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ABSTRACT

This paper presents a geodesic voting method to segment tree
structures, such as cardiac or cerebral blood vessels. Many
authors have used minimal cost paths, or similarly geodesics
relative to a weight potential P, to find a vessel between two
end points. Our goal focuses on the use of a set of such
geodesic paths for finding a tubular tree structure, using
minimal interaction. This work adapts the geodesic voting
method that we have introduced for the segmentation of thin
tree structures to the segmentation of centerlines and tubu-
lar trees. The original approach of geodesic voting consists
in computing geodesics from a set of end points scattered
in the image to a given source point. The target structure
corresponds to image points with a high geodesic density.
Since the potential takes low values on the tree structure,
geodesics will locate preferably on this structure and thusthe
geodesic density should be high. Geodesic voting method
gives a good approximation of the localization of the tree
branches, but it does not allow to extract the tubular aspect
of the tree. Furthermore, geodesic voting does not guarantee
that the extracted tree corresponds to the centerline of the
tree. Here, we introduce an explicit constraint that moves the
high geodesic density to the centerline of the tree and simul-
taneously approximates the localization of the boundary of
the tubular structure. We show results of the segmentation
with this approach on 2D angiogram images. This approach
can be extended to 3D images in a straight forward manner.

Index Terms— Geodesic voting, Fast Marching, minimal
paths, tree structure segmentation, vessels segmentation.

1. INTRODUCTION

In this paper we present novel methods for the segmentation
of tree structures. These methods are based on minimal paths
with a metric designed from the images and can be applied to
the segmentation of numerous structures, such as: microglia
extensions; neurovascular structures; blood vessels; andpul-
monary tree. The vascular tree is modelled as a tubular struc-
ture. We can classify the methods used to segment the vascu-
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lar tree into three kind of approaches according to the method
used to extract the tubular aspect of the tree: surface models;
centerline based models; and 4D curve models. The first cat-
egory extracts directly the surface of the vessel, see [1]. For
the second approach, centerlines based models, centerlines
are extracted first and a second process is required to seg-
ment the vessel surface, see [2]. The last approach, 4D curve
model, consists in segmenting the vessel centerlines and sur-
faces simultaneously as a path in a (3D+radius) space [3, 4].
For a review of vessel segmentation methods, see [5, 6].

Minimal paths techniques were extensively used for ex-
traction of tubular tree structures. These approaches are
more robust than the region growing methods, particularly
in the presence of local perturbations due to the presence of
stenosed branches of the tree or imaging artefacts where the
image information might be insufficient to guide the growing
process. Several minimal path techniques have been proposed
to deal with this problem [7, 8]. These techniques consist in
designing a metric from the image in such a way that the
tubular structures correspond to geodesic paths accordingto
this metric. Solving the problem from the practical point
of view consists of a front propagation from a source point
within a vessel which is faster on the branches of the vascular
tree. These methods required the definition by the user of a
starting point (propagation source) and end points. Each end
point allows to extract a branch of the tree as a minimal path
from this point to the source point, the points located on the
minimal path are very likely located on the vessel of interest.
Few works have been devoted to reduce the interaction of the
user in the segmentation of tree structure to the initialization
of the propagation from a single point. Authors of [9] defined
a stopping criteria from a medialness measure, the propa-
gation is stopped when the medialness drops below a given
threshold. This method might suffer from the same prob-
lem as the region growing, the medialness might drop below
the given threshold in the presence of pathology or imaging
artefacts. Wink et al. [10] proposed to stop the propagation
when the geodesic distance reaches a certain value. However,
this method is limited to the segmentation of a single vessel
and the definition of the threshold of the geodesic distance is
not straightforward. Cohen and Deschamps [11] defined this
threshold from prior information about the total length of the



tree structure to be visited.
Li et al. [4] proposed a 4D curve model with a key point

searching scheme to extract multi-branch tubular structures.
The vascular tree is a set of 4D minimal paths, giving 3D cen-
terlines and width. While this method has the advantage to
segment vessel centerlines and surfaces simultaneously, it re-
quires the definition of eight parameters. One point inside the
tubular structure and the radius are used to initialize the Fast
marching propagation, three parameters are used to set the
Fast Marching potential and three distance parameters limit
the propagation to the inside of the tubular structure to avoid
leakage outside the tree. These last three parameters may re-
quire an important intervention of the user since they are cru-
cial to extract the whole structure. If these distance parame-
ters are not suitable, parts of the tree structure may be missed
during the propagation.

In this paper, we present a method to extract tree struc-
tures without using anya priori information. Furthermore,
the user has to provide only a single point on the tree struc-
ture. The method is generic: it can be used to extract any
type of tree structure in 2D as well as in 3D. It is based on
the geodesic voting method introduced in [12, 13]. It consists
in computing geodesics from a set of end points scattered in
the image to a given source point. The target structure cor-
responds to image points with a high geodesic density. The
geodesic density is defined at each pixel of the image as the
number of geodesics that pass over this pixel. Since the po-
tential takes low values on the tree structure, geodesics will
locate preferably on this structure and thus the geodesic den-
sity should be high on the tree structure. While the origi-
nal voting method allows to extract tree structures it does not
permit to extract the walls of the vessels. Furthermore, the
tree extracted with this approach does not necessarily corre-
sponds to centerlines of the tree. Here, we introduce an ex-
plicit constraint to move the high densities in the geodesic
voting method to the centerlines of the tree and simultane-
ously extract the walls of the tree. In Section 2, we present
the tools needed in Section 3 to introduce the new geodesic
voting method. In Sections 4, we applied our approach to the
segmentation of vessels from 2D angiogram images.

2. BACKGROUND

2.1. Minimal paths

In the context of image segmentation Cohen and Kimmel pro-
posed, in [14], a deformable model to extract contours be-
tween two points given by the user. The model is formulated
as finding a geodesic for a weighted distance:

min
y

∫ L

0

(

w + P (y(s))
)

ds, (1)

the minimum is considered over all curvesy(s) traced on the
image domainΩ that link the two end points, that is,y(0) =

x0 andy(L) = x1. The constantw imposes regularity on
the curve.P > 0 is a potential cost function computed from
the image, it takes lower values near the edges or the features.
For instanceP (y(s)) = I(y(s)) leads to darker lines while
P (y(s)) = g(||∇I||) leads to edges, whereI is the image
andg is a decreasing positive function.

To compute the solution associated to the sourcex0 of this
problem, [14] proposed a Hamiltonian approach: Find the
geodesic weighted distance U that solves the Eikonal equa-
tion: ||∇U(x)|| = w + P (x), ∀x ∈ Ω. The rayy is subse-
quently computed by back-propagation from the end pointx1

by solving the Ordinary Differential Equation (ODE):y′(s) =
−∇U(y). To solve the Eikonal equation, we use the Fast
Marching algorithm introduced in [15]. The idea behind the
Fast Marching algorithm is to propagate the wave in only one
direction, starting with the smaller values of the action map U
and progressing to the larger values using the upwind property
of the scheme. Therefore, the Fast Marching method permits
to solve the Eikonal in complexityO

(

n log(n)
)

, for details
see [14, 15].

2.2. Geodesic Voting for segmentation of tree structures

We have introduced in [12, 13] a new concept to segment a
tree structure from only one point given by the user in the tree
structure. This method consists in computing the geodesic
density from a set of geodesics extracted from the image.

Assume you are looking for a tree structure for which
a potential cost function has been defined as above and has
lower values on this tree structure. First we provide a start-
ing pointx0 roughly at the root of the tree structure and we
propagate a front in the whole image with the Fast Marching
method, obtaining the minimal action U.

Then assume you consider an end point anywhere in the
image. Backtracking the minimal path from the end point
you will reach the tree structure somewhere and stay on it till
the start point is reached. So a part of the minimal path lies
on some branches of the tree structure. The idea of this ap-
proach is to consider a large number of end points{xk}

N
k=1

on the image domain, and analyze the set of minimal paths
yk obtained. For this we consider a voting scheme along the
centerlines. When backtracking each path, you add 1 to each
pixel you pass over. At the end of this process, pixels on the
tree structure will have a high vote since many paths have to
pass over it. On the contrary, pixels in the background will
generally have a low vote since very few paths will pass over
them. The result of this voting scheme is what we can call
the geodesic density. This means at each pixel the density of
geodesics that pass over this pixel. The tree structure corre-
sponds to the points with high geodesic density.

The set of end points for which you consider the geodesics
can be defined through different choices. This could be all
pixels over the image domain, random points, scattered points
according to some criterion, or simply the set of points on the



boundary of the image domain, see [13]. We define the voting
score or the geodesic density at each pixelp of the image by

µ(p) =

N
∑

k=1

δp(yk) (2)

where the functionδp(y) returns 1 if the pathy crosses the
pixel p, else 0. Once the geodesic voting is made, the tree
structure is obtained by a simple thresholding of the geodesic
densityµ. As shown in Figure 1, the contrast between the
background and the tree is large and the threshold can be cho-
sen easily. We used for all experiments the following value

Th =
max(geodesic density)

100
(3)

as threshold to extract the tree structure using the voting maps.
Figure 1 (panel: second row on the right) shows the effect of
the threshold on the overlap ratio that measures the similarity
between the the manually segmented dataA and the segmen-
tation resultB1. This figure shows that the threshold can be
chosen in a large range that contains the thresholdTh, given
by the equation (3).

Fig. 1. Geodesic voting. First row: the left panel shows the
synthetic tree, the red cross represents the root of the tree;
the center panel shows the farthest points (see [13]); the right
panel shows in blue the geodesics extracted from the farthest
points to the root. Second row: the left panel shows the
geodesic density; the center panel shows the geodesic den-
sity after thresholding; the right panel plots the effect ofthe
variation of the threshold on the overlap ratio, the red square
represents the valueTh (given by the equation (3)).

1The overlap ratio is defined by the relation:

O(A,B) =
2 |A ∩ B|

|A|+ |B|
, (4)

where|A| and |B| are respectively the number of the foreground voxels in
the imageA andB. |A ∩ B| is the number of voxels in the shared regions
(intersection of the foreground of the two images).

3. GEODESIC VOTING FOR TUBULAR TREE
SEGMENTATION

The geodesic voting method described in the previous section
gives a good approximation of the localization of each branch
of the tree. In this section we introduce a constraint that en-
sures that the segmented tree approximates well the center-
lines of the tree and we adapt the geodesic voting method to
segment the walls of the tubular tree structure. The idea is to
perform the geodesic voting with a potential that integrates an
extra-dimension used to measure the distance from the cen-
terline to the walls of the vessels. The potential proposed by
[3] incorporates this measure. More precisely, this potential
is defined byP̃ : (x, r) ∈ Ω × [0, rmax] −→ P̃ (x, r). It
incorporates the full set of image values within the sphere of
centerx and radiir and it is designed in such a way that the
whole sphere lies inside the desired object and is as large as
possible so that it is tangential to the boundary of the object.
The extension of the minimal path extraction model (1) to
the case of a potential with an extra-dimension is achieved by
minimizing the following energy

min
c,r

∫

Ω

(

ω + P̃ (c(s), r(s))
)

ds. (5)

The minimization of this energy allows simultaneous approx-
imation of the minimal path and the radii of the spheres tan-
gents to the boundary of the tube with centers located along
the minimal path. The computation of the path is achieved
with the framework presented in the Section 2. The radii are
considered as an extra spatial dimension: for a 2D image the
propagation with Fast Marching is done in 3D, for 3D images
the Fast Marching is performed in 4D, see [15].
Using the potential̃P and a set of end points(xk, rk) (uni-
form grid) in the domain, we extract a set of geodesicsyk
from which we compute the geodesic density(x, r) −→
µ(x, r) given by the equation (2). In this case the geodesic
voting map is a function of the spatial dimension and also of
the radii of the spheres(x, r) −→ µ(x, r). There are many
ways to use this (3D+radius) geodesic density in order to
extract the tree structure. Due to the lack of space we focus
on the following spatial densities:

µ̃m(x) =

rmax
∑

r=0

µ(x, r), µ̃s(x) = max
r∈[0, rmax]

µ(x, r) (6)

The thresholded density,µm or µs, approximates the cen-
terlines of the tree. To get the distance from the center-
lines to the walls vessels, we compute the radii, for each
point x with µ̃m(x) > threshold, by evaluating̃r(x) =
arg max

r∈[0, rmax]
µ̃(x, r). The map{µ̃m, r̃} or {µ̃s, r̃} allows to

extract vessels walls and the centerlines. Figure 2 compares
the original geodesic voting [12, 13], described in Section
2.2, and the results obtained with our approach. The new
geodesic voting method with an extra dimension (2D+radius)



gives the best results in terms of the overlap ratio O given
by Equation (4). The potential used in this experiment is
described in the next section and given by the equation (7).

Fig. 2. Comparison of the original voting method and our ap-
proach. First row: the left panel shows in blue the manual seg-
mentation of the centerlines of the tree; the right panel shows
the results obtained by the original voting method (overlapra-
tio O = 0.41); Second row: the left panel shows the geodesic
densityµ̃m obtained by our approach; the right panel shows
the densitỹµm after thresholding (overlap ratio O= 0.75).

4. EXPERIMENTS ON 2D DATA

In this section, we applied the geodesic voting method pre-
sented in the previous section to segment vessels from 2D
retinal images provided by DRIVE (Digital Retinal Images
for Vessel Extraction) [16]. The following potential was used:

P̃ (x, r) = ω+
λ1

rβ
(

m(x, r)−m0

)2
+
λ2

rβ
(

σ2(x, r)−σ2
0

)2
(7)

wherem andσ2 are the mean and the variance respectively
of the sphere and are defined by:
m(x, r) =

( ∫

B(x,r) I(s)ds
)

/
( ∫

B(x,r) ds
)

and σ2(x, r) =

( ∫

B(x,r)
(I(s) − m(s, r))2ds

)

/
( ∫

B(x,r)
ds
)

, m0 andσ2
0 rep-

resent the mean and the variance of the starting point;β is a
real positive constant. This potential was studied in [3] for
β = 2. However, optimal results can be obtained withβ < 2.
This potential satisfies the conditions described in the previ-
ous section.Other choices for the potential are presented and
discussed in [3].

In Figures 3 and 2, we show experiments on 2D An-
giogram retinal images. After performing the geodesic voting
with the potentialPr given by the equation (7) we compute
the map{µ̃m, r̃}. The starting point was chosen as the root
of the tree,rmax = 4, λ1 = λ2 = 10, w = 0.01 andβ = 2.
As the end points were chosen as a uniform grid, the spatial
starting point can be chosen anywhere within the tree. How-
ever, the starting radii should be chosen carefully to get an
optimal segmentation. In our experiments we obtained good
estimation of these parameters by testing different valuesfol-
lowing the study presented in [3]. These parameters can be
optimized and automatized for a given class of images.

5. CONCLUSION AND FUTURE WORK

In this paper we have presented a new method for the segmen-
tation of tree structures, these methods are adapted to segment
automatically the centerline and the walls of a tree from a sin-
gle point given by the user, no a priori information about the
tree is required. In contrast, the methods present in the lit-
erature for the segmentation of tree structures are not fully
automatic and require prior information of the tree to be seg-
mented. We have applied our approach to segment tubular
tree structures from 3 images from the DRIVE data. The re-
sults are satisfying in terms of the overlap ratio O (O> 0.75).
The next step is to extend our approach to 3D and to validate
it on a large data set.
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