minor change is done
on its initialization. As detailed in [5], instead of initializing
with a seed point, we initialize with all points ofγ.
In order to find the minimal path, the back-propagation will
start from a given pointp in space and will stop when a point
of γ is reached.
Next section shows how this extension can be used to pro-
duce a set of minimal paths between two curves with respect
to image features.

3.2 Free Minimal Paths Network

Given some potentialP that takes lower values near the
edges or features of a 3D image and two curvesC1 andC2

defined in the same 3D image domain, our goal is to find a
surfaceS that satisfies the following conditions

• S contains the curvesC1 andC2,

• S is close to the features of the image expressed through
low values ofP .

The first step of our algorithm consists in the generation
of a network of minimal paths with respect toP that join
curvesC1 andC2.
In order to generate this network we compute for each point
p of C2 the minimal pathgp between this point andC1:

gp = ArgMin
C∈Hp

(

∫ L

0

P̃(C(s))ds

)

, (11)

whereHp is the set of all paths joiningp to C1.
As presented in section 3.1 this is done by solving the

Eikonal equation (7) related toP using Fast Marching and
initializing U = 0 on C1. For each pointp of C2, a back
propagation procedure (4) is performed in order to find the
pathgp.

Note that for everyp, the pathgp is a global minimum of
the energyE(C) =

∫

{P(C)}, thus it best approaches lower
values ofP and at the same time it joinsC1 andC2.

An illustration of this construction is given in figure 2,
a potential adapted to finding the external surface of an
ellipsoid is used (P has a small value on the ellipsoid,
and a large value in the background). It is clear from this
example that the generated set of minimal paths{gp}p∈C2

perceptually rebuilds the object of interest between the two
curves, giving an approximation of the searched surfaceS.

a) Original Ellispoid to be found b) Set of minimal Paths

and curvesC1 andC2. betweenC1 andC2.

Figure 2:Path network obtained on a synthetic 3D image.

It should also be noted that even when the given 3D curves
C1 andC2 are not located on the object features, the set of
paths will choose a compromise between proximity to fea-
tures and joiningC1 andC2 with a minimal cost. This is
illustrated in figure 3 where the image potential drives the
paths towards a tubular shape. In the second example, curve
C2 does not lie on the tube.

The previously described construction of the set of paths
is numerically very effective, the fast marching algorithmis
only performed once and each path is determined by a very



a) 3D Curves on features. b)C2 no longer on features.

Figure 3:Path network obtained on an synthetic 3D ’S’ shaped
tube. (a) The two initial curves are situated on the externalsurface
of the tube, the image shows the obtained network of minimal paths.
(b) although the upper curve is not situated on the external surface
of the tube, paths join this surface in a minimal manner.

low complexity gradient descent method. Nevertheless its
main drawback resides in the fact that minimal paths be-
tween the points ofC2 and the curveC1 will tend to merge
like rivers do when descending from mountains to a valley
and thus missing some areas of the surface of interest (see
figure 7a). This behavior can hardly be avoided because it is
mainly driven by the geometrical nature of the features this
potential represents. In the next section we present some so-
lutions to handle situations where the minimal paths alone
fail to perceptually build the object of interest.

3.3 Set of Restricted Minimal Paths

Figure 4 illustrates a usual situation where the set of paths
described in the previous section fails to correctly recover
the object of interest. The potential is minimal on a surface
which is the blending of a plane and a half-sphere. Minimal
paths prefer to take a short cut around the sphere rather than
’climbing’ on it. The reason for this behavior is that since
the path can join any point on curveC2, it is shorter and thus
of lower energy to turn around the sphere.

In more complicated image situations like ultrasound
heart images, the majority of the paths merge and few
points of the destination curve (C2) are reached. This is
problematic in order to extract a surface since too much
information is lost (see figure 7a).

To cope with this problem, a simple but effective method
is to geometrically restrict the back-propagation procedure
that builds the minimal paths (equation 4). In our case a
manner to obtain a more uniformly distributed set of paths
is to restrict their construction to planes. When backpropa-
gating from a pointp ∈ C2 we define a planeΠp containing
p and given through its normal vector

→
np. Instead of build-

ing the solution path from (4) we buildCp by projecting the

Figure 4: Data (above): half-sphere blended on a plane (transpar-
ent visualization) andC1 andC2 (black segments). Result (below):
set of paths joiningC1 andC2. The network of paths misses the
half-sphere.

evolution equation (4) onΠp.

dCp

ds
(s) = −∇U +

(

∇U .
→
np

)

.
→
np (12)

Figure 5:Network obtained by the restricted back propagation.
Compared with Figure 4, the network is denser, perceptuallythe
half-sphere is nearly complete.

We show in figure 5 the result obtained with restriction of
the paths to parallel planes which are orthogonal toC1 and
C2 (np is a constant vector).
In practice, the two given curves are usually closed contours
segmenting 2D slices of the 3D volume. In such cases we can
intuitively define the planeΠp by three points:G1 (center of
mass ofC1), G2 (center of mass ofC2) andp, and thus

→

np =

→

G1G2 ∧
→

G1p
∥

∥

∥

∥

→

G1G2 ∧
→

G1p

∥

∥

∥

∥

(13)

As the pointp varies alongC1, the planeΠp will "rotate"
around the principal axisG1G2 (see figure 6) . This method
will prove to be quite effective when dealing with objects
that present rotational symmetry or nearly. At each of its
positions, planeΠp will naturally be close to a meridian
plane. Thus, minimal paths will generate 2D segmentations
on those planes. When applied to ultrasound heart images
of the left ventricle, our method is very efficient (see figure



7b and section 5.3) since the left ventricle is nearly radially
symmetric around an axis.

*
*

*

C2

C1

G2

G1

P

C
onstraining P

lane

Grad(U)

Figure 6:Illustration of the projected back propagation

a) Set of paths b) Restricted set of paths

Figure 7:Results on a left ventricle ultrasound image.

4 The Interpolated Surface

In this section we describe the final step of our algorithm,
which consists in obtaining a surface representation derived
from the above calculated paths.
Our goal in now to find a surface interpolating the informa-
tion given by the network of paths.
First we consider a discrete representation of curveC2 with
nodes

{

P i
2

}

uniformly spaced with unit step with respect to
arc-length. The paths

{

gi
}

i∈{1,2,..,n}
correspond to back-

propagation from the nodes
{

P i
2

}

to C1.
By construction two paths belonging to this network may

either have an empty intersection or merge. Based on this
fact, we have introduced a novel and simple interpolation
method inspired by splines that integrates information
coming from both the network of paths and the constraining

curvesC1 andC2. If paths do not merge, the method gener-
ates a surface which is at least continuously differentiable.

4.1 Analytical path interpolation

Our surface interpolation method is based on a local linear
interpolation of each surface sector. A sector is defined by
two successive minimal paths and the two portions of curves
C1 andC2 (see Figure 8).

Figure 8: illustration of a sector defined by two paths

Let s1 and s2 be the arc-length parameterizations ofC1

andC2 andCi
1, Ci

2 their restrictions to theith sector. The
paths network is noted

{

gi
}

i∈{1,2,..,n}
and

{

P i
1

}

,
{

P i
2

}

are the intersection points ofC1, C2 with paths
{

gi
}

(
Cj ∩ gi = Cj(sj(P

i
j )), j = 1, 2 ).

Our aim is to generate a parameterized surfaceD that is
continuously differentiable and is parameterized withu and
v.
The essential constraint onD is to contain curvesC1, C2 and
all paths. In order to obtain continuity on the frontiers of
sectors, ifDi is the restriction to theith sector ofD, it must
verify:

(P1)







Di
(

., v(P i)
)

≡ gi

Di
(

0, .)
)

≡ Ci
1

Di
(

1, .)
)

≡ Ci
2

If we now impose onD to satisfy the following condition for
everyu ∈ [0, 1]

(P2)
∂Di

∂v

(

u, v(P i+1)
)

=
∂Di+1

∂v

(

u, v(P i+1)
)

(14)

D will be at least a continuously differential surface param-
eterized byu andv.
A fundamental step of the construction of the surface
is the introduction of a functionσ which is strictly in-
creasing, of class at leastC1 and creates the following
correspondence between the arc-lengths of curvesC1 andC2

: s2

(

P i
2

)

= σ
(

s1

(

P i
1

))

. More precisely,σ can be chosen
as a cubic spline from[0, 1] into itself, that verifies the



s1(P11)s1(P12) s1(P13) s1(P14) s1(P15) s1(P16)

s2(P21)

s2(P22)

s2(P23)

s2(P24)

s2(P25)

s2(P26)

Sigma function  

Figure 9: illustration of functionσ that builds the wanted
correspondence between arc-lengths.

previous equalities (see figure 9).
This allows to use a common parameterization, notedv,
on both C1 and C2 and thus the same abscissa for the
intersecting points

{

P i
}

. Notice that we need only to
change the parameter onC2 (sincev can be chosen identical
to s1).
In the same manner, we will parameterize all paths

{

gi
}

with
the same parameteru which takes its values on the interval
[0, 1]. In figure 10 we give an illustration of the coorrespon-
dace established byD between[0, 1]× [0, 1] and our surface.

v=pi

u=0

u=1

u=0.5

D=D(u,v) v=pi+1

v

u

Figure 10:Illustration of the correspondance established byD

It can be shown that the following expression ofD satis-
fies (P1) and (P2),

Di(u, v) = αi(u, v).
[

Ci
(

u, v
)

− g̃i(u)
]

+ (1 − αi(u, v)).
[

Ci
(

u, v
)

− g̃i+1(u)
]

(15)

where we have the following definitions

• Ci(u, v) = (1 − f(u)).Ci
1(v) + f(u).Ci

2(σ(v))

• g̃i(u) = gi(u) − Ci
(

u, v(P i)
)

• αi = (1 − τi(v)) {1 + τi(v) [µi(u) − 1] .h ◦ τi(v)}

• τi(v) = v−v(P i)
v(P i+1)−v(P i)

• µi(u) = g̃i+2(u)−g̃i+1(u)
g̃i+1(u)−g̃i(u) .τi+1(v(P i))

The two functionsf and h can be chosen among all
the differentiable functions on[0, 1] and must verify
h(1) = f(0) = 1 andf(1) = h(0) = 0.
A proof of these statements can be found in [1].
The main interest of this interpolation method is its calcu-
lation speed. Only elementary calculations are needed to
generate the surface (there is no matrix inversion) and both
information from the paths and from the initial curves are
integrated in the process. Because of its capacity to integrate
the information of the given curves, even when many paths
are lacking the interpolation is still satisfactory (see Figure
11).

Figure 11:Interpolated surface fromC1 andC2 (the lower and up-
per curves) and 4 paths. The path network is here limited for visi-
bility.

Figure 12:Paths network obtained when applying our method to
a ultrasound left ventricle image and the analytical interpolating
surface.

4.2 Using a Level Set method

Depending on the nature of the image, the obtained surface
can be considered as the actual segmentation or, in more dif-
ficult cases, as a good initialization for level set active con-
tours ([3, 10]). From the regular mesh obtained through
the analytical method a distance map,φ, that will satisfy
φ−1(0) = D can be computed as a distance map using the
Fast Marching method initialized withD and with a constant
potential of value 1.
Onceφ is obtained, a classical Level set evolution method
gives a more accurate segmentation. Note that few iterations
of the numerical evolution ofφ will be needed since the sur-
face we produced is already close to image features and its



energy is nearly the minimum we are searching for. Com-
pared to using a level set approach from the beginning, our
approach is much faster, needs no initialisation, avoids local
minima and allows to impose hard constraints.

5 Application

In this section we will apply our algorithm to some synthetic
and ultrasound images. Firstly we will give some indications
on a possible procedure for generating a potential function
capable of detecting edges.

5.1 Choosing the Potential

In order to find a relevant object in a given image, we are
going to use a potential (or cost function) that will allow the
propagating frontU (see section 2) to rapidly advance in re-
gions where edges are likely to be present. The form of the
potential we used is the following

P = α.h(|∇Iσ|) + (1 − α) ∗ hgap(∆Iσ), (16)

whereh andhgap are two functions bounded to[0, 1] andIσ

is the convolution of the given image with a gaussian kernel
of varianceσ.
The right choice for functionsh andhgap is restricted by the
fact that the cost function should be high in areas where it
is unlikely to encounter an edge. A simple choice forh can
be the classical form:h(x) = 1

1+x2/λ2 ([2, 10]), whereλ

is a user defined contrast factor that can be computed as an

average gradient value,λ =
∫

‖∇I‖dx
∫

dx
.

The hgap function is chosen to be a zero crossing detector
that depends on a user defined constantgap. Because of the
noisy nature of the Laplacian of an image,hgap is set to be
a binary map that detects only relevant zero crossing points
of the Laplacian. In order to automatically detect the contri-

Figure 13: View of a slice of a 3D ultra sound image of the left
ventricle. On the right, cost function.

bution factorα, a learning method could be used as in [11],
collecting information from the image on a neighborhood of
the given contours. In practice it is very difficult to set auto-
matically this value because most of the time the given con-
tours are drawn in zones where the image has features that
are very hard to detect. The knowledge of the practitioner is
thus needed.

5.2 Results on synthetic images

In this section we present some segmenting surfaces ob-
tained using our method on some synthetic images.
Figure 14 represents the reconstruction of our ’S’ shaped
tube. This example shows the advantages introduced by our
method: after the fast constructions of the paths and the very
rapid interpolation we have nearly reconstructed the object
(Figure 14 c)). We also show the capability of building a
surface which is a compromise between the hard constraints
and the image features.

a) b) c)

d) e)

Figure 14: Reconstruction of a tubular synthetic image: a) Inter-
section of the 3D ’S’ shaped tube image with a plane. b) Network
of paths obtained when the two constraining curves are situated at
the ends of the tubular surface. c) Interpolated surface. d)The net-
work and surface e) obtained when segmenting the same image but
no longer imposing toC2 to be on the tubular surface.

Figure 15 shows the segmentation of a much more compli-
cated image (Figure 15a) that contains internal and external
surfaces close to the desired surface. If one wishes to obtain
the middle ’S’ shaped tube most of variational methods will
fail, unless a very close initialization is given, because of the
presence of many local minima. Our method manages to ex-
tract the object with the only extra information of two curves
lying on it. Minimal paths find the global minimum of the
energy.

In next section we present a real image result. In real im-
ages local minima are very difficult to avoid, and this is one
aspect of the importance of our contribution.

5.3 Reconstruction of the left ventricle from
ultrasound images

It is a common practice in ultrasound heart images to per-
form as a first step 2D segmentation on a slice. When images
are of very low quality the practitioner does the segmentation



a) b) c)

Figure 15: a) Intersection of the 3D image with a plane. b) Ob-
tained set of paths. c) Interpolated surface.

by hand. Our algorithm allows to rapidly build a 3D model
that approximates quite well the left ventricle between two
segmented slices. Figure 16 shows the result of the segmen-
tation of the 3D image with the constraining paths presented
in Figure 1. As can be seen in Figure 16b the restricted set
of paths has already rebuilt perceptually the ventricle. Figure
16c represents the interpolated surface with our method. We
then applied a classical level set method evolution to refine
the segmentation.

a) b) c)

d) e)

Figure 16:a) A slice of the 3D ultrasound image, we also have
drawn the intersection of our interpolated surface with this plane.
b) Set of paths. c) Interpolated surface. d) Planar view of the same
slice, intersection with the model evolved as a level set. e)final
segmentation after a few iterations of the level set.

6 Conclusion and future work

In this article we presented a new method to build a sur-
face constrained to lie on two curves using minimal paths
as guides for the generation of an interpolated surface. We

also presented a novel interpolation method which is charac-
terized by its simplicity and its speed.
This construction has two major interests. First, in the region
defined between the two given curves, the obtained surface
avoids local minima and is very close to the actual minimiz-
ing surface. Second, the obtained surface is constrained to
contain the given curves.
A future perspective of this work could be the search for par-
ticular points during the construction of the minimal paths
in order to allow surface reconstruction outside the region
between the given curves.
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