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Abstract

This paper presents a geodesic voting method to segment tree struc-

tures, such as retinal or cardiac blood vessels. Many authors have used

minimal cost paths, or similarly geodesics relative to a weight potential

P, to find a vessel between two end points. Our goal focuses on the use

of a set of such geodesic paths for finding a tubular tree structures, using

minimal interaction. This work adapts the geodesic voting method that

we have introduced for the segmentation of thin tree structures to the

segmentation of tubular trees. The original approach of geodesic voting

consists in computing geodesics from a set of end points scattered in the

image to a given source point. The target structure corresponds to image

points with a high geodesic density. Since the potential takes low values

on the tree structure, geodesics will locate preferably on this structure

and thus the geodesic density should be high. Geodesic voting method

gives a good approximation of the localization of the tree branches, but

it does not allow to extract the tubular aspect of the tree. Here, we use

the geodesic voting method to build a shape prior to constrain the level

set evolution in order to segment the boundary of the tubular structure.

We show results of the segmentation with this approach on 2D angiogram

images and 3D simulated data.

1 Introduction

In this paper we present a novel method for the segmentation of tree structures.
These methods are based on minimal paths with a metric designed from the
images and can be applied to the segmentation of numerous structures, such as:
microglia extensions; neurovascular structures; blood vessel; pulmonary tree.
The vascular tree is modeled as a tubular structure. We consider among the
methods used to segment the vascular tree three classes of approaches according
to the method used to extract the tubular aspect of the tree: surface models;
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centerline based models; and 4D curve models. The first category extracts
directly the surface of the vessel, see [1]. For the second approach, centerlines
based models, centerlines are extracted first and a second process is required to
segment the vessel surface, see [2]. The last approach, 4D curve model, consists
in segmenting the vessel centerlines and surfaces simultaneously as a path in a
(3D+radius) space [3, 4]. For a review of these methods, see [5, 6].

Minimal paths techniques were extensively used for extraction of tubular tree
structures. These approaches are more robust than the region growing methods,
particularly in the presence of local perturbations due to the presence of stenosed
branches of the tree or imaging artefacts where the image information might be
insufficient to guide the growing process. Several minimal path techniques have
been proposed to deal with this problem [7, 8, 9]. These techniques consist in
designing a metric from the image in such a way that the tubular structures
correspond to geodesic paths according to this metric. Solving the problem
from the practical point of view consists of a front propagation from a source
point within a vessel which is faster on the branches of the vascular tree. These
methods required the definition by the user of a starting point (propagation
source) and end points. Each end point allows to extract a branch of the tree
as a minimal path from this point to the source point, the points located on the
minimal path are very likely located on the vessel of interest. Few works have
been devoted to reduce the interaction of the user in the segmentation of tree
structure to the initialization of the propagation from a single point. Authors
of [10] defined a stopping criteria from a medialness measure, the propagation is
stopped when the medialness drops below a given threshold. This method might
suffer from the same problem as the region growing, the medialness might drop
below the given threshold in the presence of pathology or imaging artefacts.
Wink et al. [11] proposed to stop the propagation when the geodesic distance
reaches a certain value. However, this method is limited to the segmentation of
a single vessel and the definition of the threshold of the geodesic distance is not
straightforward. Cohen and Deschamps [12] proposed to stop the propagation
following a criterion based on some geometric properties of the region covered
by the front. In [9], assuming the the total length of the tree structure to be
visited is given, the stopping criteriuon is based on the Euclidean length of the
minimal path.

Li et al. [4] proposed a 4D curve model with a key point searching scheme
to extract multi-branch tubular structures. The vascular tree is a set of 4D
minimal paths, giving 3D centerlines and width. While this method has the
advantage to segment vessel centerlines and surfaces simultaneously, it requires
the definition of eight parameters. One point inside the tubular structure and
the radius are used to initialize the Fast marching propagation, three parameters
are used to set the Fast Marching potential and three distance parameters limit
the propagation to the inside of the tubular structure to avoid leakage outside
the tree. These last three parameters may require an important intervention of
the user since they are crucial to extract the whole structure. If these distance
parameters are not suitable, parts of the tree structure may be missed during
the propagation.
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In this paper, we present a method to extract tree structures without using
any a priori information. Furthermore, the user has to provide only a single
point on the tree structure. The method is generic: it can be used to extract any
type of tree structure in 2D as well as in 3D. It is based on the geodesic voting
method introduced in [13, 14]. It consists in computing geodesics from a given
source point to a set of end points scattered in the image. The target structure
corresponds to image points with a high geodesic density. The geodesic density
is defined at each pixel of the image as the number of geodesics that pass over
this pixel. Since the potential takes low values on the tree structure, geodesics
will locate preferably on this structure and thus the geodesic density should be
high on the tree structure. While the original voting method allows to extract
tree structures it does not permit to extract the walls of the vessels. Here, we
introduce a shape prior constraint constructed from the geodesic voting method
to constrain the evolution of a level set active contour in order to extract the
walls of the tree. We use a Bayesian approach to introduce this prior into the
level set formulation. We end up with a minimization problem of a global energy
composed of two terms. The first term corresponds to a deformation energy for
a standard region based level set method and the second term introduces the
shape prior constraint. In Section 2, we present the tools needed in Section
3 to introduce the new geodesic voting method. In Section 4, we applied our
approach to the segmentation of vessels from 2D angiogram images and 3D
simulated data.

2 Background

2.1 Minimal paths

In the context of image segmentation Cohen and Kimmel proposed, in [15], a
deformable model to extract contours between two points given by the user.
The model is formulated as finding a geodesic for a weighted distance:

min
y

∫ L

0

(

w + P (y(s))
)

ds, (1)

where s is the arclength, L is the length of the curve and the minimum is
considered over all curves y(s) traced on the image domain Ω that link the two
end points, that is, y(0) = x0 and y(L) = x1. The constant w imposes regularity
on the curve. P > 0 is a potential cost function computed from the image, it
takes lower values near the edges or the features. For instance P (y(s)) = I(y(s))
leads to darker lines while P (y(s)) = g(||∇I||) leads to edges, where I is the
image and g is a decreasing positive function.

To compute the solution associated to the source x0 of this problem, [15]
proposed a Hamiltonian approach: Find the geodesic weighted distance U that
solves the eikonal equation :

||∇U(x)|| = w + P (x) ∀x ∈ Ω (2)
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The ray y is subsequently computed by back-propagation from the end point
x1 by solving the Ordinary Differential Equation (ODE): y′(s) = −∇U(y). To
solve the eikonal equation (2), we use the Fast Marching algorithm introduced
in [16]. The idea behind the Fast Marching algorithm is to propagate the wave
in only one direction, starting with the smaller values of the action map U and
progressing to the larger values using the upwind property of the scheme. There-
fore, the Fast Marching method permits to solve the equation (2) in complexity
O
(

n log(n)
)

, where n is the number of grid points, for details see [16, 15].

2.2 Geodesic Voting for segmentation of tree structures

We have introduced in [13, 14] a new concept to segment a tree structure from
only one point given by the user in the tree structure. This method consists in
computing the geodesic density from a set of geodesics extracted from the image.
Assume you are looking for a tree structure for which a potential cost function
has been defined as above and has lower values on this tree structure. First
we provide a starting point x0 roughly at the root of the tree structure and we
propagate a front in the whole image with the Fast Marching method, obtaining
the minimal action U. Then assume you consider an end point anywhere in the
image. Backtracking the minimal path from the end point you will reach the
tree structure somewhere and stay on it till the start point is reached. So a part
of the minimal path lies on some branches of the tree structure. The idea of
this approach is to consider a large number of end points {xk}

N
k=1 on the image

domain, and analyze the set of minimal paths yk obtained. For this we consider
a voting scheme along the minimal paths. When backtracking each path, you
add 1 to each pixel you pass over. At the end of this process, pixels on the
tree structure will have a high vote since many paths have to pass over it. On
the contrary, pixels in the background will generally have a low vote since very
few paths will pass over them. The result of this voting scheme is what we can
call the geodesic density. This means at each pixel the density of geodesics that
pass over this pixel. The tree structure corresponds to the points with high
geodesic density. The set of end points for which you consider the geodesics can
be defined through different choices. This could be all pixels over the image
domain, random points, scattered points according to some criterion, or simply
the set of points on the boundary of the image domain, see [14]. We define the
voting score or the geodesic density at each pixel p of the image by

µ(p) =
N
∑

k=1

δp(yk) (3)

where the function δp(y) returns 1 if the path y crosses the pixel p, else 0.
Once the geodesic voting is made, the tree structure is obtained by a simple
thresholding of the geodesic density µ. As shown in Figure 1, the contrast
between the background and the tree is large and the threshold can be chosen
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easily. We used for all experiments the following value

Th =
max(geodesic density)

100
(4)

as threshold to extract the tree structure using the voting maps. Figure 1 (panel:
second row on the right) shows the effect of the threshold on the overlap ratio 1

that measures the similarity between the the manually segmented data A and
the segmentation result B. This figure shows that the threshold can be chosen
in a large range that contains the threshold Th, given by the equation (4).

Figure 1: Geodesic voting. First row: the left panel shows the synthetic tree,
the red cross represents the root of the tree; the center panel shows the set of end
points (here farthest points, see [14]); the right panel shows in blue the geodesics
extracted from the set farthest points to the root. Second row: the left panel
shows the geodesic density; the center panel shows the geodesic density after
thresholding; the right panel plots the effect of the variation of the threshold on
the overlap ratio, the red cross represents the value Th (given by the equation
(4)).

2.3 Active contours without edges

In this section we describe the level set method that we will use in the next
section to introduce our active contour model. The active contour models con-
sist in evolving a curve (2D case) or surface (3D) constrained by image-based
energy toward the target structure. Chan and Vese [17] proposed a region based
model adapted to segment an image with poor boundaries (edge information).

1The overlap ratio is defined by the relation: O(A,B) =
2 |A∩B|
|A|+|B|

, where |A| and |B| are

respectively the number of the foreground voxels in the image A and B. |A∩B| is the number
of voxels in the shared regions (intersection of the foreground of the two images)
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This model is a piece-wise constant approximation of the Mumford and Shah
functional [18]:

V(φ, c1, c2) =
∫

Ω

(

λ1

(

u0 − c1
)2
Hǫ(φ) + λ2(u0 − c2)

2(1−Hǫ(φ))+

µδǫ(φ)|∇φ| + νHǫ(φ)
)

dx,
(5)

where φ defines the boundary as its zero level set; Ω is the image domain; u0

is a given image function; λ1, λ2, ν, and µ are positive parameters; c1 and c2
are two scalar constants used to separate the image into two regions of constant
image intensities. The two last terms in the equation introduce regularization
constraints, where Hǫ and δǫ are respectively the regularized Heaviside and
Dirac functions, in this work they are approximated by:

Hǫ(τ) =
1

2

(

1 +
2

π
artang

(τ

ǫ

)

)

; δǫ(τ) =
1

π

ǫ

ǫ2 + τ2
. (6)

3 From the voting tree to the tubular tree

While the Chan and Vese energy constraint introduces regularization to smooth
the level set funcion φ and to deal with noise, it does not introduce a bias to-
wards the target structure. Bayesian models were proposed in the literature
to incorporate prior knowledge about the target structure to constrain the evo-
lution of the level set [19]. The first level set method with prior knowledge
about shape was introduced by Leventon et al. [19]. Recent improvements of
this approach were proposed for example in [20]. The geodesic voting method
described in Section 2.2 gives a good approximation of the localization of each
branch of the tree.

In this section we introduce a shape prior constraint using a Bayesian frame-
work to segment the walls of the tree structure. The idea is to use the geodesic
voting method to construct the shape prior that constrains the evolution of the
level set propagation. After thresholding the geodesic density µ defined by the
equation (3) we get an approximation of the target tree structure as explained
in Section 2.2. However this geodesic density does not allow to extract the
tubular aspect of the tree. Indeed the thresholded geodesic density gives only
an approximation of the centerlines of the tree structure. Our aim here is to use
this rough tree skeleton to build a prior that constrains the evolution of level
set active contour in order to extract the boundary of the tree.

From now on we call the voting tree the tree structure obtained after thresh-
olding the geodesic density. To construct the shape prior from the voting tree
we use the largest radius of the tubular structure. The largest radius is obtained
from the target image. It does not have to be precise: it is sufficient to inspect
the target tree visually and to give an approximate value. A uniformly tubular
tree containing the target tree structure is obtained by morphological dilation
of the voting tree with a radius that corresponds to the largest radius of the
tubular tree. The prior that we will use to constrain the level set method corre-
sponds to the signed distance from the boundary S of the tubular tree obtained
after dilatation, which we denote φ̃. The signed distance φ̃ is defined by:
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φ̃(x) =

{

D(x), if x is inside S,
−D(x), otherwise,

where D is a distance from S: D(x) = inf
y∈S

d(x,S) with d a given metric, we use

in this work the Euclidean metric. The distance φ̃ is then used to constrain the
level set evolution in the target image. Let P(φ|φ̃, u) be the posterior probability
of the level set φ given the image function u and the level set shape prior. The
Bayesian formulation of this probability is given by Bayes’ theorem:

P(φ|φ̃, u) =
P(φ̃, u|φ)P(φ)

P(φ̃, u)
∝ P(φ̃|φ)P(u|φ)P(φ) (7)

where P(φ̃|φ) is the shape prior term, we suppose that this probability follows a
Gaussian distribution and that P(u|φ)P(φ) is derived from the Chan and Vese
model, see equation (5). Therefore, the maximum of the posterior probability
(7) is equivalent to the lowest energy of the (− log) functional, and after inte-
gration over the image domain we end up with the following Bayesian model:

Eb(φ, c1, c2) = V(φ, c1, c2) + γ

∫

Ω

(φ− φ̃)2

2σ2
δǫ(φ)dx, (8)

the factor term δǫ allows us to restrict the shape prior within the region of
interest. For a fixed φ, we deduce the values of c1 and c2:

c1(φ) =

∫

Ω

u0 Hǫ(φ)dx
∫

Ω

Hǫ(φ)dx
, c2(φ) =

∫

Ω

u0

(

1−Hǫ(φ)
)

dx
∫

Ω

(

1−Hǫ(φ)
)

dx
(9)

As usual, we use an artificial parameter t in the Euler-Lagrange formulation
associated to Equation (8) :

∂φ

∂t
=

(

µdiv
( ∇φ

|∇φ|

)

− ν − λ1(u0 − c1)
2 + λ2(u0 − c2)

2
)

δǫ(φ)+

γ

2σ2

(

2
(

φ− φ̃
)

δǫ(φ) +
(

φ− φ̃
)2 ∂δǫ

∂φ
(φ)

)

= 0

in Ω× R
+; φ(x, 0) = φ0(x) in Ω;

δǫ(φ)

|∇φ|

∂φ

∂n
= 0 on ∂Ω

(10)

The estimation of the solution of the model (8) can be summarized in the
following steps:

• initialize φ0 = φ̃, n = 0;

• compute c1(φn) and c2(φn) by the relations (9);

• compute φn+1 by solving the PDE (10) with respect to φ;
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• update periodically the level set φn by a signed distance;

• repeat these three steps until convergence (φn is stationary).

Figure 2 illustrates the segmentation with our approach and shows a comparison
with a classical level set method, we will give more detains in the next section.

Figure 2: Segmentation of vessels from a 2D angiogram image. First row: the
left panel shows a 2D angiogram image;the center panel shows in red the voting
tree; the right panel shows in red the voting tree after morphological dilatation.
Second row: the left panel shows the signed distance computed from the dilated
voting tree; the center panel shows in red the segmentation results obtained
with a Chan and Vese method without shape prior; the right panel shows the
segmentation result obtained with our approach.

4 Results and discussion

We show results obtained with our algorithm on 2D images, see Table 1 and
Figure 3. We applied our approach on ten cropped retinal images provided by
DRIVE (Digital Retinal Images for Vessel Extraction) [21]. The DRIVE data
were acquired using a Canon CR5 non-mydriatic 3CCD camera with a 45 de-
gree field of view (FOV). Each image was captured using 8 bits per color plane
at 768 by 584 pixels. The FOV of each image is circular with a diameter of
approximately 540 pixels. For this database, the images have been cropped
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around the FOV. The DRIVE data is composed of 40 images for which manual
segmentations are also provided. Considering the complexity of the retinal im-
ages and the properties of our algorithm, we have cropped ten different images
from the 40 images availabe and evaluated our method on them. In tables 1
and 1, we compare our approach using the three evaluation measures: Dice,
Specificity, and Sensitivity. The maximum value of the Dice index is 1, which
corresponds to a perfect overlap between the manual and automatic segmenta-
tions. It shows that the results obtained with our approach are coherent with
the manual segmentation. For our experiments we have considered the following
potential P (x) = I(x)3, where I is the grayscale intensity image of the DRIVE
images. Figure 3 shows the segmentation result obtained with our approach.
The shape prior allows us to constrain the propagation inside the tubular tree.
Figure 2 (second row, center column) shows that the propagation without shape
constraints (γ = 0 in the Equation (8)) can leak outside the tree structure.

Test data T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Dice index 0.93 0.73 0.73 0.72 0.67 0.71 0.79 0.78 0.73 0.80
Sensitivity 0.91 0.61 0.64 0.58 0.53 0.60 0.70 0.70 0.70 0.70
Specificity 0.95 0.90 0.83 0.95 0.90 0.95 0.90 0.88 0.93 0.78

Table 1: Comparison of our segmentations with the manual segmentation, on the
ten cropped images from the DRIVE data, in terms of the following statistics:
Dice similarity, sensitivity and specificity.

Statistics Dice measure Sensitivity Specificity
Mean 0.76 0.67 0.90

Standard deviation 0.07 0.10 0.05

Table 2: Mean and standard deviation values of the statistics: Dice measure,
sensitivity, and specificity, for all the data test.

We have also applied our approach on 3D simulated data of carotid bifur-
cation lumen created from the simulated data provided by MICCAI challenge
[22], by adding Gaussian noise, see figure 4. The results obtained for these sim-
ulated data are better than those obtained for the DRIVE data in terms of the
following overlap metrics: Dice, sensitivity, and specificity.

5 Conclusion

In this paper we have presented a new method for the segmentation of tree struc-
tures. This method is adapted to segment automatically tubular tree structure
from a single point given by the user, no a priori information about the tree
is required. In contrast, the methods previously described in the literature for
the segmentation of tree structures are not fully automatic and require a priori
information of the tree to be segmented. We have applied our approach to seg-
ment tubular tree structures from 2D retinal images and compared it with the
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Figure 3: Segmentation of vessels from one of the ten cropped 2D-retinal images
given in table 1. First row: the left panel shows the original image; the center
panel shows in red the farthest points detected; the right panel shows in blue
the paths extracted from the farthest points to the source point. Second row:
the left panel shows the computed geodesic density (green corresponds to a
low density and red to a high density); the center panel shows the manual
segmentation; the right panel shows the segmentation result obtained with our
approach.

manual segmentation on ten images. The next step is to validate our approach
in 3D on a large data set.
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