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ABSTRACT

This paper proposes a novel algorithm to reconstruct a 3D
surface from a calibrated set of images. In a first pass, it uses
Scale Invariant Features Transform (SIFT) descriptor corre-
spondences to drive the deformation of a mesh toward the
true object surface. We introduce a method to handle the
fact that these local descriptors are computed at positions that
are not projections of mesh vertices in the images. In order
to avoid projective deformations due to the large windows
of interest of this descriptor, correspondences are only com-
puted between images from the same viewpoint. This is used
in a first pass to recover large concavities of the object. In
a second pass, a one dimensional Lucas-Kanade tracker is
used to recover small scale details. Using publicly available
benchmarks, our algorithm obtains high accuracy while being
among the fastest ones.

Index Terms— Multi-view Stereovision, Deformable
Surface , SIFT, Lucas-Kanade Tracking.

1. INTRODUCTION

The reconstruction of 3D shapes from images has been a very
active research field during last years and literature is vast.
Most algorithms use the fact that if a 3D position in space
belongs to the object surface, pieces of images around projec-
tions of this 3D point must be similar. This photo-consistency
constraint can be evaluated locally by computing a normal-
ized cross correlation (NCC) or as a simple sum of square
differences (SSD) of pixel intensities. For example, in [1],
the authors compute this correlation on all the vertices of a
3D grid and then use a deformable model to converge to the
surface that minimizes these local correlations (adding a sil-
houette and a smoothness force). Some other methods work
on a voxelisation of the space and use a graph cut approach
to find the surface that minimizes an energy based on locally
computed correlations ([2], [3]). Most of the existing methods
use similar low-level photo-consistency measures but differ
in the minimization algorithm. In recent algorithms, features

correspondences are used to intialize 3D patches and then a
process of expanding and filtering is used to approach the true
object leading to excellent results [4].

In this article, we propose to evaluate the photo-consistency
with more advanced local image descriptors. We chose to use
the SIFT descriptors introduced in [5] as they obtain the best
results in the comparative study of [6]. In a first pass, these
descriptors are used to drive the deformation of a mesh to-
ward the true object surface. In a second pass, SSD is added
to the model to recover small scale details.

In our deformable framework, the current 3D surface of
the object is noted S. The n input images are noted {Ii}i∈1..n.
The projection matrix of the ith camera is noted Πi. Inversely
the projection of a pixel from camera i to its closest point of
the surface S is noted Π−1

i . We note Rt→c the result of the
projection of S, textured using image It, in camera c :

Rt→c = Πc ◦Π−1
t (It) (1)

Local photo-consistency measures are classically com-
puted between views taken from different cameras (i.e., be-
tween Ic and It with c 6= t). This is a problem as a square
window in one image does not correspond to a square win-
dow in another image. Some algorithms use the hypothesis
that the surface is locally planar and thus patches in two dif-
ferent images are related by a homography. This is a valid
approximation if windows of interest are not too large. But
this may be wrong especially when considering large patches
as used by SIFT descriptors. Thus, we introduce a method
to search correspondences between descriptors from images
issued from the same viewpoints using equation 1. The first
image is one of the input image (e.g. image Ic) and the sec-
ond one is a synthesis image of the current approximation of
the surface from the same viewpoint (e.g., one image Rt→c).

A theoretical motivation for this method is that for c and
t being close cameras, images Ic and Rt→c are identical (ex-
cept for illuminations changes) if S is the true object surface
and if the following condition on the shape of the object is
verified :



∀x ∈ Ic,
[
Ot, Π−1

c (x)
[ ∩ S = ∅ (2)

If this is verified, as S converges to the true surface ob-
ject, Rt→c converges to Ic and it will be easier and easier
to find correct correspondences. This is an advantage com-
paratively to algorithms that search correspondences between
images from different viewpoints.

This deformation scheme is able to retrieve large concav-
ities of the object. But because the positions of the SIFT de-
scriptors are sparse on the images, small scale details cannot
be found. To obtain detailed reconstruction, a one dimen-
sional Lucas-Kanade tracker is then added in a second pass to
minimize SSD. The novelty is that we introduce a way to use
it in images from the same viewpoint. We demonstrate the ac-
curacy of our approach on the publicly available benchmark
of [7].

2. SURFACE EVOLUTION FRAMEWORK

2.1. Initialization

The visual hull of the object is used to initialize the surface as
a triangular mesh. Images are first segmented as object and
background. Then, the 3D space is represented as a grid of
voxels. For each voxel, the number of times its projection is
within the object is counted and an isosurface is then extracted
using a marching cube algorithm.

2.2. Evolution

A force based approach is chosen to drive the triangular mesh.
Each vertex v is attracted by three forces :

F (v) = wpFp(v) + wcFc(v) + wsFs(v) (3)

Fc is a silhouette force, as defined in [8]. It attracts points
detected as contour generators to a position coherent with the
silhouette of the object. This requires that the silhouettes must
have been precomputed. The distance maps to the silhouettes
are computed off-line using a fast marching algorithm. A ver-
tex v is detected as a contour generator in camera c if Πc(v)
is close to the boundary of Πc(S). Using the distance map,
the closest pixel pv on silhouette of image c is found. We note
Xc the closest point of v on the ray of the camera c passing
through pv . The corresponding force is Fc(v) = Xc − v.
The force Fs is a smoothness force, computed as a first order
Laplacian operator on the mesh ([1]). The force Fp attracts
the vertex to a position for being more photo-consistent with
the images. The weight wp, wc and ws are used to balance
the effects of the three forces.

In the next section, a force Fp, driven by SIFT correspon-
dences is introduced. The goal of this force is to deform the
mesh to recover large concavities of the object, starting with
the visual hull. In section 4, this force is computed differently
to retrieve small scale details.
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Fig. 1. Scene notations. Oc and Ot are cameras origins.

3. INTEGRATING SIFT CORRESPONDENCES

Considering one camera c, the classical SIFT algorithm de-
scribed in [5] is used to find points of interest and their de-
scriptors in Ic and in retroprojection images Rt→c where t
is a camera close to c (i.e. cameras having similar viewing
angle to the scene). The positions of these points are re-
spectively noted {xi

c} and {rj
t→c}. When searching for cor-

respondences, we only accept pairs that verify the epipolar
constraint. This constraint states that a correspondence be-
tween xi

c in Ic and rj
t→c in image Rt→c can be accepted only

if the distance between Πt ◦Π−1
c (rj

t→c) and the epipolar line
of xi

c in camera t is below a certain threshold. Among the
possible correspondences, we select the one that minimizes
the distances between the descriptors.

3.1. Computing forces from point correspondences

We note (xc, rt→c) an accepted and true correspondence for
a pair of close cameras (c, t), xc being a point in image Ic

and rt→c its corresponding position in Rt→c. If the surface S
was the exact surface object, the vector (xc− rt→c) would be
zero. Thus, we search which surface modification cancels this
vector. We note Xc the antecedent of xc : Xc = Π−1

c (xc).
Xt is the antecedent of rt→c : Xt = Π−1

c (rt→c). And xt is
the projection of Xt in image It (see figure 1). If the surface
was correct, we would have :

Πc ◦Π−1
t (xt) = xc (4)

This is equivalent to say that the ray starting at xt in cam-
era t intersects the surface at a 3D point whose projection
in camera c is xc. We note Xnew the position of this point.
It is obtained as the intersection of the 3D rays (Ot, xt) and
(Oc, xc)).

A major problem is that the point Xc is not a vertex of
the mesh and a force that directly attracts this point to Xnew

cannot be defined. Thus, a force is computed for each vertex
that is part of the triangle containing Xc. On figure 2, these
vertices are p1, p2 and p3, having normals ~n1, ~n2 and ~n3. We
note p′1,p′2 and p′3 these points translated along their normals
such that the triangle formed by these new points is parallel to
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Fig. 2. Computing the force due to one SIFT correspondence.

the triangle (p1, p2, p3) and contains Xnew. The force applied
to the vertex p1 is defined as : F (p1) = p′1 − p1. The same
principles applies to p2 and p3.

For all couples of close cameras, for all SIFT correspon-
dences, forces computed at three vertices as explained above
are computed and stored in a list for each vertex. For a given
vertex v, the average of its forces is computed and used as
photo-consistency force Fp(v). This first deformation scheme
is applied until the maximum motion of a vertex is under a
certain threshold. The most important surface evolution ob-
served is that large concavities are recovered. Figures 4.(c)
are examples of resulting surfaces after this first pass has been
applied.

4. ADDING A MORE LOCAL TERM

Because of the sparsity of the SIFT points, the first pass
described in previous section cannot find low scale details.
Thus, in a second pass, a photoconsistency force computed
per vertex is added to recover these details. This force locally
deforms the surface to be more photo-consistent according to
a SSD measure.

The algorithm we propose benefits from the fact that we
search correspondences between images free of projective de-
formation. Considering a window centered at the projection
xc of a vertex v in camera c (see figure 3), we want to find
the position of the window in the retroprojection Rt→c that
minimizes the SSD. The most common tool to achieve this is
the two dimensional Lucas-Kanade features tracker [9]. This
tool is powerful in many cases but our problem is difficult as
both patches may be largely different because of the current
surface error. Thus, we propose to use the epipolar geometry
to reduce the search to a one dimensional space that is much
more robust. This would be simple if the patch similar to a
window around xc was searched along the epipolar line of xc

in camera t (noted epit(xc)), using Πt ◦ Π−1
c (xc) as starting

position. But this would suffer from projective deformation.
This is particularly true when using a multi-level implementa-
tion of the Lucas-Kanade that works on large window at high
scale.

Instead of tracking along epit(xc), the point is searched
in an equivalent direction in image Rt→c. To achieve this, the
surface S at v is locally approximated by a plane of normal n.
The line epit(xc) is projected on this plane (noted epi3D on

Oc

xc

n

xt epiretrot (xc)
epit(xc)

Ot

v epi3D

Fig. 3. Retroprojection of the epipolar line.

figure 3) and then retroprojected by Πc in Rt→c. The obtained
line is noted epiretro

t (xc). Using [9], the displacement d that
minimizes the SSD along this line of unit director vector dir
is solution of :

(∑
Wc

(g.dir)2
)

.d =
∑
Wc

((Ic −Rt→c).(g.dir)) (5)

where Wc is the window of interest around xc and g the
image intensity gradient of Ic. This system is applied recur-
sively in a Newton-Raphson manner to minimize the SSD be-
tween windows of interest in Ic and Rt→c. Points whose gra-
dient along the direction dir is too small are not tracked.

Once the projection of a vertex v has been tracked using a
couple of images Ic and Rt→c, a method similar to the one of
3.1 is used to compute a force to apply to v. The major differ-
ence is that instead of computing forces for three vertices of
a triangle, the force is only computed for vertex v. Then, it is
similarly added to the list of forces and used to compute the
average force Fp for each vertex.

5. IMPLEMENTATION

There are a few details that need to be explained for imple-
mentation. The first one is the computation of the functions
Π−1

c . In each camera, the mesh is rendered encoding triangles
labels in RGB channels. For a given pixel xc in camera c, the
label of the triangle containing Π−1

c (xc) is obtained imme-
diately by reading this rendered image at position xc. Then,
the exact position Π−1

c (xc) is computed as the intersection
between this triangle and the ray from camera c passing at xc.

Concerning mesh deformation, we require that the initial
visual hull has the correct topology. Then modifying topology
is avoided by using simple conditions on edges lengths, ver-
tices displacements and angles between triangles. This does
not theoretically prevent from any topological change but it
was sufficient in all our experiments. The first pass of the al-
gorithm is applied on large triangles to quickly recover large
concavities. Then, the second pass is applied to a mesh having
maximum edge length divided by two.



(a) One input image (b) Visual hull (c) After first pass (d) Final result (e) Other view

Fig. 4. Results on the evaluation datasets of [7]. (d) and (e) are final results of the algorithm.

6. RESULTS

We tested our algorithm on four datasets given in [7] (eval-
uations are available at http://vision.middlebury.
edu/mview/eval ). Figure 4 shows intermediate results
and the final surfaces. On the sparse dino dataset (16 views),
96.8% of the surface lies within 1.25mm of the ground truth.
Only a few methods obtain better completeness. Moreover,
our algorithm does not require a long step of exhaustively
processing correlations. Thus, it is several times faster than
similar algorithms. Still on the sparse dino dataset (16 views),
our algorithm runs in less than 30 minutes on a 2.3Ghz Intel
Core Duo machine which is among the fastest ones for this
level of accuracy.

7. CONCLUSION

In this article, we used a deformable scheme to reconstruct the
3D surface of an object from a set of calibrated images. There
are three new aspects in our contribution. First, SIFT cor-
respondences are searched between images virtually issued
from the same viewpoints. With this method, one does not
have to consider the projective deformations between patches
used by the points of interest descriptors. The second point
is that forces are computed per triangle and not per vertex.
The third point is the use of a one-dimensional Lucas-Kanade
tracker to refine the obtained surface. Again, this is achieved
between images free of projective deformation. Using pub-
licly available datasets, our algorithm obtains accuracy and
completeness that are slightly below the state of the art al-
gorithms but it is several times faster. Another advantage of
our algorithm is its simplicity comparatively to other meth-
ods with similar level of quality. In future work, we plan
to evaluate the precise impact of searching correspondences
with images from the same viewpoints.
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