
The shading zone problem in geodesic voting and its solutions for the
segmentation of tree structures. Application to the segmentation of Microglia

extensions

Youssef Rouchdy1,2

University of Pennsylvania1

3600 Market Street, Philadelphia, PA, USA
Youssef.Rouchdy@uphs.upenn.edu

Laurent D. Cohen2

CEREMADE, Université Paris Dauphine2
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Abstract

This paper presents a new method to segment thin tree
structures, which are for example present in microglia ex-
tensions and cardiac or cerebral blood vessels. The mini-
mal path method allows the segmentation of tubular struc-
tures between two points chosen by the user. A feature po-
tential function is defined on the image domain. This corre-
sponds to geodesic paths relatively to the metric weigthed
by the potential. We propose here to compute geodesics
from a set of end points scattered in the image to a given
source point. The target structure corresponds to image
points with a high geodesic density. The geodesic den-
sity is defined at each pixel of the image as the number
of geodesics that pass over this pixel. Since the potential
takes low values on the tree structure, geodesics will locate
preferably on this structure and thus the geodesic density
should be high. The segmentation results depend on the
distribution of the end points in the image. When only the
image border is used to perform geodesic voting, the ob-
tained geodesic density is contrasted and easy to use for
image segmentation. However, when the tree to segment is
complex a shading problem appears: some contours of the
image can have a null density since geodesic have a bet-
ter way around this region. To deal with this problem we
propose several different strategies: we use several source
points for the propagation by Fast Marching; a set of char-
acteristic points or an adaptive set of points in the image or
make successive segmentation in the shading zones. Numer-
ical results on synthetic and microscopic images are pre-
sented.

1. Introduction

We are interested in the segmentation of tree structures
like those appearing in medical images (vascular tree) or
biological images (extensions of microglia). Although our

aim was initially to extract microglia from confocal mi-
croscopy images, the methods we introduce are generic and
can be used for any type of tree structure. A simple use of
the image intensities is not sufficient to extract directly a
tree structure. Malladi et al. [8] used the Level Set meth-
ods to extract information from MRI data (which present
approximately the same difficulties as the confocal micro-
scope images). Although much work is devoted to the seg-
mentation of vascular tree, few attempts have been made
to extract microglia extensions and these attempts were re-
stricted to the main branches ([5], [15]). From our experi-
ence with vascular tree segmentation, we can tell that mi-
croglia segmentation can be much more difficult, due to
very thin parts and noise. Also, the segmentation of vas-
cular tree is usually obtained using a priori information.
For example many approaches need to give a point for each
branch. The Fast Marching method, introduced by Sethian
in [12], and adapted by Cohen et al. [2] to extract tree struc-
tures, demands less computation time than the Level Set
method and works with only one point chosen by the user
on the tree. However, this method depends ona priori infor-
mation about the target. In our case noa priori information
about the tree structure is available. We propose in this pa-
per geodesic voting strategies for the segmentation of tree
structures. These methods consist in extracting a large num-
ber of geodesics from the image. The target corresponds to
the image points with high geodesic density. The original
approach of geodesic voting was proposed in [10]. These
method allowed the extraction of tree structure from only
one point given by the user. However, the method had a
limitation that we call shading zone. In this paper we point
out this problem and propose different solutions to fix it. In
section2, tools used to extract minimal paths with the Fast
Marching algorithm are presented. In sections3 and4 the
geodesic voting method is introduced and geodesic voting
methods to deal with shading zones problem were proposed.
Finally, in section4.4 discussion and segmentation results



are presented.

2. Background

2.1. Minimal paths

The minimal path theory for the extraction of contours
from the image was inspired by the principle of Fermat:
the light trajectory minimizes the optical distance between
x0 = y(0) and x = y(t), e.g. it gives the curvey that
minimizes the distance

τ(x0, x) =

∫ t

t0

ds

c
(

y(s)
) (1)

where propagation speedc is a function depending on the
medium of the propagation. In homogenous media the func-
tion c is a constant, the trajectories correspond to lines. In a
medium with two regions, the functionc takes two values:
c1 in the first region andc2 in the second region. The trajec-
tory, in this case, corresponds usually to two joint segments,
each segment belonging to one region. We are interested
here in the case of a medium with a continuous velocityc,
see [3].

In the context of image segmentation Cohen and Kimmel
proposed, in [3], a deformable model based on the optical
distance (1). The model is formulated as a calculus of vari-
ation problem :

Min
∫ t

0

(

w + P (y(s))
)

ds, (2)

the minimum is considered in

{

y : [0, t] −→ R
2 : y(0) = x0, y(t) = x

}

.

The constantw imposes regularity on the curve.P > 0 is
a potential computed from the image, it takes lower values
near the edges or the features. For instance

P (y(s)) = I(y(s)), P (y(s)) = g(||∇I||),

whereI is the image andg is a decreasing function.
To compute the solution associated to the sourcex0 of

this problem, we consider a Hamiltonian approach: Find
the travel time U that solves the eikonal equation

||∇U(x)|| = w + P (x) x ∈ Ω (3)

The ray y is subsequently computed by back-
propagation fromx by solving the ODE

y′(s) = −∇U(y). (4)

The only stable schemes that solve the eikonal equation
compute a viscosity solution [4]. The first work that uses

the viscosity solution is from Vidale [14]. Based on this
work Fatemi et al. [6] proposed the first numerical scheme
to solve the eikonal equation. To solve eikonal equation
through iterations [11], at leastO(mn2) are needed, where
n is the total number of grid points andm is the num-
ber of iterations that permit an estimation of the solution.
In the next section, we present the Fast Marching algo-
rithm introduced in [12] to solve this problem in complexity
O

(

n log(n)
)

.

2.2. Fast Marching method

The idea behind the Fast Marching algorithm is to propa-
gate the wave in only one direction, starting with the smaller
values of the action map U and progressing to the larger val-
ues using the upwind property of the scheme. Therefore, the
Fast Marching method permits only one pass on the image
starting from the sources in the downwind direction. Here,
the principle of the Fast Marching method is given, for de-
tails see [12, 13, 1]. The grid points are partitioned into
three dynamic sets: trial points, alive points and far points.
The trial points correspond to a dynamic boundary that sep-
arates far points and alive points. At each step, the trial
point with the minimum value of the action map U is moved
to the set of alive points, which are the grid points for which
a value U has been computed. The values of alive points do
not change. To reduce the computing time, the trial points
are stocked in a data structure referred to as min-heap (the
construction of this data structure is described in [12, 13]).
The complexity to change the value of one element of the
min-heap isO

(

n
)

. Hence, the total work for Fast March-
ing is O

(

n log(n)
)

. The Dijkstra algorithm, which is also
used to find a minimal path, has the same complexity as
the Fast Marching algorithm. However, the Dijkstra algo-
rithm gives a linear approximation and there is no unique-
ness result contrary to the Fast Marching algorithm, which
converges toward the unique viscosity solution.

3. Segmentation by geodesic voting of tree
structures

With the Fast Marching method we can extract the min-
imal path between two points. Here, the aim is to extract
a tree with just one point chosen by the user. Whena pri-
ori information is available about the length of the contour
that one wants to extract, Cohen and al. proposed in [2] a
method to extract a tree structure from one point selected
by the user. In the following sections, a method is proposed
for the segmentation of tree structures from only one given
point without having anya priori information about the tree
to extract. The method uses a new concept for the image
segmentation. The method consists in computing geodesic
curves from a st of image points. The tree structure corre-
sponds to the points with high geodesic density. First we



choose the root of the tree structure and we propagate a
front in the whole image with the Fast Marching method.
Then, the geodesic paths from a set of points, denoted by
{xk}

N
k=1

, is extracted by solving the ODEs:

∂yk

∂s
= −∇U

(

y(s)
)

, yk(0) = xk, k = 1, · · · , N (5)

The set of points{xk}
N
k=1

can be the boundary of the image
domain. We define the voting score or the geodesic density
at each pointp of the image by

µ(p) =

N
∑

k=1

δp(yk) (6)

the functionδp(y) returns 1 if the pathy crosses the pixel
p, else 0. As we can see in figure1 the geodesic paths con-
verge on the tree structure, giving it a high density value.
In this example the potentialP used to propagate by Fast
Marching method is the image. Note that a simple thresh-
olding can be used to extract efficiently the tree structure.
The threshhold can be automatized for a class of images.
For example we have used the same threshhold to segment
Microglia images. For other classes of images the threshold
could be easily reset manually by testing the method on a
few images.

4. Solutions for shading zones problem

The segmentation by geodesic voting method uses only
the image boundary, which has the advantage that the score
map is contrasted, which facilitates the segmentation of the
tree structure. However, for complex tree structures the im-
age border is not sufficient for segmentation, see figure2.
Indeed, the minimal paths pass through points that realize a
balance between minimizing the paths length and following
the paths where the values of the potential are as small as
possible. Therefore, some zones had a null score -e.g. they
had no geodesic density- although they contained leafs of
the tree as we can see in the figure2-Right. We call the re-
gions with null values of the score map,shading zonesand
the segmentation problem related to these regions ashading
zones problem. In the following sections, different strate-
gies to deal with shading zones problem are presented.

4.1. Multi-propagation

We observed that changing the source point in the tree
structure can partially solve shading problems. In the figure
3-c we took two different source pointss1 on the leaff1 and
s2 on the leaff2. With the source points1 it was possible
to extract the leaff1 from the score mapS1 but not the
leaf f2, whereas with the source points2 it was possible
to extract the leaff2 but not thef1, see figures3-a-b-d-
e. We remark that the sum of the two score mapsS1 and

(a) (b)

(c) (d)
Figure 1. Geodesic voting. (a) Synthetic image representing a tree;
(b) extraction of geodesics. The red circle represents the source
point from which the propagation is started and black lines rep-
resent paths extracted from the image border to the source point.
The paths are superimposed on the distance map. (c) zoom on the
square indicated by an arrow in figure (b). (d) geodesic density
computed from (b). The geodesic density of each pixel in the im-
age corresponds to the number of trajectories crossing the given
pixel.

Figure 2. Shading zones. Left panel: extraction of geodesics. The
red circle represent the source point from which the propagation is
started and the red lines represent paths extracted from theimage
border to the source point. The paths are superimposed on theim-
age; only 10 per 100 of the paths extracted are shown in the figure.
Center panel: geodesic density. Right panel: shading zones. The
blue regions correspond to the extracted shading zones; these are
zones without vote.

S2 allowed to segment both leafs. Hence, we propose to
compute for each junction and for each extremity of the tree
structure the associated score map. Subsequently, we define
theglobal score mapas sum of all score maps. Furthermore,
the junctions and the extremities of the tree correspond to
the corner points, see figures3-c-f. To detect corner points,
the detector of Harris points is used [7]. The global score
map is defined by:

µ =

N
∑

i=1

Si. (7)



(a) (b) (c)

(d) (e) (f)
Figure 3. Voting by multi-propagation. (a) and (b): red circles
represent the source point from which the propagation is started,
the blue lines represent paths extracted from the image border to
the source point, the paths are superimposed on the image. Only
10 per 100 of the paths extracted are shown in the figures; (c)
The green circles correspond to Harris points used to run multi-
propagation superimposed to the image. (d) and (e) are respec-
tively the score map associated respectively to the geodesics map
(a) and (b). (f) corresponds to the global distance map computed
by multi-propagation.

whereN is the number of the Harris points detected andSi

is the score map associated to the Harris pointhi.
Note that the use of the Harris points instead of all image

points to compute the global map reduces considerably the
computing time.

4.2. Successive geodesic voting

Here, we propose to use a successive segmentation to
solve the problem of shading zones. First, we chose a point
to initialize the propagation on the tree structure. From the
distance map associated to the initial point the score map is
computed, see figure4-a. Subsequently, the shading zones
are extracted from the score map and labeled, see figure4-
b. For each shading zone we run a geodesic voting from the
border of the shading zone, see figure4-c. The final score
map is computed as a sum of all score maps computed from
the initial image and from the shading zones, see figure4-d.

4.3. Adaptive voting

In this section, we present another approach to deal with
shading zone problems using only one source point. This
method consists in extracting minimal paths from the bor-
der and inside the image to compute a score map. One can
use the whole image to extract a path, however this method
is expensive in computing time. In this section we propose
to use an anisotropic meshing of the image points to run
the geodesic voting. The mesh is dense on the tree structure
and sparse outside. Hence, the score map is very contrasted,

(a) (b)

(c) (d)
Figure 4. Successive geodesic voting. (a) score map computed
from the image border; (b) labeling of the extracted shadingzones,
14 shading zones were detected; (c) extraction of geodesic paths
from a shading zone; (d) score map obtained by applying geodesic
voting to the shading zones.

allowing a good segmentation of the tree structure. The
method used to built automatically such anisotropic mesh-
ing is based on a Voronoi diagram construction and the Fast
Marching propagation, [9].

In the following, we describe how this method works.
Firstly, we have a points1 with an associated distance map
computed with the Fast Marching method. Let us assume
that a set of pointsSn = {s1, · · · , sn} and their associated
distance map U are computed. We construct then the set
Sn+1 = {sn+1}∪Sn, wheresn+1 is the farthest point of the
image from the setSn. The distance map Un+1 is defined
by the relation Un+1 = min

(

Un, Usn+1

)

, where Usn+1
is

the distance map computed fromsn+1. The distribution
of the points on the image with farthest points process is
stopped when the desired number of points is reached.

The farthest points added at each iteration correspond to the
maximal values of the geodesic distance. Therefore, the re-
sulting meshing is dense in regions with smaller value for
the propagation speedF , and sparse in regions with higher
values ofF . The speed function is computed as the in-
verse of the potentialP defined in section2.1. The speed
functionF > 0 computed from the image take the smallest
values on the tree structure and the largest outside. There-
fore, the meshing is dense on the tree structure and sparse
outside, see figures5-Left-Center. Hence, the score map
is contrasted and allows an easier segmentation of the tree
structure, see figure5-Right.

Note that we can applied a multi-propagation method to



Figure 5. Adaptive voting. Left panel: distance map used to extract
geodesics from the farthest points. Center panel: extraction of
geodesics; the red circle represents the source point and the blue
lines correspond to the geodesics extracted from the farthest points
to the source points. Right panel: computed geodesic density.

Voting method Computing time Contrast
Border, sect.3 27.08 sec. 4
Multi, sect.4.1 481.78 sec. 1
Adaptive, sect.4.3 94.94 sec. 2
Successive, sect.4.2 63.01 sec. 3

Table 1. Computing time and classification of the five proposed
geodesic voting methods for a 220×300 pixel image.

anisotropic meshing as presented for Harris points in sec-
tion 4.1.

4.4. Discussions and results

In sections3 and4, we have proposed geodesic voting
methods to extract tree structures from only one point given
by the user without usinga priori information, in contrast
to [2] which uses information about the length of the tree to
extract. The problem of shading zones was pointed out and
treated to complete the segmentation results in section4.
The segmentation by geodesic voting from the border gives
a contrasted geodesic density and demands less computing
time. However, there is the problem of shading zones as we
have explained in section4. Table1, compares the proposed
methods according to the computing time and the quality
of the computed geodesic density. The column ”Contrast”
gives the classifications of the five methods (1 is for best).

Regarding the computing time and the quality of the
geodesic density, we have chosen to use adaptive vot-
ing, presented in section4.3, to segment microglia exten-
sions from confocal microscope images. Figure6 shows
the segmentation results obtained with this method. Note
that the density maps shown in figure6-(right column) are
not thresholded. The numerical results obtained with this
method were very satisfying in terms of rapidity of analysis
and coherence with the visual aspect of the cells. Although
this method needs to be compared to manual segmentation,
the present results are encouraging and should lead to a fu-
ture extension of the method to 3D segmentation.

In conclusion, this work shows that the proposed
geodesic voting methods can be used to segment tree struc-
tures in images. The major contributions of this paper are:
we have pointed out the shading zone problem related to the

Figure 6. Results. Left column: Microglia images. Center col-
umn: extraction of geodesics; the red circle represents thesource
point and the blue lines correspond to the geodesics extracted from
the farthest points to the source points. Right column: computed
geodesic density.

segmentation with geodesic voting, and we have proposed
adequate solutions to solve this problem. We have applied
this method to the segmentation of microglia images which
are very noisy. The proposed methods are generic, and can
be used to extract any type of tree structure.
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