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Abstract

This paper presents new methods to segment thin tree structures, which are,

for example present in microglia extensions and cardiac or neuronal blood

vessels. Many authors have used minimal cost paths, or geodesics relative to a

local weighting potential P, to find a vessel pathway between two end points.

We utilize a set of such geodesic paths to find a tubular tree structure by

seeking minimal interaction. Recently, we introduced a set of methods called

geodesic voting. In this article we review all these methods and present some

extensions. We also adapt these methods to the segmentation of complex

tree structures in a noisy medium and apply them to the segmentation of

blood vessels in 2D and 3D.

Keywords: Geodesic Voting, Fast Marching, Level Set, Minimal Paths,

Tree Structure Segmentation.

1. Introduction

In this paper we present novel methods for the segmentation of tree struc-

tures. These methods are based on minimal paths and can be applied to ex-

tract numerous structures such as microglia extensions, neurovascular struc-

tures, blood vessels, and pulmonary trees. There are many studies dedicated
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to the extraction of vascular or airway trees. For a review of such meth-

ods see [1, 2, 3, 4, 5, 6]. Among the approaches used to segment such tree

structures, we consider three models, classified according to their method for

extracting the tubular aspect of the tree: centerline based models; surface

models; and 4D curve models. The first category focuses on directly extract-

ing the centerlines of the tubular tree [7, 8]. After extracting the centerlines

a second process can be used to segment the lumen of the tree, see [9]. The

second category directly extracts the surface of the vessel. These approaches

includes explicit and implicit surface models. The former use a parametric

representation of the tubular structure [10]. These models are not adapted to

the segmentation of complex tree structures, while the latter implicit meth-

ods can evolve the surface through complex shape changes including changes

in topology [11, 12]. However, initialization must be performed carefully to

obtain an accurate segmentation.

Minimal path techniques are extensively used for centerline extraction

of tubular tree structures. These approaches are robust to the presence of

local perturbations due to stenosed branches of the tree or imaging artifacts

where the local image information might be insufficient to guide the shape

evolution process. Several minimal path techniques have been proposed to

deal with this problem [13, 14, 15, 16]. These techniques involve designing

a metric from the image in such way that the tubular structures correspond

to geodesic paths according to this metric [17]. Solving the problem from

the practical point of view consists of a front propagation from a source

point within a vessel, which moves faster along the branches of the vascular

tree. These methods require the user to supply a starting point (propagation
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source) and end points. Each end point results in an extracted minimal path

back to the source point. The points located along this minimal path are

very likely to be located on the vessel of interest. A small amount of work

has been devoted to reduce the need for user intervention of the user in the

segmentation of tree structure to the initialization of the propagation from

a single point. The authors of [18] defined a stopping criterion based on a

“medialness” measure; the propagation is stopped when “medialness” drops

below a given threshold. This method might suffer from the same problem

as region growing since the medialness measure might drop below the given

threshold in the presence of lesions or other local image artifacts. In [14],

the authors proposed stopping the propagation when the geodesic distance

reaches a certain value. However, this method is limited to the segmentation

of a single vessel and the definition of the threshold of the geodesic distance is

not straightforward. The authors of [19] proposed stopping the propagation

according to a criterion based on certain geometric properties of the region

covered by the front. In [15], assuming the total length of the tree structure

to be visited is roughly given, the stopping criterion is based on the Euclidean

length of the minimal path.

In this paper, we present new methods to extract tree structures without

using any a priori information and using only a single user provided point on

the tree structure. The methods are generic, they can be used to extract any

type of tree structure in 2D as well as in 3D. These methods were presented

separately in conferences [20, 21, 22, 23]. Here, we provide an overview

of all these methods and propose extensions. The approach is based on a

completely new concept, namely, Geodesic Voting. It consists of computing
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geodesics from a given source point to a set of end points scattered through-

out the image. The target structure corresponds to image points with a high

geodesic density. The geodesic density is defined at each pixel of the image

as the number of geodesics that pass over this pixel. Since the potential ex-

hibits low values along the tree structure, geodesics will preferably migrate

toward this structure and thereby yield a high geodesic density. We intro-

duce different approaches to segment complex tree structures in noisy media

environments and apply them to segment blood vessels in medical images.

In Section 2 we introduce the geodesic voting approach. In Section 3,

we propose a variety of possible ways to obtain both the centerline and the

boundary of the vascular tree. In Section 4 we evaluate the method on 2D

retinal images.

2. Background

2.1. Minimal paths

In the context of image segmentation Cohen and Kimmel proposed, in

[17], a deformable model to extract contours between two points given by the

user. The model is formulated as finding a geodesic for a weighted distance:

min
y

∫ L

0

(w + P (y(s)))ds, (1)

the minimum is considered over all curves y(s) traced on the image domain

Ω that link the two end points, that is, y(0) = x0 and y(L) = x1. The

constant w imposes regularity on the curve. P > 0 is a potential cost function

computed from the image, it takes lower values near the edges or the features.
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For instance P (y(s)) = I(y(s)) leads to darker lines while P (y(s)) = g(||∇I||)

leads to edges, where I is the image and g is a decreasing positive function.

To compute the solution associated to the source x0 of this problem, [17]

proposed a Hamiltonian approach: Find the geodesic weighted distance U

that solves the Eikonal equation: ||∇U(x)|| = w + P (x), ∀x ∈ Ω. The ray

y is subsequently computed by back-propagation from the end point x1 by

solving the Ordinary Differential Equation (ODE):

y′(s) = −∇U(y). (2)

The idea behind the Fast Marching algorithm is to propagate the wave

in only one direction, starting with the smaller values of the action map

U and progressing to the larger values using the upwind property of the

scheme. Therefore, the Fast Marching method permits to solve the Eikonal

in complexity O(n log(n)), for details see [17].

2.2. Geodesic voting for the segmentation of tree structures

We have introduced in [20] a new concept to segment a tree structure

from only one point given by the user in the tree structure. This method

consists in computing the geodesic density from a set of geodesics extracted

from the image. Assume you are looking for a tree structure for which a

potential cost function has been defined as above and has lower values on

this tree structure. First we provide a starting point x0 roughly at the root

of the tree structure and we propagate a front in the whole image with the

Fast Marching method, obtaining the minimal action U. Then assume you

consider an end point anywhere in the image. Backtracking the minimal path

5



from the end point you will reach the tree structure somewhere and stay on

it till the start point is reached. So a part of the minimal path lies on some

branches of the tree structure. The idea of this approach is to consider a

large number of end points {xk}
N
k=1 on the image domain, and analyze the

set of minimal paths yk obtained. For this we consider a voting scheme along

the centerlines. When backtracking each path, you add 1 to each pixel you

pass over. At the end of this process, pixels on the tree structure will have a

high vote since many paths have to pass over it. On the contrary, pixels in

the background will generally have a low vote since very few paths will pass

over them. The result of this voting scheme is what we can call the geodesic

density. This means at each pixel the density of geodesics that pass over

this pixel. The tree structure corresponds to the points with high geodesic

density.

The set of end points for which you consider the geodesics can be defined

through different choices. This could be all pixels over the image domain,

random points, scattered points according to some criterion, or simply the

set of points on the boundary of the image domain. We define the voting

score or the geodesic density at each pixel p of the image by

µ(p) =

N∑
k=1

δp(yk) (3)

where the function δp(y) returns 1 if the path y crosses the pixel p, else 0.

Once the geodesic voting is made, the tree structure is obtained by a simple

thresholding of the geodesic density µ. As shown in [22] and Figure 1, the

contrast between the background and the tree is large and the threshold can

be chosen easily.
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Figure 1: Geodesic Voting method. From the left to the right: the first panel shows the

synthetic tree, the red cross represents the root of the tree; the second panel shows the

adaptive set obtained from farthest points strategy, described in [21]; the third panel shows

in blue the geodesics extracted from the adaptive set of points to the root; the fourth panel

shows the geodesic density; the fifth panel shows the geodesic density after thresholding.

2.3. Voting with a transport equation

The geodesic voting can be obtained in a different manner without com-

puting the minimal paths. The trajectories yk computed from (2) are called

characteristics for the conservation equation

ut + div(vu) = 0, (t, x) ∈]0, T [×Ω, (4)

where v = −∇U denotes the velocity field computed from the distance map

U. Due to the conservation of the information transported by equation (4)

toward the source point, we can define a geodesic density as the integral of

the solution of the transport equation (4) in the time T

µ(x) =

∫ T

0

u(t, x)dt. (5)

The initial conditions in the transport formulation of the geodesic voting

determine the set of endpoints used to extract the geodesics in the original

formulation of the geodesic voting, presented previously. Here we take as

initial condition u(0, .) = 1 in the interior of the image domain. A non null
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Figure 2: Voting by transport equation. First panel: synthetic image representing a tree

structure. Second panel: distance map, the source point is indicated by the red cross.

Third panel: zoom on the velocity field shown in the region indicated by the red square

in the first panel. Fourth panel: geodesic density computed by relation (6).

value for the initial condition in a given image point means that a geodesic

is extracted from this point whereas the value zero means that no geodesic

is extracted.

By integration of the transport equation (4) with respect to the time t,

we get

div(vµ) = u(0, x)− u(T, x), x ∈ Ω (6)

The partial differential equation (6) is not elliptic, so it is more convenient

to compute the geodesic density by relation (5) after solving the transport

equation (4). Figure 2 shows the segmentation result obtained with this

scheme. We have considered a simple synthetic image representing a tree

structure like deer woods (see Figure 2-Left). The pixels with high density

correspond to the structure extracted from the image (see Figure 2-right).

3. Geodesic voting methods for blood vessel segmentation

Geodesic voting method gives a good approximation of the localization

of the tree branches, but it does not allow to extract the tubular aspect of
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the tree. Here, we extend the geodesic voting to the segmentation of the

boundary of the tubular structure.

3.1. Geodesic voting in an augmented space

In this section we introduce a constraint that ensures that the segmented

tree approximates well the centerlines of the tree and we adapt the geodesic

voting method to segment the walls of the tubular tree structure. The idea

is to perform the geodesic voting with a potential that integrates an extra-

dimension used to measure the distance from the centerline to the walls of

the vessels. The potential proposed by [24] incorporates this measure. More

precisely, this potential is defined by P̃ : (x, r) ∈ Ω×[0, rmax] −→ P̃ (x, r). It

incorporates the full set of image values within the sphere of center x and radii

r and it is designed in such a way that the whole sphere lies inside the desired

object and is as large as possible so that it is tangential to the boundary of

the object. The extension of the minimal path extraction model (1) to the

case of a potential with an extra-dimension is achieved by minimizing the

following energy

min
c,r

∫ t

0

(ω + P̃ (c(s), r(s)))ds. (7)

The minimization of this energy allows simultaneous approximation of the

minimal path and the radii of the spheres tangents to the boundary of the

tube with centers located along the minimal path. The computation of the

path is achieved with the framework presented in the Section 2.

Using the potential P̃ and a set of end points (xk, rk) (uniform grid) in the

domain, we extract a set of geodesics yk from which we compute the geodesic

density (x, r) −→ µ(x, r) given by equation (3). In this case the geodesic
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voting map is a function of the spatial dimension and also of the radii of the

spheres. There are many ways to use this (3D+radius) geodesic density in

order to extract the tree structure [22]. Here we use the following spatial

density:

µ̃m(x) =
rmax∑
r=0

µ(x, r). (8)

Figure 3 illustrates the steps of this method for the segmentation of the

tubular aspect of the tree. We can see the efficiency of the method to obtain

a segmented tree that is centered in the structure, as well as the precise

boundary of the vascular tree.

3.2. Geodesic voting prior to constrain the level set evolution

Here we present a second approach to extract the walls of the vessels using

the original geodesic voting method. A shape prior constraint is constructed

from the geodesic voting tree to constrain the evolution of a level set active

contour in order to extract the walls of the tree. A Bayesian approach is used

to introduce this prior into the level set formulation. The model is formulated

as a minimization problem of a global energy composed of two terms. The

first term corresponds to a deformation energy for a standard region based

level set method and the second term introduces the shape prior:

Eb(φ, c1, c2) = V(φ, c1, c2) +
γ

2σ2

∫
Ω

(φ− φ̃)2δǫ(φ)dx, (9)

where the factor term δǫ allows us to restrict the shape prior within the region

of interest, and φ̃ is the signed distance computed from the geodesic voting

tree. The segmentation of vessels with this approach is achieved in two steps:
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(1) the geodesic voting tree is extracted using the original geodesic voting

method (2) the walls of the vessels are extracted by minimization of the

functional Eb. Figure 4 illustrates the segmentation process. Details about

this method are given in [23].

3.3. The deformable band

The deformable band method combines aspects of region-based active

contours and minimal paths. It is devoted to the recovery of tubular struc-

tures. In this context, the segmentation process is constrained by essence,

rather than by adding prior shape terms in a general model, see previous

section. The band is defined by open curve Γ, parameterized by arc length

s ∈ [0, 1], and radius function R : [0, 1] → R+. Curve Γ plays the role of

the medial axis. The inner region Rin of width 2R is bounded by curves Γ[R]

and Γ[−R], constructed by translating Γ along normal n.

The band is endowed with energy functional E, weighted sum of the

internal energy Esmooth and the external region energy Edata:

E(Γ,R) = ωEsmooth(Γ,R) + (1− ω)Edata(Γ,R) (10)

The user-provided coefficient ω, weighting the influence of Esmooth over

Edata, controls the elastic properties of the deformable band. The smooth-

ness energy Esmooth is expressed in terms of curve length and radius first

order derivative. Since the structure of interest should satisfy an intensity

homogeneity criterion, the data term is as follows:

Edata(Γ,R) =

∫
Rin

gin(x)dx +

∫
Rout

gout(x)dx (11)
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where region descriptors gin and gout increase with respect to intensity inho-

mogeneity. The initial curve Γ is built using the geodesic voting method.

The deformable band approach, described above, was extended to 3D in

[25]. In this section we show the feasibility of the geodesic voting method in

3D.

Figures 5 and 6 depict results obtained with the 3D tree method applied

on a CT volume data. Figure 6-right represents a slice of the CT data,

with centerlines and surface positions of two segments (aorta and superior

mesenteric artery). With a C++ implementation running on an Intel Core

2 Duo 2.2GHz PC (4Gb RAM), computational costs for a 256 × 256 × 256

volume image is 28s for extractiong the surface, see the result in Figure 5.

According to visual inspection, we believe the reconstruction results to be

promising.
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Figure 3: Vessel segmentation from a 2D retinal image with the geodesic voting method.

First row: the left shows a 2D retinal image, the red cross indicates the source point; the

center panel shows, in (2D+radius) domain, in green the paths extracted from a uniform

grid to the source point; the right panel shows the density computed in (2D+radius)

domain, yellow color corresponds to high density and brown to low density. Second row:

the left panel shows the geodesic density µ̃m, given by equation (8), red color corresponds

to high density, yellow color to medium, and green color to low density; the center panel

shows in red the density µ̃m after thresholding; the right panel shows in blue the extraction

result of the tubular structure obtained by thresholding the map {µ̃m, r̃}, where r̃(x) =

arg max
r∈[0, rmax]

µ̃m(x, r).
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Figure 4: Geodesic voting segmentation of vessels from a 2D retinal image. From left to

right: adaptive voting on the image; voting tree obtained by thresholding the geodesic

voting; shape prior obtained by dilation of the voting tree; segmentation result obtained

with region based active contour with prior (method described in Section 3.2).

Figure 5: Tree after thresholding on voting score (left) and final tree with boundary surface

(right)
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Figure 6: A close look at the boundary surface. Left panel: a representation with center-

lines; right panel: Slice of the 3D CT image, with centerlines and surface positions of two

segments: aorta (bottom) and superior mesenteric artery (top)
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4. Results and discussion

In this section, we will compare GVR (method with radius presented in

Section 3.1) and GVP (method with prior presented in Section 3.2) with

other approaches ( the edge based level set method [26], the Chan and Vese

method [27], and the fuzzy connectedness method [28]) for vessel segmen-

tation from retinal images on the DRIVE data (Digital Retinal Images for

Vessel Extraction) [29].

The DRIVE data were acquired using a Canon CR5 non-mydriatic 3CCD

camera with a 45 degree field of view (FOV). Each image was captured using

8 bits per color plane at 768 by 584 pixels. The FOV of each image is

circular with a diameter of approximately 540 pixels. For this database, the

images have been cropped around the FOV. The DRIVE data is composed

of 40 images from different subjects for which manual segmentations are also

provided.

Considering the complexity of the retinal images and the properties of

our algorithm, we have cropped twelve different images from the 40 images

available and evaluated our method on them. Note that the retinal vessels

in each image do not correspond to a tree structure. Some images may

contain several disconnected trees or networks. Note that when the image

contains more than one tree structure, the geodesic voting method tends

to create connections between them. These connections may not make sense

anatomically, therefore a preprocessing or postprocessing step is necessary to

get an accurate segmentation. For a completely automated application, this

problem may be solved by using the selection step proposed (for a different

method) in [30] to remove paths that are unlikely to belong to the microglia
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extensions. This is out of focus of this paper to propose precise automatic pre-

or post-processing to deal with all kind of situations. Therefore, it was more

illustrative to choose images that contain tree structures and then crop the

image in such way that the cropped image contains only one tree structure.

We were able to extract 12 tree structures from 12 different images in the

DRIVE data. The size of the cropped image depends on the size of the tree

in the original image and in average corresponds to 100 pixels in high and

50 pixels in width.

For the GVR method, the augmented potential P̃ used is described in

Section 3.1. The starting point was chosen as a junction of the tree. As

the end points were chosen as a uniform grid, the spatial starting point can

be chosen anywhere within the tree. However, the starting radii should be

chosen carefully to get an optimal segmentation. In our experiments on

DRIVE data we obtained good estimation of these parameters by testing

different values following the study presented in [24]. These parameters can

be optimized and automated for a given class of images.

For the GVP method, we have used the following potential P (x) = I(x)3

to run the geodesic voting segmentation, where I is the grayscale intensity

of the image. The value of γ, the weight on the prior, was chosen empirically

and used for all the experiments presented in the paper. We showed in [31]

that this value can be chosen in a large range with the same efficiency.

In figures 7 and 8 ( results obtained with the GVR and GVP), the source

point used to perform the geodesic voting was chosen empirically on the

junction of the tree that is connected to the largest number of branches.

This allows us to segment the largest number of branches in the presence
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of small branches with weak contrast. Note that the quality of the images

provided by DRIVE are not very good and sometimes it is hard to set optimal

sphere radii for the GVR initialization. When it is not possible to give a

precise radius we underestimate the value of the radius whenever possible,

indeed we measure the radii of the spheres in pixels and their diameters are

odd numbers. Concerning the end points, we have used the same number

for each method: 1200 farthest points (generated by the process described in

[21]) for the GVP method, and a uniform grid of the augmented potential for

the GVR method. The threshold for the geodesic density was defined from

the first five images as the mean value of all the threshold values manually

selected for these five image. Then this mean threshold was used for all the

twelve images. We have used two different values for the mean threshold:

one value for the GVP method and the other for the GVR method.

Figure 7: Blood vessels segmentation using the GVR and GVP methods from one of the

twelve cropped retinal images (DRIVE data). The left panel shows the original image;

the second panel shows in blue the manual segmentation; the third panel shows the seg-

mentation result obtained with the GVR method; the right panel shows the segmentation

result obtained with the GVP method.

In [32], we compare the GVR and GVP results for vessel segmentation
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Figure 8: Blood vessels segmentation using the GVR and GVP methods from one of the

twelve cropped retinal images (DRIVE data). The left panel shows the initial image;

the second panel shows in blue the manual segmentation; the third panel shows in red

the segmentation obtained with GVR method; the right panel shows the segmentation

obtained with our GVP method.

on the DRIVE database in terms of the following evaluation measures: Dice,

specificity, and sensitivity. We found that the GVR and GVP gave similar

results.

In the sequel, we compare the performance of GVR and GVP methods

with the edge and region based level set methods and the fuzzy connectedness

method in the segmentation of vessels.

Figure 9 shows the results obtained with the fuzzy connectedness method

[28]. The segmentation of the tree is obtained by thresholding the fuzzy

connectedness map. For a small threshold the method does not allow to

extract all the branches of the tree, and when the threshold is increased the

propagation leaks outside of the tree. The same problems were observed

with the edge based level set method [26] when we increased the number

of iterations, see Figure 10. The shape prior allows us to constrain the

propagation inside the tubular tree. Figure 11 shows that the propagation

without shape constraints (γ = 0 in equation (9)) can leak outside of the
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tree structure.

Our methods (GVP and GVR) give the best results: they succeed in

segmenting more tree branches without leaking outside of the tree structures.

Figure 9: Fuzzy connectedness segmentation. The panels show from the left to the right:

the localization of the red seed point; the fuzzy connectedness map; the thresholded fuzzy

connectedness map with the threshold set at th1 (third panel); the thresholded fuzzy

connectedness map with a threshold set at th2 superior to th1.

Figure 10: Edge based Level set method. The left panel shows in red the initial position of

the interface; second panel shows the sigmoid of the gradient magnitude; the third panel

shows the interface after 1000 iterations; the right panel shows the interface after 2000

iterations.

5. Conclusion

In this paper we have presented a completely new approach for the seg-

mentation of tree structures based on geodesic voting. This approach is
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Figure 11: Comparison of the geodesic voting approach (GVP) with other methods. The

left panel shows in red the segmentation obtained by edge based level set method; the

second panel shows in red the segmentation results obtained with a Chan and Vese method

without using the geodesic voting prior; the third panel shows the fuzzy connectedness

segmentation; the right panel shows the segmentation result obtained with our geodesic

voting with prior (GVP).

adapted to automatically segment tree structures from a single point pro-

vided by the user with no further a priori information required about the

tree. By contrast, other methods described in the literature for the segmen-

tation of tree structures are not fully automatic and require prior information

about the tree to be segmented. We have combined this approach with an

added fourth dimension (space+radius) or with region-based level sets using

priors in order to obtain both the centerlines and boundaries of the tree. We

have applied our geodesic voting approach to segment different tree struc-

tures from a variety of bio-medical images. Finally, we have evaluated our

approach on retinal 2D images, and have shown segmentation results on 3D

data. The results were satisfying and promising.
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