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Abstract

This paper presents new methods to segment thin tree structures, which are,

for example present in microglia extensions and cardiac or neuronal blood

vessels. Many authors have used minimal cost paths, or geodesics relative to a

local weighting potential P, to find a vessel pathway between two end points.

We utilize a set of such geodesic paths to find a tubular tree structure by

seeking minimal interaction. We introduce a new idea that we call Geodesic

Voting or Geodesic Density. The approach consists of computing geodesics

from a set of end points scattered in the image which flow toward a given

source point. The target structure corresponds to image points with a high

geodesic density. The ”Geodesic density” is defined at each pixel of the

image as the number of geodesics that pass over this pixel. The potential

P is defined in such way that it takes low values along the tree structure,

therefore geodesics will migrate toward this structure thereby yielding a high

geodesic density. We further adapt these methods to segment complex tree

structures in a noisy medium and apply them to segment microglia extensions

from confocal microscope images as well as vessels.

Keywords: Geodesic Voting, Fast Marching, Level Set, Minimal Paths,

Tree Structure Segmentation.
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1. Introduction

In this paper we present novel methods for the segmentation of tree struc-

tures. These methods are based on minimal paths and can be applied to ex-

tract numerous structures such as microglia extensions, neurovascular struc-

tures, blood vessels, and pulmonary trees. Following our main motivation,

we will present applications of our methods to microglia extensions and ves-

sel segmentation. Recent developments in imaging such as fluorescent probes

and reporters combined with two photon microscopy have brought new fields

of investigation in neuroscience. Researchers may now follow in vivo dynamic

movements of cells in 3D. Such approaches revealed that microglia, a subtype

of glial cells, are particularly motile in the Central Nervous System (CNS).

Beside their highly mobile processes, microglia are the primary inflamma-

tory effector cells in the brain and are consequently involved in most CNS

diseases. Understanding the logic of microglia motility might eventually pro-

vide an efficient tool to detect early symptoms of diseases such as Alzheimer’s

or multiple lateral sclerosis. Although much work is devoted to the segmen-

tation of vascular trees in medical images, only a few attempts have been

made to extract microglia extensions and those have been restricted to the

main branches ([1], [2]). Since the microglia extensions are very thin, the

centerlines of the extensions are sufficient to characterize the structure and

the motion of the microglia. As opposed to vascular tree segmentation, mi-

croglia segmentation is much more difficult due to very thin branches and

noise. While there are some studies dedicated to the segmentation of mi-

croglia structures, there are many studies dedicated to the extraction of vas-
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cular or airway trees. For a review of such methods see [3, 4, 5, 6, 7, 8].

Among the approaches used to segment such tree structures, we consider

three models, classified according to their method for extracting the tubular

aspect of the tree: centerline based models; surface models; and 4D curve

models. The first category focuses on directly extracting the centerlines of

the tubular tree [9, 10]. After extracting the centerlines a second process

can be used to segment the lumen of the tree, see [11]. The second category

directly extracts the surface of the vessel. These approaches includes explicit

and implicit surface models. The former use a parametric representation of

the tubular structure [12]. These models are not adapted to the segmenta-

tion of complex tree structures, while the latter implicit methods can evolve

the surface through complex shape changes including changes in topology

[13, 14]. However, initialization must be performed carefully to obtain an

accurate segmentation.

Minimal path techniques are extensively used for centerline extraction

of tubular tree structures. These approaches are robust to the presence of

local perturbations due to stenosed branches of the tree or imaging artifacts

where the local image information might be insufficient to guide the shape

evolution process. Several minimal path techniques have been proposed to

deal with this problem [15, 16, 17, 18]. These techniques involve designing

a metric from the image in such way that the tubular structures correspond

to geodesic paths according to this metric [19]. Solving the problem from

the practical point of view consists of a front propagation from a source

point within a vessel, which moves faster along the branches of the vascular

tree. These methods require the user to supply a starting point (propagation
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source) and end points. Each end point results in an extracted minimal

path back to the source point. The points located along this minimal path

are very likely to be located on the vessel of interest. A small amount of

work has been devoted to reduce the need for user intervention of the user

in the segmentation of tree structure to the initialization of the propagation

from a single point. The authors of [20] defined a stopping criterion based

on a “medialness” measure; the propagation is stopped when “medialness”

drops below a given threshold. This method might suffer from the same

problem as region growing since the medialness measure might drop below

the given threshold in the presence of lesions or other local image artifacts.

[16] proposed stopping the propagation when the geodesic distance reaches

a certain value. However, this method is limited to the segmentation of a

single vessel and the definition of the threshold of the geodesic distance is

not straightforward. The authors of [21] proposed stopping the propagation

according to a criterion based on certain geometric properties of the region

covered by the front. In [17], assuming the total length of the tree structure

to be visited is roughly given, the stopping criterion is based on the Euclidean

length of the minimal path.

In this paper, we present new methods to extract tree structures without

using any a priori information and using only a single user provided point

on the tree structure. The methods are generic, they can be used to extract

any type of tree structure in 2D as well as in 3D. While a first short version

of our methods was presented in conferences [22, 23, 24, 25], we provide a

more complete view here and compare our methods with each other as well

as with other competing methods. The approach is based on a completely
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new concept, namely, Geodesic Voting. It consists of computing geodesics

from a given source point to a set of end points scattered throughout the

image. The target structure corresponds to image points with a high geodesic

density. The geodesic density is defined at each pixel of the image as the

number of geodesics that pass over this pixel. Since the potential exhibits low

values along the tree structure, geodesics will preferably migrate toward this

structure and thereby yield a high geodesic density. We introduce different

approaches to segment complex tree structures in noisy media environments

and apply them to segment Microglia extensions from confocal microscope

images as well as vessels in medical images.

In Section 2 we present the tools needed in Section 3 in order to define and

study the geodesic voting method. In Section 4, we also propose a variety of

possible ways to obtain both the centerline and the boundary of the vascular

tree with our framework. In Section 5 we evaluate the method on 2D real

data from different bio-medical images and show results for 3D data as well.

2. Background

2.1. Minimal paths

The minimal path theory for the extraction of contours from the image

is inspired by Fermat’s principle in geometrical optics: the light trajectory

y(s) between points x0 = y(0) and x1 = y(L) minimizes the optical distance

(travel time or time for the light from source x0 to reach x1). Here s is the

arclength and L is the length of the trajectory which follows the curve y(s)

that minimizes the travel time τ :
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τ(x0, x1) =

∫ L

0

ds

c(y(s))
(1)

where propagation speed c is a function depending on the medium of the

propagation. In homogenous media the function c is a constant, so the

trajectories correspond to straight lines. In a medium with two regions,

see [19], the function c takes two values: c1 in the first region and c2 in the

second region. The trajectory, in this case, corresponds usually to two line

segments, each segment passing through one region, the breakpoint geometry

satisfying Snell’s law. We are interested here in the case of a medium with a

continuously varying velocity c.

In the context of image segmentation Cohen and Kimmel proposed in

[19] a deformable model based on the optical distance (1). The model is

formulated as finding a geodesic for a weighted distance:

min
y

∫ L

0

(w + P (y(s)))ds, (2)

the minimum is considered over all curves y(s) traced on the image domain Ω

that link the two end points, that is, y(0) = x0 and y(L) = x1. The constant

w, penalizing the Euclidean length, imposes regularity on the curve. Function

P (x) > 0 defined for all x on the image domain Ω, is a potential cost function

computed from the image data, it takes lower values near the edges or the

features. For instance, P (x) = I(x) attracts the paths towards dark lines

while P (x) = g(||∇I||) attracts paths towards edges, where I is the image

intensity and g is a decreasing function.

To compute the solution associated to the source x0 of this problem, [19]

proposed a Hamiltonian approach: Find the geodesic weighted distance U to
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x0 that solves the eikonal equation

||∇U(x)|| = w + P (x) ∀x ∈ Ω (3)

The path y is subsequently computed by back-propagation from the end

point x1 by solving the Ordinary Differential Equation (ODE)

y′(s) = −∇U(y). (4)

Note that the propagation speed c in equation (2) corresponds to the in-

verse of the potential P and that the value U(x) corresponds to the minimum

value of τ(x0, x) with respect to the set of the paths that connect x to x0.

The only stable schemes that solve the eikonal equation compute a vis-

cosity solution [26]. The first work that used the viscosity solution for this

kind of problems was [27]. An iterative numerical scheme to solve eikonal

equation was proposed in [28, 29, 30]. In such iterative scheme, at least com-

plexity O(mn2) is needed, where n is the total number of grid points and m

is the number of iterations that permit an estimation of the solution. In the

next section, we present the Fast Marching algorithm introduced in [31] to

solve this problem in complexity O(n log(n)). Some other schemes based on

different tricks can lead to O(n).

2.2. Fast Marching method

The idea behind the Fast Marching algorithm is to propagate the wave in

only one direction, starting with the smaller values of the action map U and

progressing to the larger values using the upwind property of the scheme.

Therefore, the Fast Marching method requires only one pass on the image
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starting from the sources (where U = 0) in the upwind direction. We briefly

recall the principle of the Fast Marching method, for details see [31, 32, 33].

The grid points are partitioned into three dynamic sets: trial points, alive

points and far points. Alive points are the grid points for which a value U

has been computed and will not be changed any more, while Far points are

those for which there is no estimate of U yet. Trial points are points that are

not alive, and that have at least one neighbor that is alive, in order to get

an estimate of U from the discrete version of Equation (3). The trial points

correspond to a dynamic boundary that separates far points and alive points.

At the beginning, the starting point x0 is alive with value U(x0) = 0, and

its neighbors are trial. Then, at each step, the trial point with the minimum

value of the action map U is moved to the set of alive points, and its neighbors

are updated. To reduce the computing time, the trial points are stocked in

a data structure referred to as min-heap (this data structure is described in

[31, 32]). The complexity to change the value of one element of the min-heap

is O( log(n)). Hence, the total complexity for Fast Marching to reach the n

grid points as alive is O(n log(n)). The Dijkstra algorithm, which is also used

to find a minimal cost path on a graph, has the same complexity as the Fast

Marching algorithm. However, the Dijkstra algorithm leads to metrication

error and is not consistent, as opposed to the Fast Marching algorithm which

converges toward the unique viscosity solution of Equation (3) (see [33]).

3. Geodesic Voting for segmentation of tree structures

With the Fast Marching method we can extract the minimal path between

two points by backtracking from the end point to the source point. Here,
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the aim is to extract a tree with just one point chosen by the user. Cohen

et al. proposed in [21] a method to extract a tree structure from one point

selected by the user. However, this method uses a priori information about

the length of the tree. In [34], we proposed a method that makes use of

Harris points [35]. This may be difficult in the case of complex images, for

example in MRI with different organs that can each have Harris points or

for very noisy data. In the following sections, a method is proposed for the

segmentation of tree structures from only one given point without having

any a priori information about the tree to extract. The method uses a new

concept we introduce, and consists in computing the geodesic density from

a set of geodesics extracted on the image domain.

3.1. Geodesic voting method

Assume you are looking for a tree structure for which a potential cost

function has been defined which has lower values on this tree structure. First

we provide a starting point x0 inside the tree structure and we propagate a

front in the whole image with the Fast Marching method, obtaining the

minimal action U. We will discuss later about the choice of this starting

point, see Section 3.3.

Then assume you consider an end point anywhere in the image. Back-

tracking the minimal path from the end point you will reach the tree struc-

ture somewhere and stay on it till the start point is reached. So a part of

the minimal path lies on some branches of the tree structure. The idea of

this approach is to consider a large number of end points {xk}
N
k=1 on the

image domain, and analyze the set of minimal paths yk obtained. For this

we consider a voting scheme along the minimal paths. This scheme accumu-
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(a) (b)

(c) (d)

Figure 1: Geodesic voting. panel (a): synthetic image representing a tree. The red cross

represents the source point from which the propagation is started. Panel (b): extraction of

geodesics from the boundary of the image domain. The pink lines represent paths extracted

from the image border to the source point. Panel (c): zoom on the small rectangle

indicated by a square in panel (b). Panel (d): geodesic density computed superimposed

on the synthetic image. The geodesic density of each pixel in the image corresponds to

the number of trajectories crossing the given pixel. It is shown as transparent when equal

to 0.
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lates votes at each image pixel in the following manner: when backtracking

each path, you add 1 each time you pass over a pixel. At the end of this

process, pixels on the tree structure will have a high vote since many paths

will pass over it. On the contrary, pixels in the background will generally

have a low vote since very few paths will pass over them. The result of this

voting scheme is what we can call the geodesic density. The tree structure

corresponds to the points with high geodesic density.

The set of end points for which you consider the geodesics can be defined

through different choices. This could be all pixels in the image domain,

random points, scattered points according to some criterion, or simply the set

of points on the boundary of the image domain. This choice will be discussed

later. The geodesic paths {yk}
N
k=1 from the set of end points {xk}

N
k=1 are

extracted by solving the ODE (4) for each point xk.

We define the voting score or the geodesic density at each pixel p of the image

by

µ(p) =
N
∑

k=1

δp(yk) (5)

where the function δp(y) returns 1 if the path y crosses the pixel p, else 0.

We illustrate this on a simple synthetic tree structure in Figure 1.

Here {xk}
N
k=1 are the pixels on the boundary of the image domain. One

can see that since in this example the background is constant albeit noisy,

the paths follow almost straight lines to reach the closest point of the tree

structure, and then follow the tree till it reaches the source point. From the

practical point of view, the vote is made when tracing a path, as we add 1

to each pixel that is passed over. We can see that the result of the vote gives
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a small value in the background and much larger values on the tree. We can

also see that all paths reaching the same area of the tree will then follow

the same trajectory until they end at the source point x0. This means that

along part of the branch the vote is constant, and when two branches meet

and merge, the votes of the two branches add up to give the vote of the new

branch. This process goes on till the source x0 which has a vote of N by

definition, which is the sum of all the votes of the branches. This can be seen

in Figure 1-(d) for the two red parts of the tree, which correspond to higher

values of the vote. This property can also be used to detect junctions since

they correspond to discontinuities of the geodesic voting. Once the geodesic

voting is made, the tree structure is obtained by a simple thresholding. As

shown in Figure 1-(d), the contrast between the background and the tree is

very large and the threshold can be chosen easily, as will be explained in

Section 5.1.

We can see in Figure 1 that the geodesic voting extracts perfectly the

synthetic tree structure by just giving a starting point. Illustrations of the

geodesic voting for tree structure in real images, such as vessels in 2D or 3D

images, and microglia in confocal microscope images will be found in Section

5.

3.2. Shading zones problem

So far, the geodesic voting method uses only the image domain boundary,

which has the advantage that the score map has high contrast, facilitating

the segmentation of the tree structure by thresholding. However, for complex

tree structures the image border may not be sufficient for segmentation. Let

us consider a synthetic image representing a tree structure like deer antlers
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(a) (b) (c)

Figure 2: Shading zones. Panel (a): extraction of geodesics from the boundary of the

domain. The green cross represents the source point from which the propagation is started

and the pink lines represent paths extracted from the image domain border to the source

point. The paths are superimposed on the image; only 10 percent of the paths extracted

are shown in the figure. Panel (b): geodesic density superimposed on the image, density

is shown as transparent when equal to 0. Panel (c): shading zones. The colored regions

correspond to the extracted shading zones (obtained by morphological operations on the

geodesic density); these are zones without vote.

(see Figure 2). As seen in Figure 2, minimal paths are attracted by the

closest point on the tree structure, and it may happen that parts of the tree

are never reached by the minimal paths, like the inside branches in the figure.

Therefore some pixels have a void vote -e.g. they had zero geodesic density-

although they may be on the tree structure as we can see in the Figure 2-(c).

We call the regions with null values of the score map, shading zones and the

segmentation problem related to these regions a shading zones problem. In

the following sections, different strategies to deal with shading zones problem

are presented. Some solutions are based on changing the source points while

others are based on the set of end points.
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3.3. Multi-propagation

(a) (b) (c)

(d) (e) (f)

Figure 3: Voting by multi-propagation. (a) The green circles correspond to Harris points

used to run multi-propagation superimposed to the image. (b) and (c): the pink lines

represent paths extracted from the image border to the source points S1 and S2, the paths

are superimposed on the geodesic distance map U. Only 10 percent of the paths extracted

are shown in the figures; (d) and (e) are respectively the voting score maps associated

respectively to the geodesics map (b) and (c). (f) corresponds to the global score map

computed by multi-propagation.

We observed that changing the source point in the tree structure can

partially solve shading problems. In the Figs. 3-(b)-(c) we took two different

source points s1 on the leaf f1 and s2 on the leaf f2. With the source point

s1 it was possible to extract the leaf f1 from the score map S1 but not the

leaf f2, whereas with the source point s2 it was possible to extract the leaf

f2 but not the f1, see Figs. 3-(d)-(e). Hence, we propose to compute a score

based on the sum of geodesic voting using different source points.

14



Subsequently, we define the global score map as the sum of all score maps:

µ =

Ns
∑

i=1

Si. (6)

where Ns is the number of source points si used and Si is the voting score

map associated to source si. We should use a set of sources {si} that is sparse

to be not too big to avoid both large computation time and smoothing of

the global voting result. If there are too many source points, smoothing may

remove the property of the voting scheme to enhance the tree structure and

threshold it easily. The set {si} should be also distributed all over the image

domain in order to avoid the shading problem.

Naturally, we can use for the set of sources {si}, points we expect to be

junctions or extremities of the tree structure. Furthermore, as proposed in

[34], the junctions and the extremities of the tree correspond to the corner

points, using the detector of Harris points. In Figure 3, we used the Harris

points detected (green points in Figure 3-(a)) as source points. We remark

that in Figure 3-(f) the sum of the score maps from different source points

allowed to segment all leafs. Of course, we can use any other set of source

points satisfying the requirement above. Another example could be the set

obtained from an adaptive meshing like the one defined in the next section

3.4 for a different approach.

3.4. Adaptive voting

In this section, we present another approach to deal with shading zone

problems using only one source point. This method consists in extracting

minimal paths from a larger set of endpoints, such as the border and inside

the image, to compute a voting score map. One could use all pixels of the
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image as an endpoint to extract a path, however this method is expensive in

computing time and the complete voting may be smoothed too much to find

the tree structure.

(a) (b) (c) (d) (e)

Figure 4: Adaptive voting. Panel (a) shows the synthetic tree, the red cross represents the

root of the tree; panel (b) shows the adaptive set obtained from farthest points strategy;

panel (c) shows in blue the geodesics extracted from the adaptive set of points to the

root; panel (d) shows the geodesic density; panel (e) shows the geodesic density after

thresholding.

In this section we propose to use an anisotropic meshing of the image

points to run the geodesic voting. The mesh is dense on the tree structure

and sparse outside. Hence, the score map has high contrast, allowing a good

segmentation of the tree structure. The method used to build automatically

such adaptive meshing is based on a farthest point strategy for adding iter-

atively mesh points that are adaptively distributed on the image [36]. This

process is based on the Fast Marching propagation according to a potential

that will give preference to add mesh points likely to be around the tree

structure.

In the following, we describe how this method works. Firstly, we have a

point s1 with an associated distance map U1 computed with the Fast March-

ing method. Let us assume that, after k − 1 iterations a set of points

Sk = {s1, · · · , sk} and their associated distance map Uk are computed. We

construct then the set Sk+1 = {sk+1}∪Sk, where sk+1 is the farthest point of
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the image with respect to the set Sk, according to geodesic weighted distance.

The distance map Uk+1 is defined by the relation Uk+1 = min (Uk,Usk+1
),

where Usk+1
is the distance map computed from sk+1. The distribution of

the points on the image with farthest points process is stopped for example

when the desired number of points N is reached.

The number of iterations needed to obtain N farthest points is exactly

N . This is because at each iteration exactly one point is added to the set of

farthest points.

Note that, as mentioned in [36] the whole process of the propagation of the

N farthest points required less than O(nlog(n)2) where n is the total number

of pixels in the domain. This is because the definition of the distance map

Uk+1 associated to the set Sk+1, which allows us to restrict the computation

of the distance Usk+1
on the set {x, Usk+1

(x) ≤ Uk(x)} and the size of this

set is about 1/k of the whole domain.

The farthest points added at each iteration correspond to the maximal values

of the geodesic distance. Therefore, the resulting meshing is dense in regions

with smaller value for the propagation speed F , and sparse in regions with

higher values of F . The speed function is computed from the potential

P defined in section 2.1. The speed function F > 0 computed from the

image takes the smallest values on the tree structure and the largest outside.

Therefore, the meshing is likely to be dense on the tree structure and sparse

outside, see Figure 4. Hence, as shown in Figure 4, the geodesic voting

obtained from this set of end points has high contrast and allows a complete

and easier segmentation of the tree structure.

Figure 5 illustrates the effect of the position of the source point on the
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geodesic density. It shows that the three different source points allow us to

segment the same tree structure.

Note that we can also use the set of points obtained with adaptive mesh-

ing for the multi-propagation method presented in the previous section 3.3.

There we used as example the set of Harris points.

(a) (b) (c) (d)

Figure 5: Illustration of the effect of the localization of the source point on the geodesic

voting density. panel (a): red, blue, and green crosses indicate the localization of the

source points; Panels (b), (c), and (d) show geodesic density generated respectively with

the source point indicated by the red, blue and green crosses.

3.5. Best solution to the Shading Zone problem

In the previous sections, we have proposed geodesic voting methods to ex-

tract tree structures. In section 3.2 the problem of shading zones was pointed

out and addressed in order to complete the segmentation results. The seg-

mentation by geodesic voting from the border gives a high contrast geodesic

density and demands less computing time. However, there is the problem of

shading zones as we have explained in section 3.2. In this section, we will

compare these methods on the synthetic example of figure 4. The meth-

ods are implemented in C++/Matlab: the Fast Marching is implemented

in C++, the computation of the paths and the geodesic voting are imple-

18



Voting method Computing time (seconds) branch detection ( % )

Border, sect. 3.1 27.08 66

Multi, sect. 3.3 481.78 100

Adaptive, sect. 3.4 94.94 100

Table 1: Comparison of the three proposed geodesic voting methods for the synthetic image

”deer image” of size 220×300, in terms of computing time and rate of branch detection.

mented in Matlab. The experiments presented in this work were achieved

with a 1.73 GHz PC. Table 1 compares the proposed solutions according to

the computing time and a rate of branch detection on the synthetic ”deer

antlers” of figure 4. We defined the rate of branch detection as the number

of the branches that are present both in the tree after segmentation with a

given geodesic voting method, and the manually segmented tree divided by

the total number of branches present in the manually segmented tree.

Regarding the computing time and the rate of branch detection, the adap-

tive voting gives the best results. Note that in this synthetic example, we

were able to segment all the branches even using only a uniform grid of the

image. For the adaptive voting or a uniform grid 900 points was the mini-

mum number required to segment all branches. However, in section 5 we will

show using a real medical image that for the same number of end points, the

adaptive voting allows us to segment all branches of the tree whereas with a

uniform grid some tree branches were missed.
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4. From the Geodesic Voting tree to the tubular structure

Geodesic voting method gives a good approximation of the localization

of the tree branches, but it does not allow to extract the tubular aspect of

the tree. Here, we propose two different methods to use the geodesic voting

method in order to segment the boundary of the tubular structure.

4.1. Geodesic voting for centerline and local radius (GVR method)

The geodesic voting method described in the previous section gives a good

approximation of the localization of each branch of the tree. In this section

we introduce a constraint that ensures that the segmented tree approximates

well the centerlines of the tree and we adapt the geodesic voting method to

segment the walls of the tubular tree structure. The idea is to perform the

geodesic voting with a potential that integrates an extra-dimension used to

measure the distance from the centerline to the walls of the vessels.

4.1.1. Geodesics in space augmented with local radius

The authors of [37] introduced a method to segment a tubular shape by

finding a geodesic in a space augmented with the radius dimension in order

to find both a centerline and the local radius of the tubular shape. As shown

in Figure 6-(a), a 2D centerline curve and its local radius can be represented

as a curve in 2D+radius space. The extension of the minimal path extraction

model (2) to the case of a potential with an extra dimension is achieved by

minimizing the following energy

min
c,r

∫ L

0

(ω + P̃ (c(s), r(s)))ds. (7)
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The minimization of this energy allows for simultaneous approximation of

the minimal path and the radii of the spheres tangents to the boundary of

the tube with centers located along the minimal path. The computation of

the path is achieved with the framework presented in the Section 2. The

radii are considered as an extra spatial dimension: for a 2D image the prop-

agation with Fast Marching is done in 3D, for 3D images the Fast Marching

is performed in 4D, see [32].

The potential function proposed by [37] is adapted to the task of finding

centerline and boundary as a minimal path. This potential is defined by

P̃ : (x, r) ∈ Ω× [0, rmax] −→ P̃ (x, r).

It incorporates the full set of image values within the sphere of center x and

radii r and it is designed in such a way that the whole sphere lies inside

the desired object and is as large as possible so that it is tangential to the

boundary of the object.

The following potential was used:

P̃ (x, r) = ω +
λ1

rβ
(m(x, r)−m0)

2 +
λ2

rβ
(σ2(x, r)− σ2

0)
2 (8)

where m and σ2 are the mean and the variance respectively of the sphere

and are defined by:

m(x, r) =

∫

B(x,r)
I(s)ds

∫

B(x,r)
ds

and σ2(x, r) =

∫

B(x,r)
(I(s)−m(s, r))2ds
∫

B(x,r)
ds

,

where m0 and σ2
0 represent the mean and the variance of the starting point;

β is a real positive constant. This potential was studied in [37] for β = 2.

However, optimal results can be obtained with β < 2. This potential satisfies
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the conditions described above. Other choices for the potential are presented

and discussed in [37].

Figure 6-(b)-(c), we illustrate the augmented space method to obtain a

3D (2D+radius) path between 2 points that represents both a centerline and

the border of the region.

4.1.2. Geodesic Voting in augmented space

We now extend our geodesic voting method to this type of space+radius

geodesics. Using the potential P̃ and a set of end points (xk, rk) (uniform

grid) in the domain, we extract a set of geodesics yk from which we compute

the geodesic density (x, r) −→ µ(x, r) given by the equation (5). In this case

the geodesic voting map is a function of the spatial dimension and also of the

radii of the spheres. There are many ways to use this (2D+radius) geodesic

density, or (3D+radius) for 3D images, in order to extract the tree structure.

Here we focus on the following spatial densities:

µ̃s(x) =
rmax
∑

r=0

µ(x, r), µ̃m(x) = max
r∈[0, rmax]

µ(x, r) (9)

The thresholded density, µm or µs, approximates the centerlines of the tree.

To get the distance from the centerlines to the walls vessels, we compute

the radii, for each point x with µ̃m(x) > threshold, by evaluating r̃(x) =

arg max
r∈[0, rmax]

µ̃(x, r). The maps {µ̃m, r̃} or {µ̃s, r̃} allow to extract vessel

walls and the centerlines.

Figure 7 illustrates the steps of the GVR method for the segmentation

of the tubular aspect of the tree. We can see the efficiency of the method to

obtain a segmented tree that is centered in the structure, as well as the precise

boundary of the vascular tree. Figure 8 compares the original geodesic voting
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described in Section 3, and the results obtained with this new approach. The

new geodesic voting method with an extra dimension (2D+radius) gives the

best results in terms of the overlap ratio O given by Equation (15).
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(a)

(b) (c)

Figure 6: Illustration of minimal paths in the augmented space. Panel (a): We present a

tubular surface as the envelope of a family of spheres with continuously changing center

points and radii [37]. Panel (b) shows in red the starting point and in blue the ending point

on the target vessel; panel (c) shows in yellow the centerline and in red circles tangential

to the border of the vessel.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Vessel segmentation from a 2D retinal image with the geodesic voting method.

Panel(a) shows a 2D retinal image, the red cross indicates the source point; panel (b)

shows, in (2D+radius) domain, in green the paths extracted from a uniform grid to the

source point; panel (c) shows the density computed in (2D+radius) domain, yellow color

corresponds to high density and brown to low density. Panel (d) shows the geodesic

density µ̃m, given by the equation (9), red color corresponds to high density, yellow color

to medium, and green color to low density; panel (e) shows in red the density µ̃m after

thresholding; panel (f) shows in blue the extraction result of the tubular structure obtained

by thresholding the map {µ̃m, r̃}.
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(a) (b) (c) (d)

Figure 8: Comparison of the original voting method and the GVR method. Panel (a): in

blue the manual segmentation of the centerlines of the tree; panel (b): results obtained

by the original voting method (overlap ratio O = 0.41); panel (c): the geodesic density

µ̃m obtained by our approach; panel (d): the density µ̃m after thresholding (overlap ratio

O = 0.75).
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4.2. Geodesic voting prior to constrain the level set evolution (GVP method)

Here we present a second approach to extract the walls of the vessels using

the original geodesic voting method. A shape prior constraint is constructed

from the geodesic voting tree to constrain the evolution of a level set active

contour in order to extract the walls of the tree. A Bayesian approach is

used to introduce this prior into the level set formulation. The model is

formulated as a minimization problem of a global energy composed of two

terms. One is a region based level set energy and the second one is the prior

term.

4.2.1. Chan-Vese energy with prior

The first term corresponds to the region based energy proposed by Chan

and Vese [38]. This energy is a piece-wise constant approximation of the

Mumford and Shah functional [39]:

V(φ, c1, c2) =
∫

Ω

(

λ1(u0 − c1)
2Hǫ(φ) + λ2(u0 − c2)

2(1−Hǫ(φ))+

µδǫ(φ)|∇φ|+ νHǫ(φ))dx,
(10)

where Ω is the image domain; u0 is a given image function; λ1, λ2, ν, and µ

are positive parameters; c1 and c2 are two scalar constants used to separate

the image into two regions of constant image intensities. The two last terms

in the equation introduce regularization constraints, where Hǫ and δǫ are

respectively the regularized Heaviside and Dirac functions, in this work they

are approximated by:

Hǫ(τ) =
1

2

(

1 +
2

π
arctan(

τ

ǫ
)
)

; δǫ(τ) =
1

π

ǫ

ǫ2 + τ 2
. (11)

While the Chan and Vese energy constraint introduces regularization to

smooth the deformation φ and to deal with noise, it does not introduce a bias
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towards the target structure. Bayesian models were proposed in the literature

to incorporate prior knowledge about the target structure to constrain the

evolution of the level set [40]. Recent improvements of this approach were

proposed for example in [41].

Assuming φ̃ is the signed distance to the known prior shape, we minimize:

Eb(φ, c1, c2) = V(φ, c1, c2) + γ

∫

Ω

(φ− φ̃)2

2σ2
δǫ(φ)dx, (12)

where the factor term δǫ allows us to restrict the shape prior within the region

of interest. Details about this method are given in [42].

In order to minimize this energy we make alternate minimization with

respect to (c1, c2) and φ. For φ constant, we deduce the values of c1 and c2:

c1(φ) =

∫

Ω
u0Hǫ(φ)dx

∫

Ω
Hǫ(φ)dx

, c2(φ) =

∫

Ω
u0 (1−Hǫ(φ))dx

∫

Ω
(1−Hǫ(φ))dx

(13)

As usual, for (c1, c2) constant, minimization with respect to φ is made

using an artificial parameter t in the Euler-Lagrange formulation for (12) :

∂φ

∂t
=

(

µdiv(
∇φ

|∇φ|
)− ν − λ1(u0 − c1)

2 + λ2(u0 − c2)
2
)

δǫ(φ)+

γ

2σ2

(

2(φ− φ̃) δǫ(φ) + (φ− φ̃)2
∂δǫ
∂φ

(φ)
)

= 0

in Ω× R
+; φ(x, 0) = φ0(x) in Ω;

δǫ(φ)

|∇φ|

∂φ

∂n
= 0 on ∂Ω

(14)

The estimation of the solution of the model (12) can be summarized in the

following steps:

• initialize φ = φ0, n = 0;

• compute c1(φn) and c2(φn) by the relations (13);

• compute φn+1 by solving the PDE (14) with respect to φ;

• update periodically the level set φn by a signed distance;

• repeat these three steps until convergence (φn is stationary).
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4.2.2. Combining Geodesic voting and Region based energy with a prior

The geodesic voting method described in Section 3 gives a good approx-

imation of the localization of each branch of the tree. The idea is to use

the geodesic voting method to construct the shape prior that constrains the

evolution of the level set propagation. After thresholding the geodesic den-

sity µ defined by the equation (5) we get an approximation of the target

tree structure as explained in Section 3. However this geodesic density does

not allow to extract the tubular aspect of the tree. Indeed the thresholded

geodesic density gives only an approximation of the centerlines of the tree

structure. Our aim here is to use this rough tree skeleton to build a prior

that constrains the evolution of level set active contour in order to extract

the boundary of the tree.

From now on we call the voting tree, the tree structure obtained after

thresholding the geodesic density. To construct the shape prior from the

voting tree, a tubular tree with uniform width containing the target tree

structure is obtained by morphological dilation of the voting tree. We use

the largest radius of the tubular structure, obtained from the target image. It

does not have to be precise, it is sufficient to inspect the target tree visually

and to give an approximate value. The prior that we use to constrain the

level set method corresponds to the signed distance from the boundary S of

the tubular tree obtained after dilation, which we denote φ̃.

The segmentation of vessels with this approach is achieved in two steps:

(1) the geodesic voting tree is extracted using the original geodesic voting

method (2) the walls of the vessels are extracted by minimization of the

functional Eb of equation (12). Figure 9 illustrates the segmentation process.
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(a) (b) (c) (d)

Figure 9: Geodesic voting segmentation of vessels from a 2D retinal image. Panel (a):

adaptive voting on the image; panel (b): voting tree obtained by thresholding the geodesic

voting; panel (c): shape prior obtained by dilation of the voting tree; panel (d): segmen-

tation result obtained with region based active contour with prior (GVP).
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5. Results and discussion

In Section 3.5, we compared the geodesic voting methods on synthetic

images. Here, we applied these methods on real data: MIP (maximum in-

tensity projection) of 3D Magnetic Resonance Angiography MRA images of

blood vessels, confocal microscope images of microglia extensions, and digital

images of retinal blood vessels. In Section 5.2, we compare these methods

in terms of the following evaluations measures: Hausdorff distance, overlap

ratio (or Dice measure), and branch detection rate. The latter measure was

defined in Section 3.5. In Section 4, we extended the geodesic voting method

to segment vessels walls and apply it to real data in Section 5.3.

Moreover, we will compare our approach with the edge based level set

method [43], the Chan and Vese method [38], and the fuzzy connectedness

method [44]. In Section 5.4 we apply our approach to simulated 3D data

of carotid bifurcation lumina created by adding Gaussian noise to datasets

provided by the MICCAI challenge [45].

Let us define first overlap measures for two binary images defining regions

A, the manual segmentation, and B, the segmentation result obtained by the

geodesic voting method. The overlap ratio (or dice similarity), sensitivity,

and specificity respectively are defined by the relations:

O(A,B) =
2 |A ∩B|

|A|+ |B|
, S(A,B) =

|A ∩ B|

|A|
, P(A,B) =

|A ∩ B|

|B|
, (15)

where |A| and |B| are respectively the number of the foreground voxels in

the image A and B. |A ∩ B| is the number of voxels in the shared regions

(intersection of the foreground of the two images). The Hausdorff distance
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Figure 10: Figure plots the

effect of the variation of

the threshold on the over-

lap ratio, the red + repre-

sents the value Th (given

by the equation (17))

between A and B is defined by

H(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}, (16)

where d is the Euclidean distance in R
n, n = 2 for 2D image and n = 3 for

3D image.

5.1. Choice of Threshold Th

In Section 3.5, we used for all experiments the following value to threshold

the geodesic density:

Th =
max(geodesic density)

100
(17)

as threshold to extract the tree structure using the voting maps. Figure 10

shows the effect of the threshold on the overlap ratio, defined by the equation

(15), for the tree of Figure 4. We can see that the threshold can be chosen

in a large range that contains the threshold Th, given by the equation (17).

Although the geodesic voting segmentation fits perfectly the localization of
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the tree structure, see Figure 4, the overlap ratio that measures the overlap

of the geodesic voting segmentation and the manual segmentation of the tree

is relatively low. This is due to the fact that the manual segmentation of

the tree is a tubular structure whereas segmentation by geodesic voting finds

a thinner structure inside the tree. This threshold can be improved for a

given application. Indeed, we can compute manually values of the threshold

from a data set composed from a significant number of images and compute

statistics to define the optimal threshold. This optimal threshold can be used

to segment any other image from the same application context.

5.2. Voting tree extraction from 2D data

The aim of this section is to compare the geodesic voting methods pre-

sented in section 3.1 and 3.4 on real data. The use of the multi-propagation

method, presented in Section 3.3, for vessel segmentation on real data re-

quired manual intervention of the user to remove the Harris points that do

not correspond to true characteristics points of tree-junctions and extremi-

ties. Therefore, we have chosen not to include this method in the following

experiments. The difference between these methods is the localization of the

end points used to perform the geodesic voting.

In Figure 11, we present experiments on a MIP image of a 3D MRA

image using different choices of end points to perform the geodesic voting.

In the first experiment we performed the geodesic voting with endpoints on

the border of the image, in the second experiment we used a uniform sub-

grid of the image with half image pixels, and in the third and the fourth

experiments we performed the adaptive geodesic voting with 103 and 5x103

farthest points, respectively (method presented in Section 3.4). In Table 2,
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we compare the results of these experiments to the manual segmentation of

the tree structure in terms of Hausdorff distance, rate of branch detection

as defined above, and overlap ratio. The best results were obtained with

adaptive voting, with 103 and 5x103 farthest points, even though the number

of points used in the geodesic voting from a uniform grid (2562 points) were

superior to the number of points used in the adaptive voting. As mentioned

earlier, the large number of points has a smoothing effect that make the

voting less efficient.

In Figure 12, we illustrate the application of the adaptive geodesic method

to the segmentation of microglia extensions from confocal microscopy images.

The numerical results obtained were satisfying in terms of computation time

and coherence with the visual aspect of the cells. We kept in the result panel

(right panel) only density values superior to the threshold Th (given by the

equation 17). In this panel, the blue circle shows the false detection marked

by an expert. This part of the extension belongs to another cell that is not

present in the image. We will discuss the problem of multiple trees in the

same image in Section 5.3.

Figures 11 and 12 show the potential application of the geodesic voting

method to different image modalities. In these experiments, four MR an-

giography images and ten microglia images were used. We show here one

example of each, more results are presented in the paper [23]. In the next

section we will apply the geodesic voting method to segment vessels from a

larger dataset (12 retinal images).
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Voting method Hausdorff (pixels) branch detection (%) Overlap Ratio

Border 80.956 61.53 0.737

Uniform, 2562 points 34.409 84.61 0.925

Adaptive, 103 points 34.014 92.30 0.927

Adaptive, 5x103 points 33.015 100 0.959

Table 2: Comparison of geodesic voting methods for vessel segmentation from the MIP,

Voting from the border (Section 3.1), Uniform voting (Section 3.1), and Adaptive voting

( Section 3.4), see Figure 11.
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(a) (b) (c)

(d) (e) (f)

Figure 11: Evaluation of the geodesic voting methods on MR angiography images. Panel

(a): a 2D MR angiography image; panel (b): the distance map computed with a source

point on the head of the tree (red marker in the previous panel); panel (c): in blue the

paths extracted from the red points, farthest points, to the source point. Panel (d) shows

the geodesic voting map computed from the border (method presented in Section 3.1);

panel (e) shows the geodesic voting map computed from the second pyramid of the image

(half points on the image); panel (f): the geodesic voting map computed with adaptive

voting (method presented in Section 3.4). Red color corresponds to high density, yellow

color corresponds to medium density and green color corresponds to low density;
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(a) (b) (c)

Figure 12: Microglia extensions segmentation from a confocal image with the adaptive

geodesic voting method. Panel (a): Microglia image, the red marker corresponds to the

source point. Panel (b): extraction of geodesics, the red points represent the farthest

points and the blue lines correspond to the geodesics extracted from these farthest points

to the source point (red marker in the left panel). Panel (c): Adaptive Voting after

thresholding.
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5.3. Vessel extraction and comparison on 2D data

In this section, we will compare on the one hand the geodesic voting meth-

ods GVR (method with radius presented in Section 4.1) and GVP (method

with prior presented in Section 4.2) for vessel segmentation from retinal im-

ages on the DRIVE data (Digital Retinal Images for Vessel Extraction) [46].

On the other hand we will compare GVR and GVP with other approaches

used for vessels segmentation.

The DRIVE data were acquired using a Canon CR5 non-mydriatic 3CCD

camera with a 45 degree field of view (FOV). Each image was captured using

8 bits per color plane at 768 by 584 pixels. The FOV of each image is

circular with a diameter of approximately 540 pixels. For this database, the

images have been cropped around the FOV. The DRIVE data is composed

of 40 images from different subjects for which manual segmentations are also

provided.

Considering the complexity of the retinal images and the properties of

our algorithm, we have cropped twelve different images from the 40 images

available and evaluated our method on them. Note that the retinal vessels

in each image do not correspond to a tree structure. Some images may

contain several disconnected trees or networks. Note that when the image

contains more than one tree structure, the geodesic voting method tends to

create connections between them. This can be seen in Figure 12-(c). These

connections may not make sense anatomically, therefore a preprocessing or

postprocessing step is necessary to get an accurate segmentation. For a

completely automated application, this problem may be solved by using the

selection step proposed (for a different method) in [47] to remove paths that
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are unlikely to belong to the microglia extensions. This is out of focus of

this paper to propose precise automatic pre- or post-processing to deal with

all kind of situations. Therefore, it was more illustrative to choose images

that contain tree structures and then crop the image in such way that the

cropped image contains only one tree structure. We were able to extract 12

tree structures from 12 different images in the DRIVE data. The size of the

cropped image depends on the size of the tree in the original image and in

average corresponds to 100 pixels in high and 50 pixels in width.

For the GVR method, the augmented potential P̃ used is described in Sec-

tion 4.1. After performing the geodesic voting with the potential Pr given by

the equation (8) we compute the map {µ̃m, r̃}. The starting point was chosen

as a junction of the tree, rmax = 4, λ1 = λ2 = 10, w = 0.01 and β = 0.3.

As the end points were chosen as a uniform grid, the spatial starting point

can be chosen anywhere within the tree. However, the starting radii should

be chosen carefully to get an optimal segmentation. In our experiments on

DRIVE data we obtained good estimation of these parameters by testing

different values following the study presented in [37]. These parameters can

be optimized and automated for a given class of images.

For the GVP method, we have used the following potential P (x) = I(x)3

to run the geodesic voting segmentation, where I is the grayscale intensity of

the image. Figure 9 shows results obtained using this potential. The value

of γ, the weight on the prior, was chosen empirically and used for all the

experiments presented in the paper. We showed in [42] that this value can

be chosen in a large range with the same efficiency.

In the figures 13 and 14 ( results obtained with the GVR and GVP), the
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source point used to perform the geodesic voting was chosen empirically on

the junction of the tree that is connected to the largest number of branches.

This allows us to segment the largest number of branches in the presence

of small branches with weak contrast. Note that the quality of the images

provided by DRIVE are not very good and sometimes it is hard to set optimal

sphere radii for the GVR initialization. When it is not possible to give a

precise radius we underestimate the value of the radius whenever possible,

indeed we measure the radii of the spheres in pixels and their diameters are

odd numbers. Concerning the end points, we have used the same number

for each method: 1200 farthest points (generated by the process described

in Section 3.4) for the GVP method, and a uniform grid of the augmented

potential for the GVR method. The threshold for the geodesic density was

defined from the first five images as the mean value of all the threshold values

manually selected for these five image. Then this mean threshold was used

for all the twelve images. We have used two different values for the mean

threshold: one value for the GVP method and the other for the GVR method.

In table 3, we compare the GVR and GVP results for vessel segmentation

on the DRIVE database in terms of the following evaluation measures: Dice,

specificity, and sensitivity. We found that the GVR and GVP gave similar

results. However, the two methods have different characteristics. The GVR

is a sphere-based approach: the radii of spheres tangential to the vessels are

estimated along the centerlines. GVP is not sphere-based; it fits better the

boundary of the vessels in the images due to the characteristics of the level

set propagation. However, the GVP depends heavily on the initial tree used

as prior for the level set evolution. The threshold and the number of farthest
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Data
Dice similarity

GVR GVP

Sensitivity

GVR GVP

Specificity

GVR GVP

Test 1 0.76 0.93 0.66 0.91 0.89 0.95

Test 2 0.82 0.76 0.71 0.65 0.97 0.92

Test 3 0.73 0.72 0.62 0.64 0.90 0.83

Test 4 0.78 0.72 0.65 0.58 0.96 0.95

Test 5 0.70 0.67 0.56 0.53 0.94 0.90

Test 6 0.83 0.71 0.76 0.60 0.90 0.95

Test 7 0.77 0.79 0.68 0.70 0.87 0.90

Test 8 0.81 0.78 0.73 0.70 0.90 0.88

Test 9 0.74 0.73 0.61 0.70 0.94 0.78

Test 10 0.84 0.80 0.76 0.70 0.95 0.93

Test 11 0.74 0.73 0.62 0.60 0.93 0.91

Test 12 0.72 0.72 0.56 0.57 1.00 1.00

Mean 0.770 0.775 0.66 0.657 0.929 0.908

Std 0.044 0.063 0.066 0.094 0.036 0.056

Table 3: Comparison of our segmentation methods (GVR and GVP) with the manual

segmentation on the the DRIVE data in terms of the following statistics: Dice similarity,

sensitivity and specificity.
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(a) (b) (c) (d)

Figure 13: Blood vessels segmentation using the GVR and GVP methods from one of the

twelve cropped retinal images given in Table 3. The left panel shows the original image;

the second panel shows in blue the manual segmentation; the third panel shows the seg-

mentation result obtained with the GVR method; the right panel shows the segmentation

result obtained with the GVP method.

points were fixed for all the data; in some cases small branches with weak

contrast were therefore missed. Also, the initial tree estimated in the first

step of the GVP may not align with the centerlines of the tree, see Figure

8-(b). This first step allows to construct the prior for the GVP to estimate

the boundary vessels in the second step. In contrast, the GVR estimates

simultaneously the centerlines and the vessel walls.

In the sequel, we compare the performance of GVR and GVP methods

with the edge and region based level set methods and the fuzzy connectedness

method in the segmentation of vessels.

Figure 15 shows the results obtained with the fuzzy connectedness method

[44]. The segmentation of the tree is obtained by thresholding the fuzzy

connectedness map. For a small threshold the method does not allow to

extract all the branches of the tree, and when the threshold is increased the

propagation leaks outside of the tree. The same problems were observed
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(a) (b) (c) (d)

Figure 14: Blood vessels segmentation using the GVR and GVP methods from one of the

twelve cropped retinal images given in Table 3. panel (a) shows the initial image; panel (b)

shows in blue the manual segmentation; panel (c) shows in red the segmentation obtained

with GVR method; panel (d) shows the segmentation obtained with our GVP method.

with the edge based level set method [43] when we increased the number

of iterations, see Figure 16. Figure 17 and Figure 7-(f) compare the results

obtained with all these approaches. The shape prior allows us to constrain

the propagation inside the tubular tree. Figure 17 shows that the propagation

without shape constraints (γ = 0 in the Equation (12)) can leak outside of

the tree structure.

Our methods (GVP and GVR) give the best results: they succeed in

segmenting more tree branches without leaking outside of the tree structures.
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(a) (b) (c) (d)

Figure 15: Fuzzy connectedness segmentation. Panel (a): the localization of the red

seed point; panel (b): the fuzzy connectedness map; panel (c): the thresholded fuzzy

connectedness map with the threshold set at th1 (third panel); panel (d): the thresholded

fuzzy connectedness map with a threshold set at th2 superior to th1.

(a) (b) (c) (d)

Figure 16: Edge based Level set method. Panel (a) shows in red the initial position of

the interface; panel (b) shows the sigmoid of the gradient magnitude; panel (c) shows the

interface after 1000 iterations; panel (d) shows the interface after 2000 iterations.

44



(a) (b) (c) (d)

Figure 17: Comparison of the geodesic voting approach (GVP) with other methods. Panel

(a) shows in red the segmentation obtained by edge based level set method; panel (b) shows

in red the segmentation results obtained with a Chan and Vese method without using the

geodesic voting prior; panel (c) shows the fuzzy connectedness segmentation; panel (d)

shows the segmentation result obtained with our geodesic voting with prior (GVP).
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5.4. Experiments on 3D data

In this section we evaluate the geodesic voting method on simulated 3D

data and show an example of the segmentation of the airway from a CT

image.

The simulated 3D data were created by adding Gaussian noise to binary

images of carotid bifurcation lumina provided by the MICCAI challenge [45]

with different values for the noise variance: vk =
k
100

, k = 1, . . . , 9. Although

these simulated data may not represent all the characteristics of real images,

they provide an accurate ground truth for a first validation of segmentation

algorithms. Note that at least for computed tomography images, the noise

was found to be Gaussian [48].

(a) (b) (c)

Figure 18: Lumen segmentation from simulated 3D data. The left panel shows the original

image, the center panel shows the geodesic density, the right panel shows the segmentation

result obtained with our approach.
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Figure 18 shows results obtained with the GVP method with σ = 5

and with the noise variance v1 = 0.01. Figure 19 compares the manual

segmentation with GVP results with different values of σ and using nine

different levels of noise. For all experiments we used the same number of end

points and the same threshold to segment the geodesic density. The geodesic

voting tree is dilated to 8 × 8 × 1 mm to construct the prior to constrain

the level set evolution. The dice measure goes below 0.72 when the level of

noise exceeds 0.045. Figure 19 shows also that among the three values of

σ = 5, 6, 7 for the GVP model, σ = 5 allows the model to be more robust

to noise. It shows also that σ can be chosen in a large range when the noise

variance does not exceeds 0.045. The threshold for the 3D data was set to

the value Th (given by the equation (17)) to segment all the synthetic data.

For optimal performance, the whole structure of the tree has to to be

covered with end points to deal with the shading zone problem, described

in Section 3.2, and to limit the intervention of the user in the segmenta-

tion process. The number of end points increases in 3D. Consequently, the

computation time increases. Furthermore, the selection of end points can be

improved for a particular application using a prior for the localization of the

tree. The prior can then guide the selection of an optimal number of end

points in the image. For example in CT images, the airway lumen is dark,

therefore end points may be generated only on the dark region of the image.

Authors do not pretend that the current implementation of the geodesic

voting method, and the current choice of potentials, is able to correctly seg-

ment all real medical images in 3D. The purpose of this evaluation is only to

show that the method can be extended to 3D, but also to capture the thick-
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ness of the tree branches, provided that a potential adapted to the given

image type is found. The optimization of the potential may need further

investigation.

(a) (b)

(c) (d)

Figure 19: Evaluation of the GVP method on nine simulated 3D data created by adding

different levels of noise with the following variance: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09. Three different values of the standard deviation for the GVP model were used

(σ=std, in Equation (12)). Dice and Sensitivity variation versus the variance of the noise

added for σ = 5 (panel(a)), σ = 6 (panel(b)), and σ = 7 (panel (c)). Panel (d) shows Dice

measure variation versus the variation of the noise for different values of std.
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6. Conclusion

In this paper we have presented a completely new approach for the seg-

mentation of tree structures based on geodesic voting. This approach is

adapted to automatically segment tree structures from a single point pro-

vided by the user with no further a priori information required about the

tree. By contrast, other methods described in the literature for the segmen-

tation of tree structures are not fully automatic and require prior information

about the tree to be segmented. We have combined this approach with an

added fourth dimension (space+radius) or with Chan-Vese level sets using

priors in order to obtain both the centerlines and boundaries of the tree. We

have applied our geodesic voting approach to segment different tree struc-

tures from a variety of bio-medical images. Finally, we have evaluated our

approach on retinal 2D images, and have shown segmentation results on other

biomedical images, included simulated noisy 3D data. The results were sat-

isfying in terms of the rate of branch detection, the Hausdorff distance from

the ground truth, and the overlap measures defined in Section 3.5.
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