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Abstract. We propose a new algorithm for two-phase, piecewise-smooth
segmentation with shape prior. The image is segmented by a binary tem-
plate that is deformed by a regular geometric transformation. The choice
of the template together with the constraint on the transformation intro-
duce the shape prior. In particular, the topology of the shape is preserved
if the transformation is diffeomorphic. The deformation is guided by the
maximization of the likelihood of foreground and background intensity
models, so that we can refer to this approach as Competitive Defor-
mation. In each region, the intensity is modelled as a smooth approxi-
mation of the original image. We represent the transformation using a
Partition of Unity Finite Element Method, which consists in representing
each component with polynomial approximations within local patches.
A conformity constraint between the patches provides a way to control
the globality of the deformation. We show several results on synthetic
images, as well as on medical data from different modalities.

1 Introduction

Image segmentation is a fundamental topic in computer vision, which has moti-
vated many works to cope with challenging issues such as noise, occlusions and
low contrasted regions. A common approach is the introduction of prior knowl-
edge in order to constrain the solution to remain close to a given class of shapes.
Statistical models have been proposed, using for example Principal Component
Analysis (PCA), like the well-known active shape models [1]. Such techniques
require careful training in order to capture the variability of the shapes, and do
not enable segmentation if no training database is available.

Shape priors have also been incorporated in the level set framework via an
additive shape term in the energy, that penalizes the dissimilarity between the
level set function for segmentation and the one embedding the prior shape [2–5].
In the model of Leventon et al. [6] and further works along the same line [7–9],
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a PCA of training shapes embedded in level set functions is computed in order
to define a linear statistical model for the shape term. Non-linear versions have
also been explored [10]. For some applications, those models may however suffer
from the uncontrollable topology changes allowed by the level set representation,
which is most often not desirable when one wants to impose a shape prior.

A possible alternative to control the topology is to directly apply a geometric
deformation to the prior shape, provided that the transformation is diffeomorphic
[11, 12]. Two-phase segmentation is performed by deforming a binary template
towards the image. The prior is the template itself, and the shape constraint is
conveyed through the choice of a class of allowed deformations. This choice is
crucial: excessive constraint may result in poor segmentation results, whereas
insufficient constraint may lead to a final shape too far from the prior.

The deformation can be guided by the maximization of the likelihood of user-
defined intensity models, given the pixel values observed in both the foreground
and the background. The approach bears similarities with Region Competition
techniques [13], with the significant difference that the unknown variable is not
the partitioning itself but the deformation of a predefined template. We will refer
to this method as Competitive Deformation. Obviously, the choice of appropriate
region intensity models is also essential. On one hand, piecewise-constant and
global models are simple but their applicability is limited. On the other hand,
piecewise-smooth and local models are more relevant in many cases, at the cost
of an increased computational complexity.

We propose a variational formulation of two-phase, piecewise-smooth seg-
mentation based on Competitive Deformation and a Partition of Unity Finite
Element Method (PUFEM). The key idea is to represent the deformation field
with polynomial approximations within overlapping local patches. The method
includes a conformity constraint between the patches, which offers a good con-
trol over the range of the smoothness, and hence over the strength of the prior.
Moreover, this framework provides efficient smooth representations of the region
intensity models that naturally extrapolate beyond the boundary.

This paper is organised as follows. In section 2, we first give the basic formu-
lation for two-phase segmentation by template competitive deformation. Then
in section 3, we give a brief overview of the PUFEM framework before present-
ing our formulation of piecewise-smooth segmentation in section 4. In section 5,
we show experimental results on illustrative synthetic images, and on medical
images.

2 Basic formulation of Competitive Deformation

Let the open bounded set Ω ⊂ Rd be the domain of a real-valued image I. Two-
phase segmentation aims at partitioning Ω into a foreground and a background
that are homogeneous in terms of intensity properties. In the classical level set
version of Region Competition [13], the optimal partition of Ω is obtained by
evolving a level set function that embeds the region boundary, allowing unde-
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sirable topology changes in the case of prior-based segmentation. To control the
topology of the result, we rather deform the characteristic function χ of a prior
foreground region Σ:

χ(x) =
{

1 if x ∈ Σ
0 otherwise (1)

with a diffeomorphic geometric transformation ψ : Ω → ψ (Ω). The basic form
of the two-phase competitive deformation problem reads:

min
ψ,α1,α2


∫

x∈Ω

χ ◦ ψ(x)r1 (α1,x) +
∫

x∈Ω

(1− χ ◦ ψ(x)) r2 (α2,x) + γR (ψ)

 (2)

where the ri : Ω → R are the region model functions that encode the intensity
properties in the foreground and the background. Each ri usually depends on a
set of parameters αi, e.g. the mean intensity value, the standard deviation, etc.
R is the regularization constraint on ψ and γ a positive constant that controls
its weighting. The minimization is carried out iteratively by alternating the
following two steps:

(A) Considering the transformation ψ fixed, optimize and update the model’s
parameters α1 and α2,

(B) Considering α1 and α2 fixed, minimize w.r.t ψ.

2.1 Region intensity models

In this formulation, simple global statistics can be used to represent the region
intensity properties, such as the well-known piecewise-constant case [14, 15], as-
suming Gaussian intensity distributions with known variance, i.e.:

ri (mi,x) = (I(x)−mi)
2 (3)

mi being the mean intensity value in region i. The Gaussian assumption has
practical limitations and is not valid in images showing more complex intensity
distributions. In a similar template deformation context, Saddi et al. [12] used
the more general non-parametric model:

ri (pi,x) = − log pi (I(x)) (4)

where pi is the intensity probability density function in region i. Estimating
global probability densities for the foreground and background using the whole
image still has limitations in practice. Especially critical are the cases of clut-
tered and heterogeneous backgrounds and the presence of low-frequency artifacts
such as illumination changes. Moreover, it may be difficult to obtain a precise
positioning of the boundary since the local contributions of nearby pixels from
both sides are diluted in the global estimation of the densities.
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To overcome these limitations, it is natural to turn to local models, assum-
ing smoothly-varying intensity distributions. In the Gaussian case with space-
dependent mean values, this leads to piecewise-smooth segmentation. The error
function reads:

ri (Ii,x) = (I(x)− Ii(x))2 + µi|∇Ii(x)|2 (5)

where Ii becomes a function that approximates I and is constrained to be smooth
inside region i; µi is the smoothing parameter. Vese and Chan [16], and simulta-
neously Tsai et al. [17], introduced a level-set formulation based on diffusion and
on the work of Mumford and Shah [18]. This diffusion scheme requires the itera-
tive resolution of a PDE with new boundary conditions at each update step (B),
which is computationnally costly. Methods based on Gaussian convolution were
recently proposed [19–21], giving qualitatively similar results in a more efficient
way. They enable the extrapolation of the model beyond the region boundary,
to an extent that depends on the kernel’s scale. In section 4, we present an alter-
native method based on finite elements with polynomial extrapolary properties.

2.2 Deformation models

Compliance with the shape prior is determined by the class of deformations al-
lowed by the regularization constraint R. Therefore it has to be chosen carefully.
In particular, R must take into account the fact that a shape is invariant to some
geometric, global transformations such as translation, rotation, scaling, shearing,
etc. For example, several instances of a same shape are shown on Fig. 1. Despite

Fig. 1. Several instances of a same shape

their different positions, orientations and sizes, they all represent the same shape.
Consequently, a relevant regularizer R shall not penalize such transformations.

Within the template matching context, a similarity transformation is used in
[15] to segment synthetic images, excluding more complex deformations; in the
non-rigid case, Saddi et al. [12] constrain the deformation with a diffeomorphic
fluid model, thus enabling the result to strongly deviate from the prior shape.

Methods based on local basis expansions of the deformation such as B-splines
[22, 23] or Radial Basis Functions [24, 25] provide a suitable compromise between
global and fluid models. As will be seen in the subsequent sections, we use a fi-
nite element registration framework based on a partition of unity, which enables
to easily control the globality of ψ. Moreover, unlike Free Form Deformation
methods, our regularization term does not penalize globally polynomial trans-
formations.
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3 Partition of Unity Finite Element Representation

In this section, we give an overview of the mathematical framework of the
PUFEM [26] that we use to represent a given scalar function: in our case, the
approximation images Ii in each region, and the components of the transforma-
tion ψ in each dimension. The basic idea is to locally fit the said scalar field
with d-dimensional polynomials and smoothly blend them afterwards to obtain
a regular representation.

Let F be a real-valued function defined on Ω. We define a set N of nodes
distributed over Ω. A node n ∈ N is characterized by:

– a point c(n) ∈ Ω, called center of the node,
– an open bounded subdomain Ω(n) ⊂ Rd containing c(n), called patch,
– a function ϕ(n) : Rd → R, called PU-function,
– a set of ρ(n) functions B(n) = {p(n)

r : Ω → R | r ≤ ρ(n)}, called the local basis.

We allow the patches to overlap and assume the families (Ω(n))n∈N and (ϕ(n))n∈N
to fullfil the Partition of Unity conditions:

Ω ⊂
⋃
n∈N

Ω(n) and ∀x ∈ Ω
∑
n∈N

ϕ(n)(x) = 1 (6)

For the sake of computational efficiency, our nodes are distributed over a regular,
rectangular array and each patch Ω(n) is a cuboid centered on c(n). This config-
uration is illustrated on Fig. 2.a. The PU-function ϕ(n) has a compact support
included in Ω(n); it is non-negative, equal to 1 at c(n) and vanishes with the
distance to c(n) (cf. Fig. 2.b). Thus, any point x ∈ Ω belongs to 4 patches in 2D,
and 8 patches in 3D, with weights given by the corresponding ϕ(n)(x). The basis

(a) Nodes and patches (b) PU-function

Fig. 2. Example of Partition of Unity configuration in 2D.

functions p(n)
r are the monomials of all degrees up to a user-defined maximum
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degree – e.g. in 2D and degrees up to 2: 1, x, y, x2, xy, y2 – centered on c(n), so
that F is locally modelled at node n by a polynomial F̃ (n):

F̃ (n) =̂
∑
r6ρ(n)

a(n)
r p(n)

r (7)

where the a(n)
r are real coefficients. The global representation is then constructed

by blending the F̃ (n) with the PU-functions:

F̃ =
∑
n∈N

ϕ(n)F̃ (n) =
∑
n∈N

∑
r6ρ(n)

ϕ(n)a(n)
r p(n)

r (8)

According to (8), F̃ (n) is as regular as the PU-functions per se. However, we
want to impose a controllable, “long range” regularization, or rather, globality. To
this end, we introduce the notion of non-conformity between two neighbouring
nodes m and n through the energy:

S(m,n)
κ (F̃ ) =

∫
Ω(m,n)

∑
|β|6κ

ϕ(m)ϕ(n)
(
DβF̃ (m) −DβF̃ (n)

)2

(9)

where β = (β1, β2, . . . , βk) and Dβ is the partial derivative operator in the
standard multi-index notations. This local energy has an intuitive interpretation:
it penalizes F̃ if its local representations at nodes m and n and their derivatives
up to order κ differ in the overlapping region Ω(m,n). The total conformity energy
is then defined by:

Sκ(F̃ ) =
1
2

∑
n∈N

∑
m∈V(n)

S(m,n)
κ (F̃ ) (10)

where V(n) is the set of neighbours of node n in 4-connexity. This inter-node
conformity constraint is a key feature of our method. It enables smooth repre-
sentations of the region intensity models, that are naturally extrapolated beyond
the boundary. As for the representation of the deformation, this energy is zero
when all the local representations are equal, i.e. when ψ is globally polynomial.
Thus, in the case of local affine bases, global translation, rotation, scaling and
shearing are not penalized.

4 Piecewise-smooth segmentation with Competitive
Deformation

We now detail our two-phase, piecewise-smooth segmentation formulation cast-
ing the Competitive Deformation problem into the PUFEM framework.

4.1 Our formulation

We address the deformation of the template characteristic function χ through
its corresponding displacement vector field u = ψ− id, the components of which
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are represented as in (8) by sets of coefficients that we pile up into one vector a.
The regularization term R(ψ) in (2) takes the form of an inter-node conformity
constraint Sκ(a), defined as the sum of the constraints on each component of u.

In region i, I is approximated by a locally polynomial image Iαi
i , represented

over a set of nodes Ni by a set of coefficients αi according to (8) and (7):

Iαi
i =

∑
n∈Ni

ϕ
(n)
i I

(n)
i where I

(n)
i =

∑
r6ρ(n)

i

α
(n)
ir p

(n)
ir (11)

Most existing piecewise-smooth methods include regularization inside each phase
(e.g. see (5)). Consequently, Ii is not explicitly defined outside region i. We apply
an inter-node conformity constraint Sκi

(αi) involving all the nodes of Ni, so that
our energy functional reads:

E(a,α1,α2) =
∫
Ω

χ ◦ ψa (I − Iα1
1 )2 +

∫
Ω

(1− χ ◦ ψa) (I − Iα2
2 )2

+ γ Sκ(a) + µ1 Sκ1(α1) + µ2 Sκ2(α2) (12)

We minimize (12) by alternating steps (A) and (B) (see section 2) until con-
vergence.

4.2 Step (A): Estimating the image approximations

Minimization w.r.t. the parameter set αi is achieved, considering the energy:

Ei (αi) =
∫
Ω

χi (I − Iαi
i )2 + µi Sκi

(αi) (13)

where we define χ1 = χ ◦ψ and χ2 = 1− χ ◦ψ. The first term is a masked least
square term that enforces Ii to fit the image within region i. The second term is
an inter-node conformity constraint that compels Ii to be regular everywhere in
Ω. In other words, Ii results from a regularized approximation of I inside region
i, and since no fitting constraint is imposed outside, it is extrapolated beyond
the region border by regularization only.
Sκi is a quadratic function of the parameters αi and hence so is Ei. Minimiza-

tion is then achieved by classical linear regression. Saying that the derivatives of
Ei w.r.t. the α(n)

ir vanish provides a system of linear equations which is sparse,
since the nodes are only related to each other in 4-connexity, due to the overlap
pattern between the patches (see Fig. 2.a). More precisely, we need to solve:

Mi ·αi = gi (14)

where Mi is a symmetric, non-negative definite matrix of size
∑
n ρ

(n)
i , and gi

a vector of length
∑
n ρ

(n)
i . Their entries are given in the appendix. We use a

Conjugate Gradient descent, well-suited for solving sparse linear systems [27].



8 O. Somphone, B. Mory, S. Makram-Ebeid, L. D. Cohen

4.3 Step (B): Template Registration

We show that step (B) is equivalent to a classical registration problem based on
a Sum of Square Difference criterion. Let χ̂ be the signed characteristic function
of the prior foreground Σ:

χ̂(x) =
{

1 if x ∈ Σ
−1 otherwise (15)

Then we can replace χ by (1 + χ̂)/2 in (12). The region parameters αi being
fixed, the energy to minimize w.r.t. a is:

−1
2

∫
Ω

(χ̂ ◦ ψa) r + γ Sκ(a) (16)

where r = (I − Iα2
2 )2 − (I − Iα1

1 )2. By writing:

χ̂ ◦ ψa r = −1
2

(
(χ̂ ◦ ψa − r)2 − (χ̂ ◦ ψa)2 − r2

)
(17)

and since (χ̂ ◦ ψa)2 = 1 and r2 is independent of the parameters a, we can reduce
the energy to minimize to:

Eu(a) =
1
4

∫
Ω

(χ̂ ◦ ψa − r)2 + γ Sκ(a) (18)

Therefore step (B) boils down to an SSD-based registration problem, with r
being the reference and χ̂ the template. Minimization of Eu follows a global-to-
local strategy: we define a coarse-to-fine dyadic pyramid of node distributions.
Once the solution has been computed at one level, it is projected on the basis
of the next finer level to provide an initialization. A detailed description of the
minimization scheme is out of the scope of this paper and can be found in [28].

5 Results and discussion

We first present results on illustrative synthetic, noisy images (see Fig. 3). The
first image, “χ”, consists of two heterogeneous phases. The results show the
robustness of our method to noise and strong intensity variations. The extrap-
olatory property is illustrated by figure (d) of the first line. The second image,
“Treble Clef”, consists of a homogeneous foreground on a heterogeneous back-
ground and contains occluding objects. The final segmentations are robust to
occlusions and leaks.

We then apply our method to segment heart chambers on cardiac ultrasound
(Fig. 4) and cine MR (Fig. 5) images. The final deformations are well-constrained
so that the topologies of the prior shapes are preserved. On the MR images, the
foreground region shall include the papillary muscles when segmenting the blood
pool, which is challenging as they appear darker an may be confused with the
myocardium.
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“χ” and its prior shape “Treble Clef” and its prior shape

(a) (b) (c) (d) (e)

Fig. 3. Synthetic images “χ” and “Treble Clef”: (a) Initializations. (b) Final segmenta-
tion. (c) Final piecewise-smooth approximations χI1 + (1−χ)I2. (d) Final background
approximations I2. (e) Final deformations.
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(a) (b) (c) (d)

Fig. 5. Cardiac MR long-axis images, two-chamber (first line) and four-chamber (sec-
ond line) views: (a) Initializations. (b) Final segmentations. (c) Final piecewise-smooth
approximations χI1 + (1−χ)I2. (d) Final deformations. Papillary muscles are pointed
at by arrows.

On Fig. 6 we compare three deformation models: affine, PUFEM, and fluid.
An affine deformation (a) is obviously too restricted to obtain an accurate seg-
mentation from the prior shape that is used (Fig. 5.a bottom). On the opposite,
the fluid model (c) allows strong local deformations and hence strong deviations
from the prior shape. This is visible on the lower part of the right ventricle seg-
mentation where we can see a curvature inversion when compared to the prior,
and a consequent exclusion of the papillary muscles. The PUFEM model (b)
provides a good compromise to have both accuracy and compliance with the
prior shape.

6 Conclusion

We introduced a novel variational approach for two-phase, piecewise-smooth
image segmentation based on prior shape Competitive Deformation. We cast our
formulation into the Partition of Unity Finite Element framework, motivated by
its long-range regularization properties, suitable for the class of transformations
that is needed to abide by the shape prior. Indeed, the inter-node conformity
constraint provides a good control over the globality of the deformation and does
not penalize basic global transformations. This framework is also well-adapted
for representing the region intensity models as smooth approximations of the
original image on its whole domain. Our algorithm was successfully applied to
challenging synthetic images and to medical images, with robustness to noise,
occlusions and leaks.



12 O. Somphone, B. Mory, S. Makram-Ebeid, L. D. Cohen

(a) (b) (c)

Fig. 6. Comparison between three deformation models. Final segmentations are dis-
played on the first line and final deformations on the second line. (a) Affine model. (b)
PUFEM model. (c) Affine + fluid model [12].

Appendix: entries of Mi and gi

Estimating the image approximation in region i (step (A) in the minimization
of the functional (12)) boils down to the matricial equation:

Mi ·αi = gi (19)

where Mi is a symmetric, non-negative definite matrix of size
∑
n ρ

(n)
i , and gi

a vector of length
∑
n ρ

(n)
i . Their entries are given by:

mi
(r,n)(s,m) =

∫
Ω

ϕ
(m)
i ϕ

(n)
i

χi p(m)
is p

(n)
ir − µi

∑
β6κi

Dβp
(m)
is Dβp

(n)
ir


+ δmn µi

∫
Ω

ϕ(n)
∑

β6κi

Dβp
(n)
is D

βp
(n)
ir (20)

gi(r,n) =
∫
Ω

χi ϕ
(n)
i p

(n)
ir I (21)

δmn being the Kronecker delta equal to 1 if m = n and 0 otherwise. Since the
support of a PU-function is included in the corresponding patch, mi

(r,n)(s,m)

equals zero when Ω(m) ∩ Ω(n) = ∅, i.e. when m and n are not neighbours in
4-connexity. Hence the sparseness of Mi.
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