
How to Use SIFT Vectors to Analyze an Image
with Database Templates

Adrien Auclair1, Laurent Cohen2, and Nicole Vincent1

1 CRIP5-SIP, University Paris-Descartes,
45 rue des Saint-Pères, 75006 Paris, France

{adrien.auclair,nicole.vincent}@math-info.univ-paris5.fr
2 CEREMADE, University Paris-Dauphine,

Place du Maréchal De Lattre De Tassigny 75775 PARIS, France
cohen@ceremade.dauphine.fr

Abstract. During last years, local image descriptors have received much
attention because of their efficiency for several computer vision tasks
such as image retrieval, image comparison, features matching for 3d re-
construction... Recent surveys have shown that Scale Invariant Features
Transform (SIFT) vectors are the most efficient for several criteria. In
this article, we use these descriptors to analyze how a large input im-
age is formed by small template images contained in a database. Affine
transformations from database images onto the input image are found
as described in [16]. We introduce a filtering step to ensure that found
images do not overlap themselves when warped on the input image. A
typical new application is to retrieve which products are proposed on a
supermarket shelf. This is achieved using only a large picture of the shelf
and a database of all products available in the supermarket. Because the
database can be large and the analyze should ideally be done in a few
seconds, we compare the performances of two state of the art algorithms
to search SIFT correspondences : Best-Bin-First algorithm on Kd-Tree
and Locally Sensitive Hashing. We also introduce a modification in the
LSH algorithm to adapt it to SIFT vectors.

1 Introduction

In this article, we propose a method to analyze how a large input image is
formed by small template images contained in a database. Examples of images
to analyze are shown on figures 2.(a) and 2.(b). A typical application is to analyze
a picture of a supermarket shelf. The input is a large image of the shelf taken
in the supermarket. The database contains images of all the available products.
The output is a list of products contained in the image with their corresponding
positions.

Products in database and products on the supermarket shelf can be slightly
different. For example, a price sticker or a discount sticker can be added. Or
the product can be partly hidden (e.g., by the shelf itself, by a discount or
any decorative item). For these reasons, local descriptors matching is a natural
algorithm for this problem.

During last years, Scale Invariant Features Transform (SIFT) features [16]
have received much attention. It has been shown in a recent survey ([17]) that
it leads to the best results compared to other local descriptors. Several minor
modifications of the initial SIFT features have also been presented (PCA-SIFT
[12], or Gloh-SIFT [17]), but the gain is not obvious in all experiments. Thus,
we will only focus on the original SIFT descriptors in this article.

These SIFT features will be used to compute several affine transformations
between products in database and the input image. An important remark is
that some products in database can be very similar. For example, a brand icon
will appear on a large number of images in database. Thus, if the input image
contains a single product with this brand icon, all the database images having
this icon will be found by affine matching. We will thus need a filtering step that
will keep only a small subset among all found affine transformations. This filter
will use the fact that found templates images cannot overlap themselves in the
input image.

Because our goal is to propose an interactive solution, we compare two state
of the art optimization methods to search for SIFT correspondences. These al-
gorithms are related to the problem of finding approximate nearest neighbors in
high dimensional space. First one is based on Kd-Tree : Best-Bin-First algorithm
of [3]. Second one is using hash table : Locally Sensitive Hashing of [9]. We also
introduce a modification in the LSH algorithm to adapt it to SIFT vectors.

In the next sections, we first recall the SIFT construction algorithm and the
classical method we used to compute affine transformations from SIFT corre-
spondences. Then we introduce a filtering step to keep only valid matchings.
Eventually, we compare two optimization methods and introduce a modification
in LSH algorithm.

Used Databases Our goal in this article is to apply the described method to
an actual private database. It contains 440 images of supermarket products.
These images are compressed in JPEG. The image size approximately varies
from 100x100 pixels to 500x500 pixels. Images of database lead to more than
270.000 descriptors, each one being in <128. We call this database DB440.

We also tested our algorithm on the publicly available Amsterdam Library of
Object Images [8]. We picked the dataset where illumination direction changes,
using the gray-value images of size 384x288 pixels. Within this dataset, we used
the 1000 pictures that were taken from light position number 4 and camera
number 3. This database generates 170.000 local descriptors. Figure 1 shows
some images of this database, noted ALOI.

2 Using SIFT for Affine Matching

In this part, we introduce the first building blocks of our method : SIFT de-
scriptors and robust affine matching. More details about these two steps can be
found in [16].

Fig. 1. Four images from the ALOI database

2.1 Descriptors

Like any local descriptor algorithm, it can be split in two distinct steps. First
one is to detect points of interest where to compute the local descriptors. Second
one is to actually compute these local descriptors. The first stage is achieved by
finding scale-space extrema in the difference of Gaussian pyramid. A point is
said extremum if it is below or above its 8 neighbors at same scale and the 9
and 9 neighbors at up and down scale. Thus, a point of interest is found at a
given scale. Its major orientation is computed as the major direction of a patch of
pixels around its position. Then, the descriptor vector is computed at the feature
scale. It is a vector of 16 histograms of gradient. Each histogram contains 8 bins,
leading to a 128 dimensional descriptor.

Due to their construction, SIFT vectors are invariant by scale change and
rotation. And experiences show that they are also robust to small viewpoint
changes or illumination variations. This is particularly adapted to our problem
as our images (both input and database images) are taken from a frontal point
of view and templates from database can be rotated and scaled in the image to
analyze.

3 Finding Affine Matchings

As a pre-process step, SIFT vectors are computed from the input image, and
noted SIFTIN . All the descriptors from the database images have also been
extracted offline and are noted SIFTDB . Features of the ith database image are
noted SIFT i

DB . The first step is to identify correspondences between SIFTIN

and SIFTDB .

3.1 Linear Search

Each feature from SIFTIN is compared to each feature from SIFTDB and only
correspondences whose L2 distance is lower than a threshold ε are kept. For a
query feature q of SIFTIN , this can be seen as finding the ε− neighborhood of
q in SIFTDB . Once we have obtained for each descriptor of SIFTIN a list of its
neighbors in SIFTDB , these correspondences are fitted to affine transformations.
The goal of this fitting step is twofold. First, it is needed to remove outliers from
the correspondences. Then, it gives the mapping of database images onto the
input image.

3.2 Affine Fitting

In our experiments, database images and input images are taken from a frontal
point of view. The affine model is thus well adapted. An affine matrix transforms
a point p1 = (x1, y1) in the first image, to a point p2 in the second image :

p2 =
[
a b tx
c d ty

]
.

x1

y1

1

Fitting is achieved independently for each database image. For the ith im-

age in database, we consider correspondences between SIFTIN and SIFT i
DB .

These correspondences are fitted by several affine matrices corresponding to the
multiple occurrences of this database image within the input image.

As introduced in [16], all the correspondences are clusterized. Each corre-
spondence c between feature f1 in SIFTIN and feature f2 in SIFT i

DB can be
seen as a four dimensional point : c(θ, η, x, y) where θ is the rotation between
the orientations of f1 and f2, η is the scale ratio between f1 and f2, and (x, y)
is the coordinates of f1 in the input image. Each correspondence is projected in
a 4d grid. For being less sensitive to the grid tile sizes, each point is projected on
its two closest tiles on each dimension. Thus, a correspondence is projected in
16 tiles. Eventually, every cluster with at least 3 correspondences can be fitted
by an affine transformation and can be seen as a potential product match.

Estimating an affine matrix from a cluster of correspondences requires robust
method as outliers are common. We used a RANSAC [6] for this task. The affine
matrix needs only 3 samples (i.e., correspondences) to be estimated. Once the
matrix with the major consensus is obtained, it is optimized by least square.

4 Filtering Potential Images Occurences

Eventually, we obtain a list of potential template image occurrences. Each one
can be seen as a triplet :

〈i, A, n〉

where i is the index of the database image, A is the found affine matrix and
n is the number of SIFT correspondences that agree with this matrix.

Because several products of the database are very close (e.g., same brand
icons), some potential occurrences are incorrect. Some of them are also over-
lapping and a few ones are completely wrong. These wrong product matchings
are mostly due to affine matrices which were fitted with only 3 or 4 corre-
spondences. Our solution to filter these results is to set up a spatial checking.
Product matches are sorted according to the number of points supporting their
affine transformation, in decreasing order. Then, they are iteratively pasted in
this order onto the final result only if their underlying pixels have not already
been reached by another products. This is achieved with several threshold on the
number of pixels that must be free to paste a product match. Using this method,

correct product matchings with many SIFT correspondences are pasted first and
are accepted while wrong ones with few correspondences cannot be pasted and
are discarded. The final result is a list of the product matchings that does not
overlap themselves when warped on the input image.

(a) (b)

(c) (d)

Fig. 2. (a) : A supermarket shelf image to analyze, using DB440. (b) : A test image
made up manually from images of the ALOI database. Green painting is for being more
challenging. (c) and (d) : Found database images are warped on their found location
onto input image. Backgrounds of these result images are input images with lower
intensity.

The figure 2 shows the result of the previous algorithm on two input images.
Image 2.(a) contains twelve templates of 3 distinct products. Some of them are
partially hidden by their corresponding price stickers. The database contains 440
products. Image 2.(b) is made up manually from images of the ALOI database.
Some templates were pasted on a flower background, and partially occluded by
painting on it. Then a gaussian blur was applied. In both examples, database
templates images are correctly found.

The problem of this approach is it slowness. In the example of the figure
2.a, the input image contains 6475 descriptors and the DB440 database con-
tains 274.587 descriptors thus there are more than one milliard of euclidean
distances to compute. The table 1 shows the running time on our machine (Pen-
tium 1.7GHz) for the linear search. The time is of course linear in the number
of SIFT vectors in the database. For convenience, table 1 uses the number of
products in database (using an average value of 600 descriptors per database
image). It clearly shows that running times are far from acceptable for any in-
teractive application as soon as the database contains more than 10 products.
The two other steps of robustly computing affine transformations and check-
ing the spatial coherence are insignificant in time compared to the search of
SIFT neighbors. This is why in the next section, we present and compare two
optimization methods for searching nearest neighbors in high dimensional space.

Table 1. Computation time for linear search of SIFT correspondences

number of products in database time to compute correspondences

10 30 seconds

100 5 minutes

450 22 minutes

5 Optimization Methods

The presented algorithm is very slow because of the time needed to search for
SIFT correspondences. This is due to the large amount of 128 dimensional eu-
clidean distances to be computed. An idea explored in [12] was to reduce the
dimension of local descriptors using PCA. Changing from a 128 dimensional vec-
tor to a 36 dimensional vector is an interesting gain but still not enough to get
to interactive applications. Moreover, PCA-SIFT is a little less efficient in term
of quality (see [17]), thus we will not use this method. In [7], the authors prune
a large amount of the descriptors for each database image. But they say this
approach is only efficient for near-duplicate image detection. In our case, input
image and database images can have different lighting for example because of a
photographer using a flash on reflective surface. Images can be blurred because
of a bad focus. Thus, pruning many descriptors would lead to miss database
images with low quality. This is confirmed by our results as the number of SIFT
descriptors is sometime less than 10 for a correct affine matrix. Thus, pruning a
large amount of SIFT vectors would lead to miss some products.

Instead, we concentrate more on optimization algorithm for searching neigh-
bors in high dimensional spaces. Methods have been proposed in the literature
for exact nearest neighbors computation (one can find a review of this problem in
[1]). Tree based methods include Kd-Trees [4], Metric-Trees [18] or SR-Trees [11].

Kd-Tree hierarchically divide the space along one dimension at a time, choosing
the median value along this dimension as the pivot. Metric Trees use the same
concept but hyperplanes are not aligned with axis. SR-Trees merge the concepts
of rectangles trees (R*-Trees [2]) and similarity search trees that uses englobing
spheres (SS-Tree [19]).

In [15], the authors compare these tree-based exact nearest neighbors algo-
rithms. The metric-Tree method gives the best results. But even this algorithm
has a little gain compared to an exhaustive search. The results obtained in [15]
are not better that one order of magnitude in dimension 64. In fact, if the prob-
lem is to look for exact neighbors, there is no method that optimize much the
linear one presented in 3.1. This is especially true in high dimensional space
(i.e., with more than 20 dimensions). This particularity is known as the ’curse
of dimensionality’. Thus, we will focus on another class of algorithms which are
looking for approximate nearest neighbors (so called ANN problem).

5.1 Approximate Nearest Neighbors Problem

We restrict ourselves to two classes of algorithm : tree-based methods (hierar-
chical split of the space) and hashing methods. In the next sections, we will test
two state of the art algorithms, one of each class. The first one uses a Kd-Tree
coupled with the Best-Bin-First algorithm presented in [3]. The second one is
the Locally Sensitive Hashing method of [9]. Another method not presented here
uses Hilbert Curve to map the high dimensional space to a one-dimensional data
space. The search is then achieved in this space ([14]). One can then restrict the
search on some portions of the curve to find neighbors as done in [10] in a video
retrieval system.

Before presenting the tested methods, we need to define how accuracy will
be measured. The goal of these algorithms is to find for each query feature
q its ε − neighborhood(q) (i.e., all database features whose distance from q is
below a threshold ε). The ground truth is found by a linear search. Then, for
a given epsilon and for a query feature q, the optimized algorithm will give its
ε− neighborhoodapprox(q). We have of course :

ε− neighborhoodapprox ⊆ ε− neighborhood(q).

This is achieved by eliminating point further than ε from the found neigh-
borhood. The quality of an algorithm will be function of its time of execution
and of its recall value. Recall is averaged for a large amount of query points q :

mean value{q}

(
{ε− neighborhoodapprox(q)}

{ε− neighborhood(q)}

)
.

In our application, some products are detected with only a few correspon-
dences. This is why it is important to keep a high recall on this step of the
algorithm.

5.2 Using Best-Bin-First with Kd-Trees

Kd-Trees have been introduced in [4]. They are successful for searching exact
nearest neighbors when the dimensionality is small. In higher dimensional spaces,
this is not anymore true. In our case (i.e., dimension 128), it can only be used
for approximate nearest neighbors using the Best-Bin-First algorithm ([3]).

A Kd-Tree is constructed with all the features from the whole database.
Each node splits its point cloud into two parts according to a split plane. Each
split plane is perpendicular to a single axis and positioned at the median value
along this axis. Eventually, each leaf node contains one point. For exact search, a
depth first search is used to initialize the closest neighbor. Backtracking is then
achieved on a limited number of sub-branches that can have a point closer than
the current closest one.

The Best-Bin-First algorithm does not achieve a complete backtracking. To
limit its search, it keeps a list of node where search has already been done. This
list is sorted according to the distance between the query point and the split
plane of the given node. Then, instead of full backtracking from the initial leaf
found by the depth first search, backtracking is done on a limited number of
branches. The next branch to visit is the one at the head of the sorted list of
nodes. The user can then decide the number of branches to visit. We will call
this parameter Emax. When reducing its value, the user increases speed but more
neighbors are missed by the algorithm. Results are presented in section 5.5.

5.3 Using Locally Sensitive Hashing

This hashing has been introduced in [9]. It has been successfully used on image
retrieval in very large database [13]. The idea is that if two points are close,
they will be hashed with high probability in the same bucket of an hash table.
And if they are far, they will be hashed with low probability in the same bucket.
Because of the uncertainty of this method, points are hashed in several hash
tables using several hash functions.

More formally, points are hashed by l different hash functions gi, leading to
store points in l different hash tables. The hash functions are parametrized by
the number of hashed dimensions k. Each gi function is parametrized by two
vectors : Di =

〈
Di

0, D
i
1 . . . Di

k−1

〉
and Ti =

〈
ti0, t

i
1 . . . tik−1

〉
. Values of Di are

randomly drawn with replacement in [0...127]. Thresholds of Ti are drawn in
[0...C], where C is the maximum value of the vectors along one dimension. Each
gi maps <128 to [0...2k − 1]. gi(p) is computed as a k − bits string bi

0, b
i
1 . . . bi

k−1

such that :
bi
j = 0 if

(
p(Di

j) < tij
)

else 1.

This k − bits string is the hash index for the point p in the ith hash table.
To search for neighbors of a query point q, it is hashed by the l functions. Then,
the corresponding l buckets are linearly tested for points closer than the given
threshold ε. Modifying both l and k allows to tune the algorithm for speed or
accuracy. Because k can be chosen high (e.g., above 32), the destination space of

the hash functions can be too large. This is why a second hash function is added
to project the result of gi functions to an actual bucket index whose domain
is smaller. Because this will add collisions in the table, a third hash function
computes a checksum from the bit string. When going through the linked list of
a bucket, only points with the same checksum than the query point are tested.
After tuning, we choose to use l = 20 hash tables and to adjust k to choose
performance or efficiency. The algorithm is benchmarked in section 5.5.

5.4 Adapting LSH to the SIFT Vectors

(a) (b) (c)

Fig. 3. Histograms of SIFT vectors values along several dimensions : (a) Dimension 0
(b) Dimension 10 (c) Dimension 48

In the literature, some authors adapted nearest neighbor algorithms for non
uniform data distribution. BOND algorithm of [5] is a natural method for such
data. But the exact search method proposed in this article leads to a gain below
one order of magnitude that are not enough for our application. In [20], the
authors claim that LSH is not adapted for non uniform distribution and thus
create a hierarchical version of LSH.

Figure 3 shows the distribution of the coordinates of SIFT vectors on three
chosen dimensions. These figures were obtained from the 170.000 SIFT descrip-
tors from the ALOI database. But we obtained similar histograms using the
DB440. Histograms of figures 3.a and 3.b are almost representative of all the 128
histograms. Just a few ones are different (e.g., 3.c). These different distribution
are a consequence of the SIFT vectors construction. As explained in 2.1, each di-
mension is a bin where local gradients of a given direction are accumulated. This
direction is measured relatively to the major direction of the SIFT descriptor.
Thus, local bins which represent gradient of the same direction as the major one
are naturally the largest. Histogram of 3.c corresponds to dimension 48 which
accumulated gradient in a direction equal to the major one. But excepted a few
dimensions with this type of distribution, most of the histograms looks like 3.a
or 3.b.

The consequence is that coordinates of the 128 dimensional descriptors which
are very low are much more common than those with high values. Thus, when
the LSH threshold on one dimension is low, a large amount of points will be

projected in different buckets even if they are close. Accepting low thresholds
will thus lead to bad hash functions. For this reason, we tried to choose the
thresholds vectors Ti of the LSH hash functions in the range [min,max] where
min is much higher than zero. Experimentally, we tuned this range and found
that [60, 120] gives the best results.

We can analyze this modification by measuring the probability of collisions for
close points. We say two points are close if their distance is below the threshold
ε = 260. The probability of two close points to be projected by a hash function
in the same bucket is noted Pclose→same. The probability of two points which
are not close to arrive in the same bucket is noted Pfar→same. A family of hash
function is efficient if Pclose→same is relatively high and Pfar→same is relatively
low. These probabilities are experimentally measured, averaging the obtained
values over the 20 used hash functions. Results are shown in table 2.

Table 2. LSH probabilities of collisions

range to draw LSH thresholds Pclose→same Pfar→same

[0...C] 0.001 0.0002

[60...120] 0.008 0.0005

Using the range [60...120] multiplies Pclose→same by 8 while only multiplying
Pfar→same by 2.5. This confirms the fact that restricting the interval of hashing
thresholds leads to better hash functions. In the next paragraph, we will call this
method adaptedLSH and compare its performance to standard LSH.

5.5 Results

We benchmarked the three presented algorithms : BBF on Kd-Tree, LSH and
adaptedLSH. Tests were achieved on the two presented databases to ensure being
independent of the images. These databases contain respectively 270.000 and
170.000 SIFT vectors.

Figure 4 shows the speed gain of each optimized method, according to the
obtained accuracy. BBF algorithm on Kd-Tree is outperformed by both methods
based upon LSH. Obtaining a ratio of 70% with this algorithm on the DB440

database is almost no faster than using a linear search. If the requirement is to
be 100 times faster than linear search on the ALOI database, the LSH algorithm
still finds 70% of the neighborhoods, while the adaptedLSH method finds 90%
of the points. If the need is to find 80% of the points, adaptedLSH is twice faster
than LSH.

With the first input image, linear search time is around 21 minutes on our
machine. A gain of two order of magnitude means the same computation is
achieved in 13 seconds, while finding around 80% of the points. This quality is
good enough so that all the products found by the exact linear search are also
found by this approximate method. For an application that would require only

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

percentage of neighborhood found

tim
e

co
m

pa
re

d
to

 li
ne

ar
 s

ea
rc

h

LSH
BBF on Kd−Tree
adaptedLSH

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

percentage of neighborhood found

tim
e

co
m

pa
re

d
to

 li
ne

ar
 s

ea
rc

h

LSH
BBF on Kd−Tree
adaptedLSH

(a) (b)

Fig. 4. Results for Kd-Tree, LSH and adaptedLSH, using ε = 260 on (a) : DB440 and
(b) : ALOI.

20% of the correspondences, the required time for a query could be divided by
a factor 500 relatively to the linear search.

6 Conclusion

The contributions of this article are double. First we propose a complete algo-
rithm to analyze an input image using database template images. This work uses
the initial SIFT matching algorithm of [16]. It adds a filtering step to ensure that
found images do not overlap themselves when warped on the input images. Our
second contribution concerns speed limitations. We compared two optimization
algorithm for the approximate nearest neighbors problem. In these tests, LSH
outperforms the BBF-KdTree algorithm. We also introduce a modification in the
LSH algorithm to adapt it to the SIFT distributions. If the quality requirement
is to find 80% of the correspondences, this modified LSH is at least twice faster
than standard LSH. Comparatively to a linear search, the gain is of two order
of magnitude. Being able to keep a high percentage of the correspondences is
a major advantage for our application as it can be sensitive to missing points
because some templates matchings are based only on a few points. In the tested
images, result are encouraging as we exactly find all the database images at
their correct location. For these experiments, we tuned the parameters of the
optimization algorithm to find 80% of the SIFT correspondences. We plan to in-
vestigate performances of the overall algorithm in terms of recall-precision when
modifying the parameters of the LSH algorithm. Moreover, we believe that the
criteria we used to filter the matchings (i.e., the number of points validating the
found affine transformation) is not optimal.

References

1. Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-
dimensional spaces: Index structures for improving the performance of multimedia
databases. ACM Comput. Surv., 33(3):322–373, 2001.

2. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: an efficient and robust access method for points and rectangles. In SIG-
MOD ’90: Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, pages 322–331, New York, NY, USA, 1990. ACM Press.

3. Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In CVPR ’97: Proceedings of the
1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), page
1000, Washington, DC, USA, 1997. IEEE Computer Society.

4. Jon Louis Bentley. Multidimensional binary search trees used for associative search-
ing. Commun. ACM, 18(9):509–517, 1975.

5. Arjen P. de Vries, Nikos Mamoulis, Niels Nes, and Martin Kersten. Efficient k-nn
search on vertically decomposed data. In SIGMOD ’02: Proceedings of the 2002
ACM SIGMOD international conference on Management of data, pages 322–333,
New York, NY, USA, 2002. ACM Press.

6. Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

7. Jun Jie Foo and Ranjan Sinha. Pruning sift for scalable near-duplicate image
matching. In James Bailey and Alan Fekete, editors, Eighteenth Australasian
Database Conference (ADC 2007), volume 63 of CRPIT, pages 63–71, Ballarat,
Australia, 2007. ACS.

8. Jan-Mark Geusebroek, Gertjan J. Burghouts, and Arnold W. M. Smeulders. The
Amsterdam library of object images. Int. J. Comput. Vision, 61(1):103–112, 2005.

9. Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In The VLDB Journal, pages 518–529, 1999.

10. Alexis Joly, Carl Frélicot, and Olivier Buisson. Feature statistical retrieval applied
to content-based copy identification. In ICIP, pages 681–684, 2004.

11. Norio Katayama and Shin’ichi Satoh. The sr-tree: an index structure for high-
dimensional nearest neighbor queries. In SIGMOD ’97: Proceedings of the 1997
ACM SIGMOD international conference on Management of data, pages 369–380,
New York, NY, USA, 1997. ACM Press.

12. Yan Ke and Rahul Sukthankar. Pca-sift: A more distinctive representation for
local image descriptors. In CVPR (2), pages 506–513, 2004.

13. Yan Ke, Rahul Sukthankar, and Larry Huston. An efficient parts-based near-
duplicate and sub-image retrieval system. In MULTIMEDIA ’04: Proceedings of
the 12th annual ACM international conference on Multimedia, pages 869–876, New
York, NY, USA, 2004. ACM Press.

14. Jonathan K. Lawder and Peter J. H. King. Querying multi-dimensional data
indexed using the hilbert space-filling curve. SIGMOD Record, 30(1):19–24, 2001.

15. Ting Liu, Andrew W. Moore, Alexander G. Gray, and Ke Yang. An investigation
of practical approximate nearest neighbor algorithms. In NIPS, 2004.

16. David G. Lowe. Distinctive image features from scale-invariant keypoints. In
International Journal of Computer Vision, volume 20, pages 91–110, 2003.

17. Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local
descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615–1630, 2005.

18. Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric
trees. Inf. Process. Lett., 40(4):175–179, 1991.

19. David A. White and Ramesh Jain. Similarity indexing with the ss-tree. In ICDE
’96: Proceedings of the Twelfth International Conference on Data Engineering,
pages 516–523, Washington, DC, USA, 1996. IEEE Computer Society.

20. Zixiang Yang, Wei Tsang Ooi, and Qibin Sun. Hierarchical, non-uniform locality
sensitive hashing and its application to video identification. In ICME, pages 743–
746, 2004.

