
A Robust Approach for 3D Cars Reconstruction

Adrien Auclair1, Laurent Cohen2, and Nicole Vincent1

1 CRIP5-SIP, University Paris-Descartes,
45 rue des Saint-Pères, 75006 Paris, France

{adrien.auclair,nicole.vincent}@math-info.univ-paris5.fr
2 CEREMADE, University Paris-Dauphine,

Place du Maréchal De Lattre De Tassigny 75775 PARIS, France
cohen@ceremade.dauphine.fr

Abstract. Computing high quality 3D models from multi-view stereo
reconstruction is an active topic as can be seen in a recent review [15].
Most approaches make the strong assumption that the surface is Lam-
bertian. In the case of a car, this hypothesis is not satisfied. Cars contain
transparent parts and metallic surfaces that are highly reflective. To face
these difficulties, we propose an approach to robustly reconstruct a 3D
object in translation. Our contribution is a one-dimensional tracker that
uses the vanishing point computed in a first pass. We applied it to video
sequences of cars recorded from a static camera. Then, we introduce a
local frame for the car and use it for creating a 3D rough model. The final
result is sufficient for some applications where it is needed to estimate
the size of the vehicle. This model can also be used as an initialization
for more precise algorithms.

Key words: Structure From Motion, Feature Tracking, Surface Fitting,
RANSAC

1 Introduction

Automatic solutions for creating 3D digital representation of objects are needed
in many domains. A practical approach is to use a video as input. Having a
moving camera recording a static scene [14] can be useful to build a 3D model of
outdoor scenes, or object like statues in archeology. In this article, we deal with
the dual approach of having a static camera recording a moving rigid object.
Some articles use this configuration to build a high quality model of an object
that rotates on a turn-table in front of a static camera [5]. Many methods perform
well in the case the object has a rich enough texture and does not contain much
reflection or transparency. The recent review in [15] compares several algorithms
that give sub-millimeter precision with these conditions.

Most of the structure-from-motion algorithms make the hypothesis that the
object surface is Lambertian. This ensures that two images taken from two lightly
different points of view are not very different. With this hypothesis, and assum-
ing a rich texture on the surface object, a Lucas-Kanade based point tracker
coupled with robust pose estimation method (e.g., RANSAC [6]) and non linear



2 Adrien Auclair, Laurent Cohen, and Nicole Vincent

minimization (e.g., Bundle Adjustment step [18]) leads to good quality 3D point
cloud. Several books detail precisely these methods ([9],[13]).

Motivated by some industrial application, we chose to reconstruct a 3D model
of a car. Cars are challenging objects because the Lambertian assumption is
strongly violated, parts of the objects are transparent and large parts have no
texture. The lights for example are highly reflective surfaces behind a transparent
plastic surface. The wheels are parts of the object that are moving relatively to
the car. This leads to many difficulties for 3D reconstruction without priors. A
feature tracker would not be able to make any difference between a moving part of
the vehicle and an object of the environment reflected on the car surface. If there
is much reflection, the number of outliers among the tracked points could exceed
50 percent. Moreover, many steps of tracking or reconstruction measures are
based on photo-consistency over time. For example, the Lucas-Kanade feature
tracker [17] assumes that a window around a point remains constant within a
small interval of time. In some recent reconstruction algorithm, the depth of a
point is correct if its corresponding 2D positions in movie frames have a high
Normalized Cross Correlation score ( [7],[5]). This photo-consistency measure
cannot be used on cars because of highly reflective parts and transparency.

Our new approach is to use a two-pass features tracking to analyze the mo-
tion. The presented method can be used for building a 3D point cloud from
video sequence of an object in translation in front of a static camera. The trans-
lation hypothesis makes the algorithm robust by using the vanishing point and
achieves to track much more features. Then, we show that for cars, results still
contain outliers. We propose methods to filter the 3D point cloud. Our second
contribution is an approach to compute a local 3D frame for the car. Then, this
local frame is used to fit the point cloud to a simple 3D car model. Figure 1
shows some images of an input sequence we used. The overall advantage of our
method is to robustly build an approximate 3D model whereas other methods
could fail because of the reflections and the transparencies.

Fig. 1. Frames 20,40,60 and 100 of an input movie.

2 Structure from Motion for an Object in Translation

In the following section, we introduce a one dimensional feature tracker. Com-
pared to a traditional Lucas-Kanade based feature tracker, this two-pass tracker



A Robust Approach for 3D Cars Reconstruction 3

is more robust and tracks many more points. The output is used in a classical
structure from motion algorithm. At first, a two-views reconstruction is estab-
lished and then, other views are added iteratively, in a manner close to [14].
Internal parameters of the camera are computed off-line by using a chessboard
pattern.

2.1 Feature Tracking

The point tracker of Lucas-Kanade [17] is a well known algorithm. Its underlying
assumption is that a window around a point stays constant between two frames.
When applied to features on cars, this suffers from lighting changes, orientation
changes, reflections. Moreover, good features to track must contain gradients in
both directions, meaning they are corners. When using a Harris detector [8] on a
car image, there are only few of these points. This is a consequence of the lack of
texture on surfaces. Still, when using a pyramidal implementation of the Lucas
Kanade, as described in [3], a proportion of the corners are correctly tracked.

To increase the number of tracked points, the translation hypothesis is used.
In the case the object is translating in front of a static camera, and assuming
that radial distortion has been removed, each feature track is ideally projected
as a line on the focal plane of the static camera. All the feature lines are meeting
at a vanishing point. Knowing this point would allow to apply a one dimensional
tracking. In practice, the result of the bi-dimensional feature tracking does not
lead to perfect lines meeting at a single point. Still, some parts of the tracks can
easily be approximated by linear segments. A robust algorithm must then be
used to approximate the vanishing point. Some high precision algorithms have
been proposed [1]. In practice a RANSAC [6] framework is very efficient. Every
pair of lines is a sufficient subsample to compute a potential vanishing point.
The vanishing point is the one with the largest consensus.

In the traditional Lucas-Kanade tracker, the two dimensional displacement
d of a feature is solution of the linear system(∑

Wt

gg>

)
.d =

∑
Wt

(It − It+1)g , (1)

where Wt is the window of interest around a corner at time t, It the im-
age intensity value at time t, It+1 the image intensity at time t+ 1, g the image
intensity gradient. This system is applied recursively in a Newton-Raphson man-
ner to minimize the difference between windows at time t and t + 1. But once
the vanishing point is known, the bi-dimensional tracking is over-parametrized.
With this knowledge, the equation (1) can be simplified (with a proof very close
to the one from [17]) to a one dimensional equation :(∑

Wt

(g.dir)2
)
.d =

∑
Wt

((It − It+1).(g.dir)) , (2)



4 Adrien Auclair, Laurent Cohen, and Nicole Vincent

where dir is the direction from the feature to the vanishing point and d is
now a scalar representing the displacement along the vanishing direction.

In practice, we track features in two passes. At first, a bi-dimensional tracking
is done to compute the vanishing point. In a second pass, the features are tracked
by the one-dimensional tracker. As good features to track only need to have
gradient along the vanishing direction, this leads to much more tracks, resulting
in a better input for the structure from motion algorithm. The table 1 shows the
number of inlier points that are valid for reconstruction between two frames. For
the selected sequences and pairs of frames, the gain of our method is between
2.4 and 5.1. And on some sequences, the result of the bi-dimensional tracker is
too poor to be used directly in a structure from motion algorithm.

Table 1. Number of tracked points declared inliers by the reconstruction algorithm

2D tracker 1D tracker gain

Seq 1 138 405 2.9
Seq 2 118 508 4.3
Seq 3 73 370 5.1
Seq 4 55 134 2.4
Seq 5 75 348 4.6
Seq 6 37 120 3.2

2.2 3D Point Cloud Reconstruction

The algorithm we implemented is close to [14], except that it is adapted to
translation. At first, two frames are used for reconstruction. Then views are
added iteratively to complete and refine the 3D point cloud.

Initial Reconstruction from Two Frames A point x in a frame fi and its
correspondence x′ in the frame fj are linked by the fundamental equation :

x′TFx = 0 , (3)

where F is called the fundamental matrix. It encodes the spatial relationship
between the two cameras positions. In the particular case of translation, it can be
seen [9] that the fundamental matrix has the particular form of a skew-symmetric
3x3 matrix. If the vanishing point, which is equivalent in this special case to the
second epipole, is noted e′ = (xe, ye, ze), the fundamental matrix F is :

F = [e′]x =

 0 −ze ye

ze 0 −xe

−ye xe 0


Because computing the fundamental matrix can be unstable, this is very

valuable to get it directly from the vanishing point. The problem is that all the



A Robust Approach for 3D Cars Reconstruction 5

points conform to the fundamental equation (3). And thus it is impossible to
use the fundamental matrix as a filter between two views.

Using the internal calibration computed off-line, the fundamental matrix di-
rectly leads to external calibration ([9],[13]). Once the camera poses are known
for two frames, using the two 2D positions of a point to find its 3D position is
called triangulation. Again, because camera calibration is known, triangulation
is achieved in Euclidean space and thus, a simple linear method leads to good
quality 3D point cloud ([9], [10]).

Adding a View From the cloud of 3D points and their corresponding 2D po-
sitions in a new frame, there are several methods to compute the camera pose
for this frame. In case of pure translation, there are only three unknowns for
the camera external calibration. That could be reduced to one parameter as the
motion direction is known. But for not being too dependent of the vanishing
point computation, we look for the full 3D translation. The projection equations
lead to two equations for each couple 3D-2D. Thus we only need two 3D-2D
correspondences to compute a pose. Because of the small number of data sam-
ples needed to estimate a model, a RANSAC approach [6] fits very well to this
problem. Figure 2 shows a 3D point cloud with all the locations and orientations
of cameras used for reconstruction.

(a) (b)

Fig. 2. (a) Top view of the 3D point cloud and its bounding box. Cameras locations
are on a line on the side of the car. (b) Another reconstruction example. For nicer
display, point clouds shown here have been filtered using steps of section 3.

3 Cloud Filtering

Figure 3(a) shows the final result of the previous algorithm. There are still many
outliers. This is because there is no filtering on points yet. A first cloud is com-
puted from two views. Then other views are robustly added and the point posi-
tions are refined but none is rejected. In this section, we introduce two simples
filter that achieve efficient filtering for our 3D clouds.



6 Adrien Auclair, Laurent Cohen, and Nicole Vincent

(a) (b)

(c) (d)

Fig. 3. (a) Initial cloud. (b) Cloud filtered by retro-projection error below one pixel
(c) cloud filtered by retro-projection error below one pixel and feature tracked for at
least three frames. (d) Perspective view of the final filtered cloud

The first filter is to impose a threshold τ on the retro-projection error. For
a 3D point Xi that has been reconstructed from a subset of views F , the retro-
projection error err(Xi) is defined as :

err(Xi) = maxc ∈ F (‖Pc(Xi)− xc‖) ,

where Pc is the projection matrix for frame c and xc the 2D position of the
point in this frame. A 3D point Xi is declared outlier if err(Xi) > τ .

Figure 3(b) shows the result with a threshold τ of one pixel. With our exper-
iments, one pixel is the lowest acceptable value and setting a sub-pixel threshold
remove too many points. This is mostly because there is no non-linear optimiza-
tion in the presented algorithm. When using the bundle adjustment implemen-
tation of [12], the average value of the err(Xi) defined above can get below 0.1
pixels for more than 200 points. But this optimization is time consuming and
because our goal is to compute an approximate model, we skip it.

Filtering with the retro-projection error does not remove all the outliers.
Figure 3(b) still contains large outliers. Analyzing these points leads to several
potential sources of error. Some points are tracked only for the two initial recon-
struction frames. Thus, their retro-projection error is zero. Other points belong
to the shadow in front of the car. For a short distance, they have a displacement
that is very close to the car’s move. To filter these outliers, the chosen heuristic
is to reject a point if its triangulation has been done from less than n frames.
Figure 3(b) shows results for n=3. In practice, using n=4 or 5 ensures more
robustness.



A Robust Approach for 3D Cars Reconstruction 7

4 Building a 3D Car Model from the Point Cloud

The previous algorithm leads to a complex cloud of points. Some points on the
car surface are correctly reconstructed. Some interior parts of the car were re-
constructed as well. Several points on the wheels were forced to have a linear
track and surprisingly, it happens that they pass the previous filters and are
reconstructed at a wrong depth. Because of the complexity of the surface, some
reflected parts cannot be filtered by algebraic criteria ([16]). Thus we need to ro-
bustly approximate the point cloud by a simple model. We propose an approach
to establish first a local frame which has the same directions as the car. Work-
ing in this local frame, we approximate side part of the car by a second degree
polynomial function and front part by a higher degree polynomial function.

4.1 Computing the Local Frame

Because the camera positions are the dual of the object positions, the vector be-
tween successive camera centers gives the inverse 3D direction of the translation
of the car. We present here an approach to compute the missing horizontal di-
rection. Our underlying hypothesis is that a front view of the car would contain
many horizontal lines. At least, top and bottom lines of the license plate should
be detected. Thus, using the 3D point cloud, we generate a textured synthetic
front view of the car and then analyze it to find a major direction.

A front view virtual camera is positioned on an axis aligned with the motion
direction, and far enough from the object to include the bounding box in its field
of view. Its optical axis is pointing toward the point cloud (figure 4.a). To render
a textured synthetic view, a 3D surface is needed. But approximating the 3D
point cloud by a surface is a difficult problem. There exist general approaches
based on Delaunay tetrahedrization ([2],[4]). For the cars, we consider that the
3D surface is a range image from focal plane of the first camera in the sequence.
This allows to fit the points with a spline surface using the Multilevel B-Splines
Approximation algorithm of [11]. Figure 4.b shows a line version of the 3D spline
surface. Once this 3D surface is obtained, one can use any frame of the movie
to texture it. Figure 4.c shows the textured 3D spline surface. To reduce texture
projection error, it is a good choice to work with the camera whose optical axis
is the most aligned with the vehicle motion. In general, this is the first camera
of the movie. This figure shows that the result is good enough on the central
part of the front of the car.

Once this 3D textured surface is obtained, we used the virtual front camera
described above to render it for a front view. Edge detection is applied on the
synthetic view and then lines are detected using an Hough transform on this
edge image. By clustering the direction of the lines, the major direction (i.e.,
the horizontal one) is found. Figure 4.d shows a synthetic front view with the
detected lines and the major direction.



8 Adrien Auclair, Laurent Cohen, and Nicole Vincent

(a) (b)

(c) (d)

Fig. 4. (a) Virtual front view camera facing the point cloud. (b) The spline fitting on
the point cloud. (c) Same view but the spline has been textured with one frame on
the video sequence. Dark grey parts are spline surface nor reached by the projection of
the texture. (d) The textured spline of (c) has been rendered with camera of (a). All
detected lines are in green. Major direction is wider, in red.

4.2 Fitting a Polynomial Model on the Point Cloud

The 3D bounding box is now aligned on the frame of the car. Thus, its faces
have a high-level meaning relatively to the car (e.g, front face, side face). Using
this knowledge, our approach is to fit the side and front 2D profiles of the car
by two polynomial functions.

First, points are projected in the front plane of the bounding box. The car side
profile is then computed by fitting these 2D points by a second degree polynomial
function. Fitting polynomial functions is made as a least square problem but
because of the outliers in the cloud, it is required to use M-estimators (e.g., Tukey
or Huber). These estimators are used in an iterative re-weighted least square
algorithm. The obtained 2D profile is extruded in the car motion direction to
obtain the side 3D surface of the car model. Then, we apply the same procedure
for front profile. The 3D points are projected on the side face of the bounding
box. The front profile is given by the fitting of these points with a higher degree
polynomial function. This 2D profile is then extruded in the width direction to
obtain the complete front car 3D surface. Final step is to merge the side and
front surfaces to obtain the correct model (figure 5).



(a) (b)

(c) (d)

Fig. 5. A frame (a) of an input sequence and the reconstructed polynomial 3D model
(b). Another frame (c) from another sequence with the corresponding 3D model (d).

5 Conclusion

In this article, we introduced a complete algorithm to construct approximate
3D models of cars from video sequences. Our first contribution is to introduce
a one-dimensional tracker that makes use of the vanishing point computed in a
first pass. Then, we showed that some basic filters can clean-up the outliers that
were introduced by the translation hypothesis. Our second contribution is to
propose a method to work in a local frame for building the car model. This local
frame is computed without any external informations as markers on the road.
The obtained model is coarse but still useful for many applications. It can be
used directly to classify vehicles according to their dimensions. Moreover, having
established the local frame orientation is a strong and meaningful knowledge for
further algorithms. For example, the cloud bounding box dimensions correspond
to actual height, length and width of the car (at a certain scale). And one can
generate synthetic views from a point of view relative to the car (i.e., front view,
side view...) for higher-level interpretations. Our future work consists of exploring
methods to use this coarse model in a deformable scheme to achieve high quality
3D cars reconstruction. It could be used as an initialization surface and also to
generate a model-driven force to avoid collapsing through transparent surfaces
of the car.

References

1. A. Almansa, A. Desolneux, and S. Vamech. Vanishing points detection without
any a priori information. 25(4):502–507, april 2003.



10 Adrien Auclair, Laurent Cohen, and Nicole Vincent

2. Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust, unions
of balls, and the medial axis transform. Computational Geometry, 19(2-3):127–153,
2001.

3. Jean-Yves Bouguet. Pyramidal implementation of the Lucas Kanade feature
tracker, 2000.

4. T. Dey and S. Goswami. Tight cocone: A water-tight surface reconstructor, 2003.
5. Carlos Hernandez Esteban and Francis Schmitt. Silhouette and stereo fusion for

3d object modeling. Comput. Vis. Image Underst., 96(3):367–392, 2004.
6. Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm

for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

7. Michael Goesele, Brian Curless, and Steven M. Seitz. Multi-view stereo revisited.
cvpr, 2:2402–2409, 2006.

8. C. Harris and M. Stephens. A Combined Corner and Edge Detector. In 4th ALVEY
Vision Conference, pages 147–151, 1988.

9. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

10. Richard I. Hartley and Peter Sturm. Triangulation. Computer Vision and Image
Understanding: CVIU, 68(2):146–157, 1997.

11. S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel
B-splines. IEEE Transactions on Visualization and Computer Graphics, 3(3):228–
244, 1997.

12. M.I.A. Lourakis and A.A. Argyros. The design and implementation of a
generic sparse bundle adjustment software package based on the levenberg-
marquardt algorithm. Technical Report 340, Institute of Computer Sci-
ence - FORTH, Heraklion, Crete, Greece, Aug. 2004. Available from
http://www.ics.forth.gr/~lourakis/sba.

13. Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation to 3-D
Vision. Springer Verlag, 2004.

14. Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt Cornelis,
Jan Tops, and Reinhard Koch. Visual modeling with a hand-held camera. Int. J.
Comput. Vision, 59(3):207–232, 2004.

15. Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. A comparison and evaluation of multi-view stereo reconstruction algo-
rithms. cvpr, 1:519–528, 2006.

16. Rahul Swaminathan, Shree B. Kang, Richard Szeliski, Antonio Criminisi, and
Shree K. Nayar. On the motion and appearance of specularities in image sequences.
In ECCV (1), pages 508–523, 2002.

17. Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Tech-
nical Report CMU-CS-91-132, Carnegie Mellon University, April 1991.

18. Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle
adjustment – A modern synthesis. pages 298–375, 2000.


