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Abstract— This study presents a new method to segment thin
tree structures, such as extensions of microglia and cardiac
or cerebral blood vessels. We are interested in the analysisof
biological images acquired with a confocal microscope. TheFast
Marching method allows the segmentation of tree structuresfrom
a single point chosen by the user whena priori information is
available about the length of the tree [1]. However, in general,
there is no way to stop the propagation automatically. In ourcase,
no a priori information about the length of the tree structure
to extract is available. We propose here to use characteristic
points to define a criterion to stop the propagation. These points
can be used also to track the tree structure in image sequences.
Numerical results from synthetic and microscopic images are
presented.

I. I NTRODUCTION

Recent developments in imaging such as fluorescent probes
and reporters combined to two photon microscopy brought
new field of investigation in neuroscience. It now allows
researchers to followin vivo dynamic movements of cells
in 3D. Such approaches revealed that microglia, a subtype
of glial cells, are particularly motile in the Central Ner-
vous System (CNS). Beside their highly mobile processes,
microglia are the major inflammatory effector cells of the
brain and consequently are involved in most of CNS dis-
eases. Understanding the logic of microglia motility mightat
term provide an efficient tool to detect early symptoms of
diseases such as Alzheimer or multiple lateral sclerosis. So
far attempts have been made to quantified those movements
and were restricted to the main branches ([2], [3]). Here we
developped an analysis tool that allow us to track dynamic
processes from microglia and reconstruct cell dynamics. In
our specific case confocal images were composed of a set of
4D (3D+time) image sequences. For each time point, a serie
of 23 images perpendicular to thez axis was acquired, thereby
covering the three dimensions of the cell. Our aim was first,
to segment the microglia extensions in 3D and secondly, to
track segmentation changes in time. The main difficulties with
this data are: 1.large deformations of the microglia extensions,
which correspond to the tree structure, 2.in time, small features
belonging to other cells and noise may appear, 3.the data
is anisotropic with high resolution in the plane of the slice
and lower resolution in the perpendicular direction. Hence,
a simple use of the image intensities is insufficient to extract
directly the tree structure. Malladiet al. [4] used the Level Set
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methods to extract information from MRI data (which present
approximately the same difficulties as the confocal microscope
images). The Fast Marching method, introduced by Sethian in
[5], and adapted by Cohenet al. [1] to extract tree structures,
demands less computation time than the Level Set method
and works with only one point chosen by the user on the tree.
However, this method depends ona priori information about
the target. In our case noa priori information about the tree
structure is available. Here, we present an original methodto
extract tree structures without using anya priori information.
The method is generic, it can be used to extract any type of
tree structure in 2D as well as 3D.

II. BACKGROUND

A. Minimal paths

The minimal path theory for the extraction of contours from
the image was inspired by the principle of Fermat: the light
trajectory minimizes the optical distance betweenx0 = y(0)
and x = y(t), e.g. it gives the curvey that minimizes the
distance

τ(x0, x) =

∫ t

0

ds

c
(

y(s)
) (1)

where propagation speedc is a function depending on the
medium of the propagation. In homogenous media the function
c is a constant, the trajectories correspond to lines. In a
medium with two regions, the functionc takes two values:c1

in the first region andc2 in the second region . The trajectory,
in this case, corresponds usually to two joint segments, each
segment belonging to one region. We are interested here in
the case of a medium with a continuous velocityc.

In the context of image segmentation Cohen and Kimmel
proposed, in [6], a deformable model based on the optical
distance (1). The model is formulated as a calculus of variation
problem :

Min
∫ t

0

(

w + P (y(s))
)

ds, (2)

the minimum is considered in
{

y : [0, t] −→ R
2 : y(0) =

x0, y(t) = x
}

. The constantw imposes regularity on the
curve. P > 0 is a potential computed from the image, it
takes lower values near the edges or the features. For instance
P (y(s)) = I(y(s)), P (y(s)) = g(||∇I||), whereI is the
image andg is a decreasing function. To compute the solution
associated to the sourcex0 of this problem, we consider a



Hamiltonian approach: Find the travel time U that solves the
eikonal equation

||∇U(x)|| = w + P (x) x ∈ Ω (3)

The ray y is subsequently computed by back-propagation
from x by solving the ODE

y′(s) = −∇U(y). (4)

The only stable schemes that solve the eikonal equation
compute a viscosity solution [7]. The first work that uses
the viscosity solution is from Vidale [8]. Based on this work
Fatemi et al. [9] proposed the first numerical scheme to
solve the eikonal equation. To solve eikonal equation through
iterations [10], at leastO(mn2) are needed, wheren is the
total number of grid points andm is the number of iterations
that permit an estimation of the solution. In the next section,
an algorithm with the complexityO

(

n log(n)
)

introduced in
[5] is presented to solve this problem.

B. Fast Marching method

The idea behind the Fast Marching algorithm is to propagate
the wave in only one direction, starting with the smaller
values of the action map U and progressing to the larger
values using the upwind property of the scheme. Therefore,
the Fast Marching method permits only one pass on the image
starting from the sources in the downwind direction. Here, the
principle of the Fast Marching method is given, for details
see [5], [11], [12]. The grid points are partitioned into three
dynamic sets: trial points, alive points and far points. Thetrial
points correspond to a dynamic boundary that separates far
points and alive points. At each step, the trial point with the
minimum value of the action map U is moved to the set of
alive points, which are the grid points for which a value U has
been computed. The values of alive points do not change. To
reduce the computing time, the trial points are stocked in a data
structure referred to as min-heap (the construction of thisdata
structure is described in [5], [11]). The complexity to change
the value of one element of the min-heap isO

(

n
)

. Hence,
the total work for Fast Marching isO

(

n log(n)
)

. The Dijkstra
algorithm, which is also used to find a minimal path, has the
same complexity as the Fast Marching algorithm. However, the
Dijkstra algorithm gives a linear approximation and there is
no uniqueness result contrary to the Fast Marching algorithm,
which converges toward the unique viscosity solution.

C. Detection of points of interest

Characteristic points have been proven successful in solving
many vision problems such as tracking [13] or reconstruction
[14], and are more efficient in some applications than other
geometric primitives such as edges or segments. In this work
corner points are used to segment a tree structure. One of the
most popular detector of corner points is the Harris detector,
which is better or equivalent to the other detectors [15]. The
Harris detector [16] is based on the Moravec detector [17],
which determines the average changes of image intensity

that result from shifting a local window in the image by
small variations in various directions. The intensity change
E produced by the shift is :

Ep,q =
∑

i,j

wi,j |I(i + p, j + q) − I(p, q)|2 (5)

wherew specifies the image window. The Moravec detector
of corners looks for local maxima ofE. The Harris detector
computes and compares the eigenvalues of the Taylor expan-
sion of E. By using the Taylor formula with small shift, the
variationE can be written as:

Ep,q = (p, q)M(p, q)′ (6)

whereM is defined by

M =

(

A C

C B

)

,

and

A =
(∂I

∂x

)2

⊗w, B =
(∂I

∂y

)2

⊗w, and C =
∂I

∂x

∂I

∂y
⊗w,

where⊗ denotes the discrete convolution.
The eigenvaluesλ1 andλ2 of M correspond to the principal

curvatures ofE. The corners are characterized by two large
eigenvaluesλ1 andλ2. Note that it is not necessary to compute
λ1 andλ2, indeed

Tr(M) = λ1 λ2 = A + B (7)

Det(M) = λ1 + λ2 = AB − C2 (8)

The corner measure is defined by

R = Det(M) − kTr2(M), (9)

and it is positive in the corner region, negative at the edgesand
small in the homogenous regions, the parameterk is selected
empirically between 0.04 and 0.06.

III. E XTRACTION OF TREE STRUCTURES BYFAST

MARCHING AND CHARACTERISTIC POINTS

The Fast Marching method allows us to extract the minimal
path between two points. Here, the aim is to extract a tree with
minimal intervention by the user. Whena priori information
about the length of the contour to be extracted is available,
Cohen and al. proposed in [1] a method to extract a tree
structure from one point selected by the user. In the following
sections, methods are proposed for the segmentation of tree
structures from only one given point without any othera priori
information. The methods are based on corner points, which
are computed by the Harris detector described in section II-C.
A pyramidal approach is used to reduce erroneous detection.
For the biological image described in section IV, only the
Harris points that appear both in the first pyramid (original
image) and in the second pyramid (half resolution of the
original image) were used.



Notations:
– x0 is a starting point located at the root of the tree

structure;
– U is the action map.

Initialization:
– detect the Harris points present in the image;
– initialize the front propagation, by setting U(x0) = 0.

Loop: proceed according to the Fast Marching algorithm
II-B, updating action maps and min-heap data.
Segmentation:Extract the paths between all the Harris
points and the root.

Fig. 1. Algorithm for the propagation from the root.

Fig. 2. Segmentation results obtained with algorithm 1. Left panel: the action
map; right panel : the extracted tree, the green circles correspond to the Harris
points and the red lines trace the paths from the Harris points to the root of
the tree.

A. Propagation from the root

Within the image, a set of Harris points are detected. A
method is proposed that uses the Harris points to extract a
whole tree structure from an image. Among the Harris points
some points correspond to the root of the tree. We defined
here the root as a point selected by the user from the Harris
points. Note that some Harris points correspond to the real
root of the tree. From the root, a front is propagated with the
Fast Marching method. For each Harris point that is not a
root, a path to the root is extracted by back-propagation. The
algorithm is given in the figure 1. Figure 2 shows that the
algorithm is able to extract a tree structure correctly froma
noisy synthetic image.

B. Propagation from the Harris points

To limit the propagation to the set of pixels necessary for
the extraction of the tree structure, we propose a method based
on the partial front propagation [18], [1]. The first idea is
to propagate the fronts simultaneously and separately from
the root and each Harris point. One of the Harris points is
considered as the root of the propagation. The propagation is
stopped when the fronts emanated from the Harris point and
the root, respectively, meet (see figure 3). The segmentation
of the tree structure is obtained by extracting minimal paths
between the root and the meeting points and a minimal path
between each Harris point and its associated meeting point.
The first meeting point is referred to as a saddle point. The
separate propagation allows a parallelization of the algorithm,
which reduces the computing time considerably when there is
a large number of Harris points.

Fig. 3. Segmentation results obtained by partial propagation. Left panel:
the partial action map obtained by propagation from two Harris points. Right
panel: the extracted contour, the red lines trace the paths from the Harris
points (green circles) to collide point (yellow circle).

The second idea is to propagate the fronts simultaneously
from the Harris points in the same Fast Marching process.
However, in this case it is difficult to find a stop criterion for
the partial propagation that permits the correct extractraction
of the tree, although it is possible to compute the action map
on the whole of the image and to compute the saddle points
for the extraction of the paths.

C. Extraction of long structures

When the structure to segment is long, the minimal path
extracted by the Fast Marching method can correspond to a
short cut which is not necessarily a contour present in the
image. To overcome this problem, the method of keypoints is
used [18], [19]. During the propagation an Euclidean action
map can be computed. After the onset of the propagation, the
first point that permits to travel a given Euclidean distanceis
considered as a keypoint, the geodesic and Euclidean action
maps of the keypoint is seted at zero and the distribution con-
tinues with the Euclidean distance. However, for this approach,
a priori information about the length of the tree structure that
one wants to extract is necessary. To overcome this problem,
the Harris points are used, as described in the previous section,
to extract the tree without using anya priori information.
The method computes automatically the sufficient number of
keypoints to cover the tree. The keypoints are separated by a
given distance, which depends on the application. The method
consists of computing the geodesic distance between the last
keypoint detected and each Harris point. The starting point
of the propagation is the root of the tree, which is chosen by
the user from the Harris points or another point. Progressively,
the keypoints are detected based on the parameter of Euclidean
distanceλ and the points are removed from the set of Harris
points when the geodesic distance between the last keypoint
and the Harris points is larger than the fixed parameterµ.
The process of propagation is reiterated until the set of Harris
points is empty. Figure 4 shows this algorithm. The algorithm
permitted a correct segmentation of a tree structure from a
noisy synthetic image, see figure 5.

D. Summary of the methods proposed for the segmentation of
tree structures

In sections III-A, III-B and III-C three different methods
were proposed for the segmentation of tree structures. All



Notations:
– x0 is a starting point located at the root of the tree

structure;
– U is the action map and L is the Euclidean; distance

map;
– λ andµ are counters.

Initialization:
– detect the Harris points present in the image;
– initialize the front propagation, by setting U(x0) = 0,

and L(x0) = 0;
– λ andµ parameters are fixed by the user.

Loop:While the set of the Harris points is non-empty

– while the set of the trial points is non-empty, do

- find xmin, the trial point with the smallest U
value;

- if L (xmin) ≥ λ, then

· xmin is defined as the new keypoint;
· set U(xmin) = 0, L(xmin) = 0.

- else, do

· tag xmin as alive and proceed according to the
Fast Marching algorithm II-B, by examining its
neighbors, updating action maps and min-heap
data.

– if the geodesic distance between the last keypoint
and the Harris points is larger thanµ, move those
points from the set of Harris points.

Segmentation: Extract the shortest paths from the saddle
points to the keypoints and Harris points.

Fig. 4. Algorithm fot the segmentation of long structures, see section III-C.

Fig. 5. Segmentation results obtained by using the algorithm 4. Left panel:
action map; right panel: the extrated tree structure, the green circles are the
Harris points, the yellow circles are the keypoints and the red lines trace the
paths from the Harris points to the root.

Fig. 6. confocal microscope images of a microglia. Left panel: a projection
of 23 slices. The green structures correspond to the microglia and neuronal
extensions are red. Center panel: a single image from a series of images
perpendicular to thez axis, showing the microglia. Right panel: a second
pyramid of the image shown in the center panel (half of the resolution of the
original image). This image was used to compute the Harris points.

three methods use corner points to guide the segmentation
process. In the first method described in section III-A, the
action map which is used to extract the tree structure by
back-propagation is computed from the wole image starting
at the root. Conversley, the algorithm proposed in section
III-B restricts the propagation to the set of pixels necessary
for the extraction of the tree, thereby reducing the computing
time. However, when the tree structure one wants to segment
has long extensions, the minimal path extracted with the Fast
Marching method sometimes corresponds to a short cut and
not to a real contour present in the image. To covercome this
problem, a method based on keypoints is proposed in section
III-C.

IV. SEGMENTATION OF MICROGLIA EXTENSIONS FROM

CONFOCAL MICROSCOPE IMAGES

In this study, segmentation was restricted to 2D, e.g. only
one time point and only one image from the image series
acquired at this time was considered. The microglia images
contained much noise. Therefore, a pyramidal approach was
used to detect the Harris points in the image. Only the Harris
points that appeared in both the first pyramid (original image,
see figure 6, center panel) and in the second pyramid (see
figure, 6 right panel, half the resolution of the original image)
were used. Some of the erroneous detections were eliminated
in this way. Figure 7 shows the segmentation results with
algorithm 1. The center of the cell, which corresponds in to the
root of the propagation was chosen manually in the first image.
The segmentation results are satisfying . However, some parts
of the tree were not present in the studied image, but could
be found in the other 22 images of the image series. Hence,
some segments of the tree extracted in the 2D segmentation
do not correspond to a real contour present. An extension of
the proposed methods to the 3D segmentation should solve
this problem.

V. D ISCUSSION AND CONCLUSION

In this work, methods for the segmentation of tree structures
were proposed that do not require interventions or only the
selection of one point by the user. Noa priori information
about the tree structure was used, contrary to other methods
[1], where the length of the tree structure was given asa
priori. The main contribution of this work is the use of
characteristic points to guide the segmentation process. To our
knowledge this the first time that corner points were used as
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Fig. 7. Segmentation of the microglia from confocal microscope images.
Left panel: the microglia images (1 image / 90 seconds), right panel: the
extracted tree structure, the green circles are the Harris points, the red lines
trace the paths from the Harris point to the root. The root corresponds to the
cell center.

a stopping criterion of the Fast Marching propagation. The
corner points were used as extremities of the propagation.
The numerical results obtained with these methods were very
satisfying in terms of rapidity of analysis and coherence with
visual aspect of the cells. Although this method needs to
be compared to manual segmentation, the present results are
encouraging and should lead to a future extension of the
method to 3D segmentation. In conclusion, this work shows
that the computed corner points can be used to segment and
to track tree structures in image sequences.
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