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ABSTRACT lar tree into three kind of approaches according to the ntetho

This paper presents a geodesic voting method to segment tresed tq extract the tubular aspect of the tree: surface @pdel
structures, such as cardiac or cerebral blood vessels. Maf§nterline based models; and 4D curve models. The first cat-
authors have used minimal cost paths, or similarly geodesi€90ry extracts directly the surface of the vessel, see [di. F
relative to a weight potential P, to find a vessel between twd€ second approach, centerlines based models, censerline
end points. Our goal focuses on the use of a set of such® extracted first and a second process is required to seg-
geodesic paths for finding a tubular tree structure, usin€nt the vessel surface, see [2]. The last approach, 4D curve
minimal interaction. This work adapts the geodesic voting"del, consists in segmenting the vessel centerlines and su
method that we have introduced for the segmentation of thif?ceS Simultaneously as a path in a (3D+radius) space (3, 4].
tree structures to the segmentation of centerlines and tubffOr & review of vessel segmentation methods, see [5, 6].

lar trees. The original approach of geodesic voting cossist ~ Minimal paths techniques were extensively used for ex-
in computing geodesics from a set of end points scatteredaction of tubular tree structures. These approaches are
in the image to a given source point. The target structur&ore robust than the region growing methods, particularly
corresponds to image points with a high geodesic densityn the presence of local perturbations due to the presence of
Since the potential takes low values on the tree structurgtenosed branches of the tree or imaging artefacts where the
geodesics will locate preferably on this structure and thes  image information might be insufficient to guide the growing
geodesic density should be high. Geodesic voting methoRrocess. Several minimal path techniques have been prbpose
gives a good approximation of the localization of the treet0 deal with this problem [7, 8]. These techniques consist in
branches, but it does not allow to extract the tubular aspeétesigning a metric from the image in such a way that the
of the tree. Furthermore, geodesic voting does not guazantéubular structures correspond to geodesic paths accotaing
that the extracted tree corresponds to the centerline of tHBis metric. Solving the problem from the practical point
tree. Here, we introduce an explicit constraint that moties t Of view consists of a front propagation from a source point
high geodesic density to the centerline of the tree and S|muW|th|n a vessel which is faster on the branches of the vascula
taneously approximates the localization of the boundary offee. These methods required the definition by the user of a
the tubular structure. We show results of the segmentatioffarting point (propagation source) and end points. Eadh en
with this approach on 2D angiogram images. This approacROint allows to extract a branch of the tree as a minimal path

can be extended to 3D images in a straight forward manner.from this point to the source point, the points located on the
minimal path are very likely located on the vessel of interes

Index Terms— Geodesic voting, Fast Marching, minimal o, \yorks have been devoted to reduce the interaction of the
paths, tree structure segmentation, vessels segmentation user in the segmentation of tree structure to the initidbza
of the propagation from a single point. Authors of [9] defined
1. INTRODUCTION a stopping criteria from a medialness measure, the propa-
gation is stopped when the medialness drops below a given
In this paper we present novel methods for the segmentatiqfreshold. This method might suffer from the same prob-
of tree structures. These methods are based on minimal patfagsn as the region growing, the medialness might drop below
with a metric designed from the images and can be applied tg,e given threshold in the presence of pathology or imaging
the segmentation of numerous structures, such as: miaroglirtefacts. Wink et al. [10] proposed to stop the propagation
extensions; neurovascular structures; blood vesselspaiRd \yhen the geodesic distance reaches a certain value. However
monary tree. The vascular tree is modelled as a tubular-strughis method is limited to the segmentation of a single vessel
ture. We can classify the methods used to segment the vascghd the definition of the threshold of the geodesic distasice i
*This work was partially supported by ANR grant MESANGE ANR-0  Not straightforward. Cohen and Deschamps [11] defined this
BLAN-0198 threshold from prior information about the total length loét




tree structure to be visited. xo andy(L) = z;. The constantv imposes regularity on

Li et al. [4] proposed a 4D curve model with a key pointthe curve.P > 0 is a potential cost function computed from
searching scheme to extract multi-branch tubular strastur the image, it takes lower values near the edges or the feature
The vascular tree is a set of 4D minimal paths, giving 3D cenkFor instanceP(y(s)) = I(y(s)) leads to darker lines while
terlines and width. While this method has the advantage t&(y(s)) = ¢(||VI||) leads to edges, whetkis the image
segment vessel centerlines and surfaces simultanedusly, i andg is a decreasing positive function.
quires the definition of eight parameters. One point indige t To compute the solution associated to the soutoaf this
tubular structure and the radius are used to initialize #st F problem, [14] proposed a Hamiltonian approach: Find the
marching propagation, three parameters are used to set theodesic weighted distance U that solves the Eikonal equa-
Fast Marching potential and three distance parameters limiion: ||VU(z)|| = w + P(z), Vz € Q. The rayy is subse-
the propagation to the inside of the tubular structure tachvo quently computed by back-propagation from the end point
leakage outside the tree. These last three parameters may bg solving the Ordinary Differential Equation (ODE){(s) =
quire an important intervention of the user since they ae cr —VU(y). To solve the Eikonal equation, we use the Fast
cial to extract the whole structure. If these distance param Marching algorithm introduced in [15]. The idea behind the
ters are not suitable, parts of the tree structure may beeghiss Fast Marching algorithm is to propagate the wave in only one
during the propagation. direction, starting with the smaller values of the actiorprba

In this paper, we present a method to extract tree struand progressing to the larger values using the upwind ptpper
tures without using anwg priori information. Furthermore, of the scheme. Therefore, the Fast Marching method permits
the user has to provide only a single point on the tree strude solve the Eikonal in complexit@(nlog(n)), for details
ture. The method is generic: it can be used to extract angee [14, 15].
type of tree structure in 2D as well as in 3D. It is based on
the geodesic voting method introduced in [12, 13]. It cassis
in computing geodesics from a set of end points scattered

the image to a given source point. The target structure cofpie have introduced in [12, 13] a new concept to segment a
responds to image points with a high geodesic density. Th@ee structure from only one point given by the user in the tre
geodesic density is defined at each pixel of the image as thrycture. This method consists in computing the geodesic
number of geodesics that pass over this pixel. Since the perensity from a set of geodesics extracted from the image.
tential takes low values on the tree structure, geodesits Wi pAgsume you are looking for a tree structure for which
locate preferably on this structure and thus the geodesic de, potential cost function has been defined as above and has

sity should be high on the tree structure. While the origioyer values on this tree structure. First we provide a start
nal voting method allows to extract tree structures it dass n ing pointz, roughly at the root of the tree structure and we

permit to extract_ the yvalls of the vessels. Furthermpre, thﬁropagate a front in the whole image with the Fast Marching
tree extracted with this approach does not necessarilg€orr jathod obtaining the minimal action U.

sponds to centerlines of the tree. Here, we introduce an ex- Then assume you consider an end point anywhere in the

plicit constraint to move the high densities in the geodesi(i:mage_ Backtracking the minimal path from the end point

voting method to the centerlines of the tree and simultaney, | | reach the tree structure somewhere and stay o it til
ously extract the walls of the tree. In Section 2, we prese

. ) . e start point is reached. So a part of the minimal path lies
the tools needed in Section 3 to introduce the new geodesyfy, some branches of the tree structure. The idea of this ap-
voting method. In Sections 4, we applied our approach to th

_ i ) Eroach is to consider a large number of end pofats}_,
segmentation of vessels from 2D angiogram images. on the image domain, and analyze the set of minimal paths

Yy, Obtained. For this we consider a voting scheme along the

i%.z. Geodesic Voting for segmentation of tree structures

2. BACKGROUND centerlines. When backtracking each path, you add 1 to each
pixel you pass over. At the end of this process, pixels on the
2.1. Minimal paths tree structure will have a high vote since many paths have to

In the context of image segmentation Cohen and Kimmel pror—)aSS over it. On the contrary, pixels in the background will
. generally have a low vote since very few paths will pass over
posed, in [14], a deformable model to extract contours be;

fween two points given by the user. The model is form Iate(%hem. The result of this voting scheme is what we can call
Ween Wo points giv y the user. 11 ) ! u he geodesic density. This means at each pixel the density of
as finding a geodesic for a weighted distance:

geodesics that pass over this pixel. The tree structure-corr
L sponds to the points with high geodesic density.
min/ (w+ P(y(s)))ds, 1) The set of end points for which you consider the geodesics
v Jo can be defined through different choices. This could be all
the minimum is considered over all curvgs) traced on the pixels over the image domain, random paints, scatteredgoin
image domain? that link the two end points, that ig(0) =  according to some criterion, or simply the set of points @n th



boundary of the image domain, see [13]. We define the voting 3. GEODESIC VOTING FOR TUBULAR TREE

score or the geodesic density at each pjxef the image by SEGMENTATION
N The geodesic voting method described in the previous sectio
u(p) = Z 5y (yr) (2) gives agood approximation of the localization of each binanc
k=1 of the tree. In this section we introduce a constraint that en

sures that the segmented tree approximates well the center-
where the functior,(y) returns 1 if the pathy crosses the lines of the tree and we adapt the geodesic voting method to
pixel p, else 0. Once the geodesic voting is made, the treeegment the walls of the tubular tree structure. The idea is t
structure is obtained by a simple thresholding of the geiodesperform the geodesic voting with a potential that integs atie
density . As shown in Figure 1, the contrast between theextra-dimension used to measure the distance from the cen-
background and the tree is large and the threshold can be chierline to the walls of the vessels. The potential proposed b
sen easily. We used for all experiments the following value [3] incorporates this measure. More precisely, this pagént
is defined byP : (z,7) € Q x [0, rmaz] — P(x,7). It
max(geodesic densily incorporates the full set of image values within the sphére o
100 (3 centers and radiir and it is designed in such a way that the
whole sphere lies inside the desired object and is as large as
as threshold to extract the tree structure using the votimgen possible so that it is tangential to the boundary of the dbjec
Figure 1 (panel: second row on the right) shows the effect oThe extension of the minimal path extraction model (1) to
the threshold on the overlap ratio that measures the sityilar the case of a potential with an extra-dimension is achieyed b
between the the manually segmented datnd the segmen- minimizing the following energy
tation resultB*. This figure shows that the threshold can be
chosen in a large range that contains the threstaldgiven min/ (w + ﬁ(c(s),r(s)))ds, (5)
by the equation (3). erJo

Th =

The minimization of this energy allows simultaneous approx
imation of the minimal path and the radii of the spheres tan-
gents to the boundary of the tube with centers located along
the minimal path. The computation of the path is achieved
with the framework presented in the Section 2. The radii are
considered as an extra spatial dimension: for a 2D image the
propagation with Fast Marching is done in 3D, for 3D images
the Fast Marching is performed in 4D, see [15].
Using the potentialP and a set of end poinis:;, ) (uni-
form grid) in the domain, we extract a set of geodesjgs
from which we compute the geodesic density,r) —
Threshold values wu(x,r) given by the equation (2). In this case the geodesic

voting map is a function of the spatial dimension and also of

Fig. 1. Geodesic voting. First row: the left panel shows theyne radii of the sphere&, r) —» u(z,r). There are many
synthetic tree, the red cross represents the root of the tre\‘fx'/ays to use this (3D+radius) geodesic density in order to

the center panel shows the farthest points (see [13]); g 1l gyiract the tree structure. Due to the lack of space we focus
panel shows in blue the geodesics extracted from the farthegy, e following spatial densities:

points to the root. Second row: the left panel shows the
geodesic density; the center panel shows the geodesic den- _ Tmaw

Overlap ratio
[ EEREEE

sity after thresholding; the right panel plots the effectiod fim () = Z ), fis(z) = re[g,l%,),fw] pr) ()
variation of the threshold on the overlap ratio, the red sgua r=0
represents the valugh (given by the equation (3)). The thresholded density;,,, or u,, approximates the cen-

terlines of the tree. To get the distance from the center-
lines to the walls vessels, we compute the radii, for each

1The overlap ratio is defined by the relation: point z with fi,(z) > threshold, by evaluating(z) =
arg max fi(x,r). The map{in,, 7} or {fis, 7} allows to
2|AN B r€l0, Pmas _ .
OB = B 4 extract vessels walls and the centerlines. Figure 2 corspare

. . the original geodesic voting [12, 13], described in Section
where|A| and|B| are respectively the number of the foreground voxels in . .
the imageA and B. |A N B| is the number of voxels in the shared regions 2-2, and the results obtained with our approach. The new

(intersection of the foreground of the two images). geodesic voting method with an extra dimension (2D+radius)



gives the best results in terms of the overlap ratio O giver{ Ja(amy (L(s) = m(s,r))st)/(fB(x - ds), mo anda3 rep-
by Equation (4). The potential used in this experiment igesent the mean and the variance of the starting pgiis;a
described in the next section and given by the equation (7). real positive constant. This potential was studied in [3] fo

B = 2. However, optimal results can be obtained with: 2.
This potential satisfies the conditions described in theipre
ous section.Other choices for the potential are presemed a
discussed in [3].

In Figures 3 and 2, we show experiments on 2D An-
giogram retinal images. After performing the geodesicngti
with the potentialP,. given by the equation (7) we compute
the map{jn,7}. The starting point was chosen as the root
of the treeymax = 4, \1 = Ao = 10, w = 0.01 andj = 2.

As the end points were chosen as a uniform grid, the spatial
starting point can be chosen anywhere within the tree. How-
ever, the starting radii should be chosen carefully to get an
optimal segmentation. In our experiments we obtained good
estimation of these parameters by testing different viies
lowing the study presented in [3]. These parameters can be
optimized and automatized for a given class of images.

5. CONCLUSION AND FUTURE WORK

In this paper we have presented a new method for the segmen-
tation of tree structures, these methods are adapted teesggm
automatically the centerline and the walls of a tree fronma si

gle point given by the user, no a priori information about the
tree is required. In contrast, the methods present in the it
erature for the segmentation of tree structures are nat full
automatic and require prior information of the tree to be seg
mented. We have applied our approach to segment tubular
tree structures from 3 images from the DRIVE data. The re-

Fig. 2. Comparison of the original voting method and our ap-sults are satisfying in terms of the overlap ratio OX@.75).
proach. First row: the left panel shows in blue the manual sedrhe next step is to extend our approach to 3D and to validate
mentation of the centerlines of the tree; the right panelsho it on a large data set.

the results obtained by the original voting method (oversp

tio O = 0.41); Second row: the left panel shows the geodesic

density/i,, obtained by our approach; the right panel shows

the densityii,,, after thresholding (overlap ratio © 0.75).

4. EXPERIMENTS ON 2D DATA

In this section, we applied the geodesic voting method pre- 2]
sented in the previous section to segment vessels from 2[;
retinal images provided by DRIVE (Digital Retinal Images

for Vessel Extraction) [16]. The following potential waseals

Plasr) =t 25 ()10 + 2 () -a8)° 1)
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