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Abstract This paper presents new methods to segment thin tree structures,
which are for example present in microglia extensions and cardiac or neuronal
blood vessels. The Fast Marching method allows the segmentation of tree
structures from a single point chosen by the user when a priori information
is available about the length of the tree. However, in general, there is no way
to stop the propagation automatically. In our case, no a priori information
about the length of the microglia extensions is available. We propose here
to use Harris points to define a criterion to stop the propagation. The tree
structure is defined as the set of minimal paths, relatively to the weighted
distance by a cost potential, extracted from a source point (root of the tree)
to all Harris points. These points can be used also to track the tree structure
in image sequences. Numerical results from synthetic and microscopic images
are presented.

Keywords Minimal paths · Fast Marching · Tree structures · Segmentation ·
Microglia

1 Introduction

In this paper we present novel methods for the segmentation of tree structures.
These methods are based on minimal paths with a metric designed from the
images and can be applied to the segmentation of numerous structures, such as:
microglia extensions; neurovascular structures; blood vessel; pulmonary tree.
Following our main motivation, we will present applications of our methods to
microglia extensions.
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Recent developments in imaging such as fluorescent probes and reporters
combined to two photon microscopy brought new field of investigation in neu-
roscience. It now allows researchers to follow in vivo dynamic movements of
cells in 3D. Such approaches revealed that microglia, a subtype of glial cells,
are particularly motile in the Central Nervous System (CNS). Besides their
highly mobile processes, microglia are the major inflammatory effector cells of
the brain and consequently are involved in most of CNS diseases. Understand-
ing the logic of microglia motility might at term provide an efficient tool to
detect early symptoms of diseases such as Alzheimer or multiple lateral scle-
rosis. Although much work is devoted to the segmentation of vascular trees
in medical images, few attempts have been made to extract microglia exten-
sions and were restricted to the main branches ([9], [39]). Since the microglia
extensions are very thin, the centerlines of the extensions are enough to char-
acterize the structure and the motion of the microglia. From our experience
with vascular trees we can tell that microglia segmentation can be much more
difficult, due to very thin branches and noise.

While there are few studies dedicated to the segmentation of microglia
structures, there is a large number of studies dedicated to the extraction of
the vascular or airway trees. For a review of methods used to extract these
structures, see [18,19,25,1,4,21]. Among the methods used to segment these
tree structures we consider the three following models, classified according to
the method used to extract the tubular aspect of the tree: centerline based
models; surface models; and 4D curve models. The first category focuses on
directly extracting the centerlines of the tubular tree [22,35]. However, after
extracting the centerlines a second process can allow to segment the lumen
of the tree, see [3]. The second category extracts directly the surface of the
vessel. This approach includes explicit and implicit surface models. The former
approach uses a parametric representation of the tubular structure [14]. These
models are not adapted to the segmentation of complex tree structures while
implicit methods can evolve the surface to complex shape changes and han-
dle changes in topology [23,40]. However, initializations must be performed
carefully to get an accurate segmentation.

Minimal paths techniques were extensively used for centerlines extraction
of tubular tree structures. These approaches are more robust than the region
growing methods, particularly in the presence of local perturbations due to the
presence of stenosed branches of the tree or imaging artefacts where the image
information might be insufficient to guide the growing process. Several minimal
path techniques have been proposed to deal with this problem [2,38,10]. These
techniques consist in designing a metric from the image in such a way that
the tubular structures correspond to geodesic paths according to this metric
[7]. Solving the problem from the practical point of view consists of a front
propagation from a source point within a vessel, which is faster on the branches
of the vascular tree. These methods required the definition by the user of a
starting point (propagation source) and end points. Each end point allows to
extract a minimal path from this point to the source point, the points located
on the minimal path are very likely located on the vessel of interest. Few works
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have been devoted to reduce the interaction of the user in the segmentation
of tree structure to the initialization of the propagation from a single point.
Authors of [15] defined a stopping criterion from a medialness measure, the
propagation is stopped when the medialness drops below a given threshold.
This method might suffer from the same problem as the growing region, the
medialness might drop below the given threshold in the presence of pathology
of imaging artefacts. Wink et al. [37] proposed to stop the propagation when
the geodesic distance reaches a certain value. However, this method is limited
to the segmentation of a single vessel and the definition of the threshold of
the geodesic distance is not straightforward. Cohen et al.[6] proposed to stop
the propagation following a criterion based on some geometric properties of
the region covered by the front. In [11], assuming the total length of the tree
structure to be visited is given, the stopping criterion is based on the Euclidean
length of the minimal path.

Li et al. [20] proposed a 4D curve model with a key point searching scheme
to extract multi-branch tubular structures. The vascular tree is a set of 4D
minimal paths, giving 3D centerlines and width. While this method has the
advantage to segment vessel centerlines and surfaces simultaneously, it requires
the definition of eight parameters. One point inside the tubular structure and
the radius are used to initialize the Fast marching propagation, three parame-
ters are used to set the Fast Marching potential and three distance parameters
limit the propagation to the inside of the tubular structure to avoid leakage
outside the tree. These last three parameters required an important interven-
tion of the user since they are crucial to extract the whole structure. If these
distance parameters are not suitable, parts of the tree structure may be missed
during the propagation.

Recently, the Geodesic Voting method [27–29] was proposed to extract
tree structures without using any a priori information and based on the user
providing only a single point on the tree structure. It consists in computing
geodesics from a given source point to a set of end points scattered in the
image. The target structure corresponds to image points with a high geodesic
density. The geodesic density is defined at each pixel of the image as the
number of geodesics that pass over this pixel. Since the potential takes low
values on the tree structure, geodesics will locate preferably on this structure
and thus the geodesic density should be high.

Here, we present methods to extract tree structures without using any a

priori information and based on the user providing only a single point on
the tree structure. The proposed method is less time consuming than the
geodesic voting method, only few minimal paths are needed to segment the
target tree. In contrast, the geodesic voting method requires the extraction of
a large number of geodesics to define an accurate geodesic density. However,
the proposed method is based on the assumption that the extremities of the
tree are included in the set of corner points in the images. This assumption is
met in many applications such as the microglia extensions, which are the main
focus of this paper. The geodesic voting method has a broader application since
it does not rely on this assumption.
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Some of the main results of the paper were presented in the conference
paper [30], we improved here the presentation of the method and evaluate it
on a larger data set. We propose to use geometric characteristic of the tree
as criterion to stop the propagation: extremities and junctions of the tree. We
detect these points as corners by the Harris detector [16]. The tree structure is
approximated by the set of minimal paths, relatively to the weighted distance
by a cost potential, from the Harris points to the root of the tree. The root
point corresponds to the propagation source and is the only information given
by the user. Since the potential takes low values on the tree structure, geodesics
will locate preferably on this structure. The method was applied to segment
Microglia extensions from confocal microscope.

The paper is organized as follows: in Section 2 we give tools needed to
present our segmentation method in Section 3; in Section 4 we apply our
method to segment microglia extensions from two photon images; in Section
5, we give a conclusion and discuss possible improvements of the method.

2 Background

2.1 Minimal paths

The minimal path theory for the extraction of contours from the image was
inspired by the Fermat principle in geometrical optics: the light trajectory y(s)
minimizes the optical distance between x0 = y(0) and x1 = y(L), where s is
the arclength and L is the length of the trajectory which follows the curve
y(s) that minimizes the travel time τ :

τ(x0, x1) =

∫ L

0

ds

c
(

y(s)
) (1)

where propagation speed c is a function depending on the medium of the prop-
agation. In homogeneous media the function c is a constant, the trajectories
correspond to lines. In a medium with two regions, the function c takes two
values: c1 in the first region and c2 in the second region. The trajectory, in
this case, corresponds usually to two joint segments, each segment belonging
to one region (satisfying Snell law). We are interested here in the case of a
medium with a continuous velocity c, see [7].

In the context of image segmentation Cohen and Kimmel proposed, in [7],
a deformable model based on the optical distance (1). The model is formulated
as finding a geodesic for a weighted distance:

min
y

∫ L

0

(

w + P (y(s))
)

ds, (2)

the minimum is considered over all curves y(s) traced on the image domain
Ω that link the two end points, that is, y(0) = x0 and y(L) = x1. The con-
stant w imposes regularity on the curve. P > 0 is a potential cost function
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computed from the image, it takes lower values near the edges or the features.
For instance P (y(s)) = I(y(s)) leads to darker lines while P (y(s)) = g(||∇I||)
leads to edges, where I is the image and g is a decreasing function.

To compute the solution associated to the source x0 of this problem, [7]
proposed a Hamiltonian approach: Find the geodesic weighted distance U to
x0 that solves the eikonal equation

||∇U(x)|| = w + P (x) ∀x ∈ Ω (3)

The ray y is subsequently computed by back-propagation from x1 by solv-
ing the ordinary differential equation (ODE)

y′(s) = −∇U(y). (4)

Fig. 1 shows a simple example of minimal path on a synthetic image.
The only stable schemes that solve the eikonal equation compute the vis-

cosity solution [8]. The first work that uses the viscosity solution for this kind
of problems is from Vidale [36]. An iterative numerical scheme to solve eikonal
equation was proposed in [31,12]. In such iterative scheme, at least complexity
O(mn2) is needed, where n is the total number of grid points and m is the
number of iterations that permit an estimation of the solution. In the next sec-
tion, we present the Fast Marching algorithm introduced in [33] to solve this
problem in complexity O

(

n log(n)
)

. Some other schemes based on different

tricks can lead to O
(

n
)

.

2.2 Fast Marching method

The idea behind the Fast Marching algorithm is to propagate the wave in
only one direction, starting with the smallest values of the action map U and
progressing to the largest values using the upwind property of the scheme.
Therefore, the Fast Marching method permits only one pass on the image
starting from the sources (where U = 0) in the upwind direction. We briefly
recall the principle of the Fast Marching method, for details see [33,34,5].
The grid points are partitioned into three dynamic sets: trial points, alive
points and far points. Alive points are the grid points for which a value U
has been computed and will not be changed any more, while Far points are
those for which there is no possible estimate of U yet. Trial points are points
that are not alive, and that have at least one neighbor that is alive, in order
to get an estimate of U from the discrete version of Equation (3). The trial
points correspond to a dynamic boundary that separates far points and alive
points. At each step, the trial point with the minimum value of the action
map U is moved to the set of alive points. To reduce the computing time,
the trial points are stocked in a data structure referred to as min-heap (the
construction of this data structure is described in [33,34]). The complexity to
change the value of one element of the min-heap is O

(

log(n)
)

. Hence, the total
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complexity for Fast Marching to reach the n grid points as alive is O
(

n log(n)
)

.
The Dijkstra algorithm, which is also used to find a minimal cost path on a
graph, has the same complexity as the Fast Marching algorithm. However, the
Dijkstra algorithm leads to metrication error and is not consistent, contrary
to the Fast Marching algorithm which converges toward the unique viscosity
solution (see [5]). Fig. 1 shows an example of distance map computed with the
Fast Marching on a synthetic image.

2.3 Detection of points of interest

Characteristic points have been proven successful in solving many vision prob-
lems for a long time such as tracking [17] or reconstruction [13], and are more
efficient in some applications than other geometric primitives such as edges
or segments. One of the most popular detector of corner points is the Harris
detector, which is better or equivalent to the other detectors [32]. This com-
parison is achieved in terms of repeatability: is the point detected in the first
image also accurately detected in the second image. Detectors with a good
repeatability rate may be useful to understand the motility of the microglia
extensions over time. In this work, we focus on the use of such points to seg-
ment the microglia extensions.

The Harris detector [16] is based on the Moravec detector [24], which deter-
mines the average changes of image intensity that result from shifting a local
window in the image by small variations in various directions. The intensity
change E produced by the shift (p, q) is :

E(p, q) =
∑

i,j

wi,j |I(i+ p, j + q)− I(i, j)|2 (5)

where w specifies the image window. We consider here a smooth Gaussian
circular window.

The Moravec detector of corners looks for local maxima of E. The Harris
detector computes and compares the eigenvalues of the Taylor expansion of E.
By using the Taylor formula with small shift, the variation E can be written
as:

E(p, q) = (p, q)M(p, q)′ (6)

where M is defined by

M =

(

A C

C B

)

,

and

A =
(∂I

∂x

)2

⊗ w, B =
(∂I

∂y

)2

⊗ w, and C =
∂I

∂x

∂I

∂y
⊗ w,

where ⊗ denotes the discrete convolution.
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The eigenvalues λ1 and λ2 of M correspond to the principal curvatures
of E. The corners are characterized by two large eigenvalues λ1 and λ2. Note
that it is not necessary to compute λ1 and λ2, indeed

Tr(M) = λ1 + λ2 = A+B (7)

Det(M) = λ1 λ2 = AB − C2 (8)

The corner measure is defined by

R = Det(M)− kTr2(M), (9)

and it is positive in the corner region, negative at the edges and small in the
homogenous regions, the parameter k is selected empirically between 0.04 and
0.06. Fig. 1 shows an example of the corner measure R.

Fig. 1 Illustration: Minimal paths and Harris points. First panel: the synthetic image, the
red cross corresponds to the source point. Second panel: the distance map computed with
the Fast Marching method. Third panel: the corner measure matrix R (given by Equation
(9)). Fourth panel: zoom on the region indicated by the head-arrow in the third panel. Fifth
panel: in green the Harris points detected, the Harris point on the bottom corresponds also
to the source point used for the Fast Marching propagation. The red line corresponds to the
minimal path between the Harris point on the top and the source point.

3 Extraction of tree structures by Fast Marching and characteristic

points

The Fast Marching method allows us to extract the minimal path between
two points. Here, the aim is to extract a tree with minimal intervention by
the user. When a priori information about the geometry or the length of the
contour to be extracted is available, Cohen and al. proposed in [6] a method
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Notations:

– x0 is a starting point located at the root of the tree structure;
– U is the action map.

Initialization:

– detect the Harris points hi present in the image and choose the root x0 among them;
– initialize the front propagation, by setting U(x0) = 0.

Loop: proceed according to the Fast Marching algorithm 2.2, updating action maps
and min-heap data.
Segmentation: Extract the paths between each Harris point and the root.

Table 1 Algorithm for the propagation from the root wtih Harris points.

to extract a tree structure from one point selected by the user. In the following
sections, methods are proposed for the segmentation of tree structures from
only one given point without any other a priori information. The method is
based on corner points, which are computed by the Harris detector described
in section 2.3. A pyramidal approach is used to reduce erroneous detection.

Within the image, a set of Harris points are detected. We defined the root
of the tree as a point selected by the user from the Harris points. This point
can be also defined as the nearest point in the tree to the center of mass of
all Harris points. From the root, a front is propagated with the Fast Marching
method. For each Harris point that is not the root, a path to the root is
extracted by back-propagation. The algorithm is given in the Table 1. Fig. 2
shows that the algorithm is able to extract a tree structure correctly from a
noisy synthetic image. This synthetic image is created by using an additive
Gaussian noise with zero mean and 0.1 variance to a binary image of a tree
structure.

Fig. 2 Segmentation results obtained with algorithm 1. Left : the action map from the root
seed point; right : the extracted tree, the green circles correspond to the Harris points and
the red lines trace the paths from the Harris points to the root of the tree (indicated by the
head-arrow).

Since there may be Harris points detected that may be due to noise, or
to small isolated parts in the image, we have to filter the set of paths and
remove some paths that do not correspond to tubular shape. A simple way to
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do that is to estimate if the potential function is small enough along all paths.
In the second step, for all minimal paths extracted from the selected Harris
points to the source point using the algorithm given in Table 1, we compute
the following measurement:

Γ (γ) =
1

Le(γ)

∫

P
(

γ(s)
)

ds (10)

where P is the potential computed from the image; Le(γ) is the euclidean
length of the path γ. We keep only the minimal paths that have a measure Γ

inferior to a given threshold.
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4 Segmentation of microglia extensions from confocal microscope

images

The confocal images were composed of a set of 4D (3D+time) image sequences.
For each time point, a series of 23 images perpendicular to the z axis was
acquired, thereby covering the three dimensions of the cell. In this study,
segmentation was restricted to static 2D images, e.g. only one time point and
only one image from the image series acquired at this time was considered. The
microglia images contained much noise. Therefore, we have added two post-
processing steps to get an optimal segmentation: (1) Harris point improvement
and (2) minimal path selection. In the first step, a pyramidal approach was
used to detect the Harris points in the image. Only the Harris points that
appeared in both the first pyramid (original image, see Fig. 3, center panel)
and in the second pyramid (see Fig. 3, right panel, half the resolution of the
original image) were used. Some of the erroneous detections were eliminated in
this way. In the second step, for all minimal paths extracted from the selected
Harris points to the source point, we keep only the minimal paths that have
a measure Γ (given by the equation (10)) inferior to a given threshold. Here
we choose the potential P = I7, where I is the intensity value of the acquired
image.

Fig. 3 confocal microscope images of a microglia. Left panel: a projection of 23 slices. The
green structures correspond to the microglia and neuronal extensions are red. Center panel:
a single image from a series of images perpendicular to the z axis, showing the microglia.
Right panel: a second stage of the pyramid of the image shown in the center panel (half of
the resolution of the original image). This image was used to compute the Harris points.

Fig. 4 and Fig. 5, center column, show the segmentation results with the
algorithm given in Table 1. Fig. 4 and Fig. 5, right column, show in green the
segmentation results obtained by selecting the minimal paths that have the
measure Γ inferior to a fixed threshold. Note that a small threshold may lead to
the detection of false branches and a large threshold leads to missing branches
of the tree. Here, the threshold was defined from the first and the second
images and were used to segment a data set of 24 image acquired at different
times, see Table 2. The manual correction of the segmentation was performed
by a biologist with expertise in microglia motility using the (3D+time) data
to tract each extension across slices and time. The center of the cell, which
corresponds to the root of the propagation, was chosen manually in the first
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image. The segmentation results are satisfying. Note that some parts of the
tree were not present in the studied image, but could be found in the other
22 images of the image series. Hence, some segments of the tree extracted in
the 2D segmentation do not correspond to a real contour present (which was
corrected manually by the expert in red, see Fig. 4 and Fig. 5, right column).
An extension of the proposed methods to the 3D segmentation should solve this
problem. Temporal constraints may help to improve partially the segmentation
since the microglia motility is still not fully understood and undergoing active
research in the biology community. In Fig. 6 we compare our approach with the
level set method. This figure illustrates the limitation of the level set method
to segment thin tree structure from noisy data as the microglia extensions.

Microglia Manual Algorithm Undetected False detection
Image #01 33 29 06 02
Image #02 35 34 04 03
Image #03 31 30 03 02
Image #04 26 24 06 04
Image #05 31 31 04 04
Image #06 32 29 05 02
Image #07 24 22 07 05
Image #08 30 24 07 01
Image #09 28 27 04 03
Image #10 20 20 03 03
Image #11 21 17 04 00
Image #12 28 24 07 03
Image #13 19 17 03 01
Image #14 26 21 05 00
Image #15 20 18 03 01
Image #16 21 17 04 00
Image #17 20 18 03 01
Image #18 22 16 06 00
Image #19 23 18 07 02
Image #20 26 18 08 00
Image #21 25 21 06 02
Image #22 18 18 03 03
Image #23 22 20 03 01
Image #24 25 21 06 02

Mean 25.25 22.25 04.88 01.88
Std 04.87 05.21 01.65 01.42

Table 2 Comparison of our segmentations (Algorithm) with the manual segmentations on
24 microglia images.
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06 min 00

24 min 00

27 min 00

28 min 50

Fig. 4 Segmentation of a microglia from confocal microscope images. Left column: microglia
images (1 image / 90 seconds); center column: extracted tree structure, the green circles are
the Harris points, the red lines trace the paths from the Harris point to the root. The root
corresponds to the cell center. Right column: in green the extracted tree structure using the
measure (10), red paths show missing branches added by the expert, red ellipses show false
detections corrected by the expert.
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30 min 00

31 min 50

39 min 00

40 min 50

Fig. 5 Segmentation of a microglia from confocal microscope images. Left column: microglia
images (1 image / 90 seconds); center column: extracted tree structure, the green circles are
the Harris points, the red lines trace the paths from the Harris point to the root. The root
corresponds to the cell center. Right column: in green the extracted tree structure using the
measure (10), red paths show missing branches added by the expert, red ellipses show false
detections corrected by the expert.
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24 min 00

Fig. 6 Comparison of the level set method with our approach. Left panel: microglia image;
center panel: in red the segmentation result obtained with the level set method. The root
corresponds to the cell center. Right panel: in green the extracted tree structure using the
measure (10), red paths show missing branches added by the expert, red ellipses show false
detections corrected by the expert.
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5 Discussion and conclusion

In this paper, methods for the segmentation of tree structures were proposed,
only the selection of one point by the user is required. The main contribution
is the use of Harris points to guide the segmentation process. We evaluated
our method on 24 datasets, the results are very satisfying in terms of rapid-
ity of analysis and coherence with the manual segmentation of the microglia
extensions.

In the following we present some extensions and improvements of the pro-
posed method. The microglia is a 3D tree structure and some extensions of
the microglia can appear in different slices as mentioned in the previous sec-
tion. The segmentation of the microglia in 3D will allow to track the microglia
extensions in different slices and therefore allow to extract accurately all the
extensions of the microglia. However, the 3D implementation of the method
should take into account the anisotropy of the data -e.g-high resolution in the
plane of the slice and lower resolution in the perpendicular direction. In this
paper we limit the segmentation to segment only one cell by giving a source
on the body of the cell. The acquisition of the images was performed in such a
way that the image includes only one cell. The biologists we collaborated with
were interested in having to give only one source point for each cell. They thus
suggested us to work on a region that includes only one tree structure. How-
ever, an extension of the proposed method to segment microglia extensions on
images with several microglia cells is desirable. When a direct separation of all
tree structure is not obvious manually, the method may be adapted to segment
images that contain several disconnected trees by using the appropriate source
point for each tree structure present in the image. The user would provide a
source point for each tree structure (cell) present in the image. Then, a set of
Harris points would be affected to the correspondent source point. Each set
of Harris points with the associated source point would allow to segment one
cell. The association between a set of Harris points and a source point could
be done by using a geodesic distance as criterion to make this partition. The
last improvement would be to introduce temporal constraints in the tracking
of the microglia extensions over time. The tracking process presented in this
paper is realized by successive segmentations at each time point: there are no
temporal constraints between the localization of the microglia extensions at
different acquisition time points. Temporal constraints taking into account the
localization of the microglia extensions at previous time may help to constraint
the segmentation of the microglia extensions in the following images. For ex-
ample we can correlate the Harris points detected at different time points by
using a Kalman filter [26]. This will allow a global consistency between the
extracted extensions of the microglia and therefore decrease the number of
false detections and undetected extensions.
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