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Abstract- A new approach performing surface extraction
from 3D images under user defined geometrical constraints
is presented. The constraints are introduced through
boundary curves given by the user or by preprocessing
Our approach is based on minimal paths that integrate the
information coming from the constraint curves and from
the image through a potential representing the features to
extract. The minimal paths build a network of curves that
represent a first approximation of the desired surface. An
interpolation method is then used to build a mesh or an
implicit representation based on the information retriede
from the network of paths. Our paper describes a fast con-
struction obtained by exploiting the Fast Marching algo-
rithm and a fast analytical interpolation method. More-
over, a model extension as well as a Level set method cal
be used to refine the segmentation when higher accurac
is required. The algorithm has been successfully applied to
3D ultrasound heart images and synthetic images.

1 Introduction

Since their introduction by Kass et al. [9], deformable mod-

els have been extensively used to find objects in 2D and Bigure 1:Ultrasound Example. a) and b) show constraint curves
images through the minimization of an energy. Two of tH§ 2D segmentations of two slices of a 3D ultrasound heagéma
main difficulties these models suffer from are local mininfa and d) show different views of the 3D image and the consttrai
“traps” and integrating external information. Since the efRuUrves.

ergy used for the minimization is not convex, the existence

of local minima can prevent the active object from finding

the wanted minimum. Moreover, when image quality is venot suffer from local minima problems, as would other active
low, energy minima do not necessarily represent the desisenlface methods like [4, 3]. By constraining the extremitie
segmentation and the model should be able to take into afthe paths to lie on the user defined curves we introduce
count information given by the user. strong constraints on the resulting minimum. We thus obtain
In this article we address the problem of introducing the ussedense set of paths that perceptually reconstruct thecgurfa
information and using it to build a global minimum of the ersf the object of interest. In order to get the complete s@fac
ergy. We consider a situation where the extra informationvi& introduced an adapted interpolation method. If needed, a
given by 2D contours as segmentations in two parallel plariesrel Set model [10, 3] can be used afterwards to refine the
extracted from the original 3D image. This is a common sgegmentation since we now have a very close initialization.
uation in medical imaging; figure 1 shows different views &Vhile the example of figure 1 is typical, and could maybe be
a 3D left ventricle ultrasound image with the two planar sedealt with a slice by slice method [4], our method works as
mentations. well on general surfaces as seen in figures 3 or 15. The ar-
The main idea of this work is to first estimate the surface tigle structure is as follows: we begin in section 2 by recall

a set of 3D minimal paths that join the two given curves. Asg the principles of finding minimal paths between points
will be shown, it is possible to build minimal paths [7, 8ith respect to an image dependent energy. In section 3 we
as global minima of the energy. Thus our segmentation walktend this method to the construction of minimal paths be-



tween a point and a curve and we exploit this extension in fumdamental point of this algorithm is the calculation of th
construction of a network of feature-based minimal paths. hinimal action map/, this is done in a very effective manner
section 4 we present a very fast interpolation method adaptierough the Fast Marching algorithm described in the next
to our problem which allows to derive our segmenting susection.

face from the paths. In section 5 we show some examples on

synthetic images and ultrasound heart images. 22 Fast Marching Resolution

As mentioned in [7], the problem of finding the m&s di-
rectly related to the evolution of a curngefrom an infinitesi-
In this section we will present the main background to ofJ#! circle shape aroung and driven by the evolution equa-
work. Section 2.1 recalls the method allowing to find miflon

imal energy paths between two points in a 2D image in- or 1
troduced in [7]. In section 2.2 we rapidly review the Fast E(Sﬂf) = 5" (s,), (5)
Marching method [12] and its 3D extension proposed in [8].

wheren is the normal to the curve. More precisely, the level
2.1 Minimal pathsas global minima sets of/ satisfy

2 Background on Minimal Paths

A known classical approach to boundary segmentation was v, Ult)y= {peR*|Up) =t}
proposed by authors of [9] who defined the active contour _ {p e R?| Js, L(s,t) = p} (6)

energy by = L(.,1),

E(C) = / {a. [IC'(s)|| + B-IC”" ()| ds} +/ P(C(s))ds, thus the knowledge of implies the knowledge aff. It is

@ @ 1) straightforward to see that also satisfies the Eikonal equa-
whereC was a curve in a 2D imagé) its definition domain tion
and P the data attraction potential. The deformationCof

was driven by the minimization of this energy. VU] =P andi(po) = 0. )

Authors of [7] proposed to use minimal paths to find the, so|ve this equation numerically, classic finite differes
global minimum of this energy. They showed that energy ({dheme tend to be unstable. The Fast Marching method in-
could be simplified and that the initialization 6fcould be 54y ced in [12] relies on a one-sided derivative that looks
reduced to giving only its two end pointso(andp:). Their iy the yp-wind direction of the front, and gives the correct
simplified version, viscosity solution. A similar algorithm was also proposed i
L L [13]. Details on this algorithm can be found for example in
Q) = [ fwrPEends= [ {Pee)}ds 68
0 0 2) The principal interest of this method is its efficiency. Only
where is the length oC and? = w + P is assumed to ON€ pass is needed over the grid domain, gnd by using min-
be positive, achieves the smoothing of the curve by the ofigaP data structure, &n(N log(N')) complexity can be en-
influence of the constant. sured on a grid of' nodes.
As shown in [8] the extension of the previous problem to a
The solution to this minimization problem is obtainedD image is straightforward. Using a 6-connexity neighbor-
through the calculation of the minimal action miagwhich 1ood, the Fast Marching method can be extended, allowing

is the minimal energy integrated along a path between {Re50Ive the problem with the same complexity as in the 2D

starting poinip, and any given poing of the plane): case, thus discretizing equation (7) on a square grid by
_ L (max{u—Us_1 5k, u—U1jk, 0})
u) = nf 3 [ P @)+ (mar{u— Uy rpn—Usgsrp0))?
0 +  (maz{u—Ujx-1,u—U jr41,0})? = Pi2,j
whereA,,, is the set of all paths betwegp andp. (8)

Oncel{ is obtained, the search of the minimal action paffPr more details on the algorithm refer to [8].

connectingyy and poinfp; consists in following the opposite

gradient direction o/ starting fromp; until p, is reached, In [5] the authors expanded the method presented in this

solving: section to finding minimal paths between two regions. In

the next section we present an extension that allows to find

%(S) = —VU,with C(0) = p; andC(L) = po (4) minimal paths with respect to a potential between a curve
ds and a point in a 3D space. Our new approach iterates this

This back propagation procedure is a simple steepest gradecess in order to obtain a set of paths which then generate

ent descent and can be performed as proposed in [7]. Ble segmenting surface.



3 Segmenti ng Paths e Sisclose to the features of the image expressed through
low values ofP.

Our objective is to generate a surface that extracts an 3D

object from image features. This surface will also be con-The first step of our algorithm consists in the generation

strained to contain two given 3D curves. We propose to builia network of minimal paths with respect @ that join

afirst approximation of the surface by a set of minimal patreirvesC; andC,.

In section 3.1 we present an extension of the methods greerder to generate this network we compute for each point

sented in section 2 that allows to find minimal paths betwepof C> the minimal pathy, between this point an@; :

a point and a curve in a 3D domain. In section 3.2 we show 5

this leads to the construction of a set of minimal paths that ) ~

can perceptually rebuild a segmenting surface. In sect®n 3 9p = A@gﬁ‘f’” < ) P(C(S))d5> ’ (1)

we present improvements on this approach. '

whereH,, is the set of all paths joiningto C;.

As presented in section 3.1 this is done by solving the
Eikonal equation (7) related t8 using Fast Marching and
Let us denote by a curve defined in a 3D imade : IR — initializing &/ = 0 on C;. For each poinp of Cq, a back
IR?) and byp a point ofIR3. We call path betweety andp, propagation procedure (4) is performed in order to find the
a curveC such thaC(0) = pandC(L) € ~ (L being the pathg,.

3.1 Minimal paths between pointsand curves

length ofC, parameterized by its arc-length). Note that for every, the pathg, is a global minimum of
In this case, the minimal action magis defined as the func-the energy(C') = [ {P(C)}, thus it best approaches lower
tion that associates to each pgint IR? the energy value of values ofP and at the same time it joig andCs.
the minimal path toy An illustration of this construction is given in figure 2,
a potential adapted to finding the external surface of an
ellipsoid is used ® has a small value on the ellipsoid,
Z,Z?Ji / P(C ©) anda large value in the background). It is clear from this

example that the generated set of minimal pa(tgigls,}pec2
whereH is the set of all paths betweerandp. perceptually rebuilds the object of interest between the tw
As for section 2.2 the problem of finding the mépis the Ccurves, giving an approximation of the searched suréace
same as solving the partial differential problem

or(u,v,t) 1 -
—a = p.n(u,v,t) (10)

which is the evolution equation of a surfad® evolving un-
der a normal force—Ig. n). Its initial state will be set to
be, for example, a tube around The minimal action map
U satisfies, as in previous section, the Eikonal equation (7
with 4 = 0 on~.

Numerically, this equation can also be solved by applying
the Fast Marching algorithm, only a minor change is done
on its initialization. As detailed in [5], instead of initizing a) Original Ellispoid to be found b) Set of minimal Paths

with a seed point, we initialize with all points of and curve<’; andCs. betweerC; andCs.

In order to find the minimal path, the back-propagation will

start from a given point in space and will stop when a point

of ~ is reached. Figure 2:Path network obtained on a synthetic 3D image.
Next section shows how this extension can be used to pro-

duce a set of minimal paths between two curves with respeclt should also be noted that even when the given 3D curves

to image features. C; and(C, are not located on the object features, the set of
paths will choose a compromise between proximity to fea-
32 FreeMinimal Paths Networ k tures and joining’; and C, with a minimal cost. This is

illustrated in figure 3 where the image potential drives the
Given some potentiaP that takes lower values near th@aths towards a tubular shape. In the second example, curve
edges or features of a 3D image and two cu@gandC, C2 does not lie on the tube.
defined in the same 3D image domain, our goal is to find a
surfacesS that satisfies the following conditions The previously described construction of the set of paths
is numerically very effective, the fast marching algoritiam
e S contains the curved; andCa, only performed once and each path is determined by a very



a) 3D Curves on features. 6) no longer on features.

Figure 3:Path network obtained on an synthetic 3D 'S’ shape _.

tube. (a) The two initial curves are situated on the extesnekace

of the tube, the image shows the obtained network of miniratdg

(b) although the upper curve is not situated on the exterddse Figure 4: Data (above): half-sphere blended on a plane (transpar-

of the tube, paths join this surface in a minimal manner. ent visualization) an@; andC: (black segments). Result (below):
set of paths joining’; andC.. The network of paths misses the
half-sphere.

low complexity gradient descent method. Nevertheless its
main drawback resides in the fact that minimal paths bg;oiution equation (4) ofl,.
tween the points of, and the curveg; will tend to merge

like rivers do when descending from mountains to a valley dc,
and thus missing some areas of the surface of interest (see ds
figure 7a). This behavior can hardly be avoided because it is
mainly driven by the geometrical nature of the features this
potential represents. In the next section we present some
lutions to handle situations where the minimal paths alo
fail to perceptually build the object of interest.

(s) = —VU + (vu. nj,) Ty (12)

3.3 Set of Restricted Minimal Paths

Figure 4 illustrates a usual situation where the set of patigure 5:Network obtained by the restricted back propagation.
described in the previous section fails to correctly recov@ompared with Figure 4, the network is denser, perceptubhtly
the object of interest. The potential is minimal on a surfabelf-sphere is nearly complete.

which is the blending of a plane and a half-sphere. Minimal o i . o
paths prefer to take a short cut around the sphere rather thaffe Show in figure 5 the result obtained with restriction of
‘climbing’ on it. The reason for this behavior is that sincB'€ Paths to parallel planes which are orthogonattand

. . . 2 (n, is @ constant vector).
gﬁor\’,?é? gsgrg)ﬂ:?grgzgf; di‘;regib';ésr:horter and thus In practice, the two given curves are usually closed coistour

segmenting 2D slices of the 3D volume. In such cases we can
In more complicated image situations like ultrasouridtuitively define the planél, by three pointsG; (center of

heart images, the majority of the paths merge and femass of’;), G, (center of mass af,) andp, and thus

points of the destination curv&{) are reached. This is _ _

problematic in order to extract a surface since too much — _ GG ANGip (13)

information is lost (see figure 7a). HGTGa AGip ‘

To cope with this problem, a simple but effective methods the pointp varies along’;, the planell, will "rotate"

is to geometrically restrict the back-propagation procedisround the principal axi€'; G- (see figure 6) . This method
that builds the minimal paths (equation 4). In our casewdll prove to be quite effective when dealing with objects
manner to obtain a more uniformly distributed set of patkisat present rotational symmetry or nearly. At each of its
is to restrict their construction to planes. When backpfopsositions, plandl, will naturally be close to a meridian
gating from a poinp € C, we define a planél, containing plane. Thus, minimal paths will generate 2D segmentations
p and given through its normal vect&;}. Instead of build- on those planes. When applied to ultrasound heart images
ing the solution path from (4) we build, by projecting the of the left ventricle, our method is very efficient (see figure




7b and section 5.3) since the left ventricle is nearly rdgliacurvesC; andCs. If paths do not merge, the method gener-
symmetric around an axis. ates a surface which is at least continuously differengiabl

4.1 Analytical path interpolation

aueld Buiuensuon

Our surface interpolation method is based on a local linear
interpolation of each surface sector. A sector is defined by
two successive minimal paths and the two portions of curves
C; andC, (see Figure 8).

Figure 6:lllustration of the projected back propagation

Figure 8: illustration of a sector defined by two paths

Let s; and s; be the arc-length parameterizations(af
andC, andCi, Ci their restrictions to thé'" sector. The
paths network is notedg'},. ., , , and {P{}, {Pi}
are the intersection points df;, C, with paths {¢'} (
Cing' =Cj(s;(F})),i =1,2).

Our aim is to generate a parameterized surfBcehat is

continuously differentiable and is parameterized witand

a) Set of paths b) Restricted set of paths V.
The essential constraint dnis to contain curve§;, C; and

all paths. In order to obtain continuity on the frontiers of

Figure 7:Results on a left ventricle ultrasound image. sectors, ifD’ is the restriction to thé" sector ofD, it must

verify:
D'(,u(P)) = ¢
4 Thelnterpolated Surface (P1) D'(0,)) = Ci
D(1,.)) = Cj

In this section we describe the final step of our algorithm,
which consists in obtaining a surface representation dérif we now impose orD to satisfy the following condition for

from the above calculated paths. everyu € [0, 1]

Our goal in now to find a surface interpolating the informa- . "

tion given by the network of paths. (P2) aai(u,v(]gi-&-l)) _ 9D (wo(PHY) (14)
v

First we consider a discrete representation of chvvith v

nodes{ P3 } uniformly spiaced with unit step with respecttq; i e 4t least a continuously differential surface param-
arc-length. The path$g }ie{m,,,n} correspond to baCk'eterized byu ando.

propagation from the nodéng}to Ci. A fundamental step of the construction of the surface
By construction two paths belonging to this network mag the introduction of a functiorr which is strictly in-
either have an empty intersection or merge. Based on thisasing, of class at leagt' and creates the following
fact, we have introduced a novel and simple interpolationrrespondence between the arc-lengths of cutyesdC-
method inspired by splines that integrates informations; (Pi) = o (s1 (P{)). More preciselyg can be chosen
coming from both the network of paths and the constrainiag a cubic spline fronj0, 1] into itself, that verifies the



Sigma function

The two functionsf and h can be chosen among all
i B ' ] the differentiable functions or{0,1] and must verify
h(1) = f(0) =1andf(1) = h(0) = 0.
A proof of these statements can be found in [1].
The main interest of this interpolation method is its calcu-

S22 1 lation speed. Only elementary calculations are needed to
generate the surface (there is no matrix inversion) and both
w9 1 information from the paths and from the initial curves are

integrated in the process. Because of its capacity to iategr
| | the information of the given curves, even when many paths
i 1 are lacking the interpolation is still satisfactory (segufe

I I I I I I
s1(P1131(P12) s1(P13) s1(P14) s1(P15) s1(P16) 11) .

Figure 9: illustration of functiorv that builds the wanted
correspondence between arc-lengths.

previous equalities (see figure 9).

This allows to use a common parameterization, naied
on bothC; and C> and thus the same abscissa for the
intersecting points{ P*}. Notice that we need only to
change the parameter 6a (sincev can be chosen identical
to 81).

In the same manner, we will parameterize all pdtiis; with

the same parameterwhich takes its values on the intervaFigure 11:Interpolated surface from; andC, (the lower and up-
[0, 1]. In figure 10 we give an illustration of the coorresporper curves) and 4 paths. The path network is here limitedifdi+ v
dace established by betweer(0, 1] x [0, 1] and our surface. bility.

Figure 10:lllustration of the correspondance established’by Figure 12:Paths network obtained when applying our method to
a ultrasound left ventricle image and the analytical intéaing
It can be shown that the following expressioniafsatis- surface.

fies (P1) and (P2),
Di(u,v) = o' (u,v). [C*(u,v) — §"(u)] s) 4.2 UsingaLevel Set method
+ (1 -a'(u,0). [C(u,v) — 7 (w)] Depending on the nature of the image, the obtained surface
] o can be considered as the actual segmentation or, in more dif-
where we have the following definitions ficult cases, as a good initialization for level set activa-co
i B i i tours ([3, 10]). From the regular mesh obtained through
=(1-— . .
o C'wv) = (1= f().Ci(v) + f(u) Co(o(v)) the analytical method a distance maf, that will satisfy
o §i(u) = g'(u) — C(u,v(P")) #~1(0) = D can be computed as a distance map using the

_ Fast Marching method initialized withD and with a constant
e o' =(1—7(v){l+7(v)[pni(u) —1].hor(v)} potential of value 1.
" Once¢ is obtained, a classical Level set evolution method
o v—v(P") ] . . .
e 7i(v) = PP —o(P) gives a more accurate segmentation. Note that few itetion
I _ of the numerical evolution ab will be needed since the sur-
o pi(u) = W.TPA(U(P)) face we produced is already close to image features and its



energy is nearly the minimum we are searching for. Cod-2 Resultson synthetic images
pared to using a level set approach from the beginning, ?Hr
approach is much faster, needs no initialisation, avoidallo
minima and allows to impose hard constraints.

this section we present some segmenting surfaces ob-
tained using our method on some synthetic images.
Figure 14 represents the reconstruction of our 'S’ shaped
tube. This example shows the advantages introduced by our
method: after the fast constructions of the paths and the ver
rapid interpolation we have nearly reconstructed the abjec
. . . . (Figure 14 c)). We also show the capability of building a
In this section we will appl_y our algopthr.n 0 some Sy.nth.et'i:urface which is a compromise between the hard constraints
and ultrasound images. Firstly we will give some indicasion .
. . : and the image features.
on a possible procedure for generating a potential function

capable of detecting edges.

5 Application

5.1 Choosing the Potential

In order to find a relevant object in a given image, we ar
going to use a potential (or cost function) that will alloveth

propagating fronit/ (see section 2) to rapidly advance in re-
gions where edges are likely to be present. The form of tr
potential we used is the following a) b) 0)

P =a.h(|VI,]) + (1 — a) * hgap(AL), (16) \

whereh andh,,,;, are two functions bounded {6, 1] and/,

is the convolution of the given image with a gaussian kernel
of variancer.

The right choice for functions andh,, is restricted by the
fact that the cost function should be high in areas where it
is unlikely to encounter an edge. A simple choice ficzan

be the classical forma(z) = m ([2, 10]), where

is a user defined contrast factor that can be computed as an _ o
average gradient valug,= f”fvéldx _ Figure 14: Reconstruction of a tubular synthetic image: a) Inter-

L . section of the 3D 'S’ shaped tube image with a plane. b) Networ
The hy,, function is chosen to be a zero crossing deteci@ains obtained when the two constraining curves areteifuat

that depends on a user defined constapt Because of the the ends of the tubular surface. c) Interpolated surfac@hd)net-
noisy nature of the Laplacian of an imagdg,,, is set to be work and surface e) obtained when segmenting the same iniage b
a binary map that detects only relevant zero crossing pointSonger imposing t@: to be on the tubular surface.
of the Laplacian. In order to automatically detect the dentr

Figure 15 shows the segmentation of a much more compli-
cated image (Figure 15a) that contains internal and externa
surfaces close to the desired surface. If one wishes torobtai
the middle 'S’ shaped tube most of variational methods will
fail, unless a very close initialization is given, becaukthe
presence of many local minima. Our method manages to ex-
tract the object with the only extra information of two cusve
lying on it. Minimal paths find the global minimum of the

d) e)

energy.
Figure 13: View of a slice of a 3D ultra sound image of the left In next section we present a real image result. In real im-
ventricle. On the right, cost function. ages local minima are very difficult to avoid, and this is one

aspect of the importance of our contribution.
bution factora, a learning method could be used as in [11],
collecting information from the image on a neighborhood 63 Reconstruction of the left ventricle from
the given cqntours. In practice it is very dl_fflcult to getcaut ultrasound images
matically this value because most of the time the given con-
tours are drawn in zones where the image has features th&t a common practice in ultrasound heart images to per-
are very hard to detect. The knowledge of the practitionerfidm as a first step 2D segmentation on a slice. When images
thus needed. are of very low quality the practitioner does the segmeaoitati



also presented a novel interpolation method which is charac
terized by its simplicity and its speed.

This construction has two major interests. First, in thémeg
defined between the two given curves, the obtained surface
avoids local minima and is very close to the actual minimiz-
ing surface. Second, the obtained surface is constrained to
contain the given curves.

A future perspective of this work could be the search for par-
ticular points during the construction of the minimal paths
in order to allow surface reconstruction outside the region
between the given curves.

a)

Figure 15: a) Intersection of the 3D image with a plane. b) Ob-
tained set of paths. c) Interpolated surface. References
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