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Abstract

The aim of this article is to build trajectories for virtual endoscopy inside 3D medical
images, using the most automatic way. Usually the construction of this trajectory is left to
the clinician who must define some points on the path manually using three orthogonal views.
But for a complex structure such as the colon, those views give little information on the shape
of the object of interest. The path construction in 3D images becomes a very tedious task and
precise a priori knowledge of the structure is needed to determine a suitable trajectory. We
propose a more automatic path tracking method to overcome those drawbacks: we are able
to build a path, given only one or two end points and the 3D image as inputs. This work is
based on previous work in (Cohen and Kimmel, 1997) for extracting paths in 2D images using
Fast Marching algorithm.

Our original contribution is to extend this technique to 3D and give new improvements
of the approach that are relevant in 2D as well as in 3D. We also introduce several methods
to reduce the computation cost and the user interaction. We also closely examine a fast
implementation of the path extraction. Synthetic and real medical images are used to illustrate
each contribution.

We show that this technique can be efficiently applied to the problem of finding a centered
path in tubular anatomical structures with minimum interactivity, and we apply it to path
construction for virtual endoscopy. Virtual endoscopy results are shown in various anatomical
regions (colon, brain vessels, arteries) with different 3D imaging protocols (CT, MR).

keywords : Deformable Models, Minimal paths, Level Set methods, Medical image
understanding, Eikonal Equation, Fast Marching, Virtual Endoscopy.

1 Introduction

Once a path is obtained in a CT or MR image, it can be used as input for virtual
endoscopy inside an anatomical object. This process consists in creating perspective
views of the inside of tubular structures of human anatomy along a user-defined path.
Clinicians are then provided with an alternative to the uncomfortable and invasive
diagnostic procedures of real endoscopy. Ordinarily, the examination of a patient
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pathology would require threading a camera inside his body. This new method skips
the camera and can give views of regions of the body difficult or impossible to reach
physically (e.g. brain vessels), the only requirement being X-ray exposure for CT
and sometimes the injection of a contrast product (dye or air) in the anatomical
objects, for better detection.

A major drawback in general remains when the user must define all path points
manually. For a complex structure (small vessels, colon,...) the required interactiv-
ity can be very tedious. If the path is not correctly build, it can cross an anatomical
wall during the virtual fly-through. Path construction is thus a very critical task and
precise anatomical knowledge of the structure is needed to set a suitable trajectory.
Our work focuses on the automation of the path construction, reducing the need for
interaction and improving performance, in a robust way, given only one or two end
points and the image as inputs.

We derived an automatic path tracking routine in 3D images by mapping this
path tracking problem into a minimal path problem between two fixed end points.
Defining a cost function inside an image, the minimal path becomes the path for
which the integral of the cost between the two end points is minimal. This minimal
path problem has been studied for ages by mathematicians, and has been solved us-
ing graph theory and dynamic programming (Dijkstra, 1959). (Cohen and Kimmel,
1997) solved the minimal path problem in 2D with a front propagation equation
between the two fixed end points, using the Eikonal equation (that physically mod-
els wavelight propagation), with a given initial front. Their approach has much in
common with Dijkstra’s but it has advantage of being consistent with the contin-
uous formulation of the problem and it avoids metrication error. Therefore, the
first step is to build an image-based measure that defines the minimality property
in the studied image, and to introduce it in the Eikonal equation. The second step
is to propagate the front on the entire image domain, starting from an initial front
restricted to one of the fixed points.

The propagation is done using techniques developed in (Sethian, 1996b): the
author proposed a method to propagate this front in a quick and efficient way. It
first considers the initial front implicitly defined as the zero level set of a higher-
dimension function, which evolves. This formulation, called level-sets method, al-
lows to manage front propagation problems due to complex curves and topological
changes. Then it uses an algorithm called Fast Marching, to quickly solve this new
front propagation problem.

The original contribution of this work is twofold. Firstly, we extend the minimal
path technique developed in (Cohen and Kimmel, 1997) to 3D images. We also
propose various improvements for this technique that are useful for image analysis
in 2D as well as in 3D. Secondly, we adapt this technique to the particular problem
of tubular anatomical structure extraction. This is applied to virtual endoscopy
through 3D medical images.

We show that the level set method can be efficiently applied to the problem of
finding a path in virtual endoscopy with minimum interactivity. A wide range of
application areas are envisaged from colon to brain vessels. We also propose a range
of choices for finding the right input measure to the minimal path tracking.
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This paper is organized as follows: In section 2, we summarize the method de-
tailed in (Cohen and Kimmel, 1997) for 2D images, and we extend this method to
3D. In section 3 we give details about our improvement made on the front prop-
agation technique, including faster path extraction schemes, reduction of the user
interaction, and we explain how to extract centered paths in tubular structures.
Finally in section 4, we show how to apply our method to virtual endoscopy for
several anatomical objects.

2 Finding minimal paths in 3D images

2.1 The Cohen-Kimmel Method in 2D

2.1.1 Global minimum for Active Contours

We present in this section the basic ideas of the method introduced by (Cohen
and Kimmel, 1997) to find the global minimum of the active contour energy using
minimal paths. The energy to minimize is similar to classical deformable models
(see (Kass et al., 1988)) where it combines smoothing terms and image features
attraction term (Potential P):

E(C) = /Q {@llC @I + wal|C"(s)|* + P(C(s)) }ds (1)

where C(s) represents a curve drawn on a 2D image, Q = [0, L] is its domain of
definition, and L is the length of the curve. It reduces the user initialization to
giving the two end points of the contour C. In (Cohen and Kimmel, 1997), the
authors have related this problem with the recently introduced paradigm of the
level-set formulation. In particular, its Euler equation is equivalent to the geodesic
active contours (Caselles et al., 1995). They introduced a model which improves
energy minimization because the problem is transformed in a way to find the global
minimum. It avoids the solution being sticked in local minima. Let us explain each
step of this method.

2.1.2 Problem formulation

Most of the classical deformable contours have no constraint on the parameterization
s, thus allowing different parameterization of the contour C to lead to different
results. In (Cohen and Kimmel, 1997), contrary to the classical snake model (but
similarly to geodesic active contours), s represents the arc-length parameter, which
means that ||C'(s)|| = 1, leading to a new energy form. Considering a simplified
energy model without any second derivative term leads to the expression E(C) =
[ {w||C"||> + P(C)}ds. Assuming that ||C’(s)|| = 1 leads to the formulation

B(C) = [ {w+ P(C(s))}ds 2)

We now have an expression in which the internal forces are included in the external
potential. The regularization of this model is now achieved by the constant w >
0. This term integrates as [, wds = w X length(C') and allows us to control the



Minimal paths in 3D, T. Deschamps, L. D. Cohen, June 26, 2000 4

smoothness of the contour (see (Cohen and Kimmel, 1997) for details).

Given a potential P > 0 that takes lower values near desired features, we are looking
for paths along which the integral of P = P+ w is minimal. The surface of minimal
action U is defined as the minimal energy integrated along a path between a starting
point py and any point p:

U(p) = inf E(C) = inf { / ﬁ(C(s))ds} (3)
0P Apg.p Q

where A, , is the set of all paths between p, and p. The minimal path between
po and any point p; in the image can be easily deduced from this action map.
Assuming that potential P is always positive, the action map will have only one
local minimum which is the starting point pg, and the minimal path will be found
by a simple back-propagation on the energy map. Thus, contour initialization is
reduced to the selection of the two extremities of the path.

2.1.3 Fast Marching Resolution

In order to compute this map U, a front-propagation equation related to equation (3)
is solved : % = %ﬁ. It evolves a front starting from an infinitesimal circle shape
around py until each point inside the image domain is assigned a value for U. The
value of U(p) is the time ¢ at which the front passes over the point p.

The Fast Marching technique, introduced by (Sethian, 1996b), was used by (Co-

hen and Kimmel, 1997) noticing that the map U satisfies the Eikonal equation:
VUl =P (4)

Classic finite difference schemes for this equation tend to overshoot and are unstable.
(Sethian, 1996b) has proposed a method which relies on a one-sided derivative that
looks in the up-wind direction of the moving front, and thereby avoids the over-
shooting associated with finite differences :

(max{u — U;_1j,u—U;14,0})° +
(max{u — Uy j_1,u — U;11,0})* = Pi?j (5)

giving the correct viscosity-solution u for U; ;. The improvement made by the Fast
Marching is to introduce order in the selection of the grid points. This order is
based on the fact that information is propagating outward, because action can only
grow due to the quadratic equation (5).

The algorithm is detailed in 3D in next section in table 1. The Fast Marching tech-
nique selects at each iteration the Trial point with minimum action value. This
technique of considering at each step only the necessary set of grid points was orig-
inally introduced for the construction of minimum length paths in a graph between
two given nodes in (Dijkstra, 1959).

Thus it needs only one pass over the image. To perform efficiently these operations in
minimum time, the Trial points are stored in a min-heap data structure (see details
in (Sethian, 1996b)). Since the complexity of the operation of changing the value
of one element of the heap is bounded by a worst-case bottom-to-top proceeding of
the tree in O(log, N), the total work is about O(N log, N) for the Fast Marching
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on a N points grid.

Finding the shortest path between any point p and the starting point pg is then
simply done by back-propagation on the computed minimal action map. It consists
in gradient descent on U starting from p until py is reached, p, being its global
minimum.

2.2 Extension to 3D minimal paths

We are interested in this paper in finding a curve in a 3D image. The application
that motivates this problem is detailed in section 4. It can also have many other
applications. Our approach is to extend the minimal path method of previous section
to finding a path C(s) in a 3D image minimizing the energy:

| PC(s)ds (6)

where Q = [0, L], L being the length of the curve. An important advantage of level-
set methods is to naturally extend to 3D. We first extend the Fast Marching method
to 3D to compute the minimal action U. We then introduce different improvements
for finding the path of minimal action between two points in 3D. In the examples
that illustrate the approach, we see various ways of defining the potential P. Our
new improvements on the method are valid as well for the 2D problem.

Similarly to previous section, the minimal action U is defined as

Up) = inf { /Q P(C(s))ds} (7)

Apg,p

where A, , is now the set of all 3D paths between py and p. Given a start point py,
in order to compute U we start from an initial infinitesimal front around py. The
2D scheme equation (5) is extended to 3D, leading to the scheme

(max{u — U;_1 jg, v — Uir11,0})* +
(max{u — Uij 1k, = Uijiir, 0})? + (8)
(max{u — U jr—1,u — Ui jks1, 0})? = Pz'2,j,1c

giving the correct viscosity-solution u for U; ; ;. The algorithm which gives the order
of selection of the points in the image is detailed in table 1.

Considering the neighbors of grid point (4,7, k) in 6-connexity, we study the
solution of the equation (8). We note {A;, Ay}, {B1, B2} and {C},Cy} the three
couples of opposite neighbors such that we get the ordering Uy, < Uy,, Ug, < Up,,
Ue, < Ug,, and Uy, < Up, < Ug,. To solve the equation, three different cases
are to be examined sequentially in table 2. We extend the Fast Marching method,
introduced by (Sethian, 1996b) and used by (Cohen and Kimmel, 1997) to our 3D
problem.

3 Several minimal path extraction techniques

In this section, different minimal path extraction procedures are detailed. We
present new back-propagation techniques for speeding up extraction, a one end-
point path extraction method to reduce the need for interaction, and a centering
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Algorithm for 3D Fast Marching

e Definition:

— Alive is the set of all grid points at which the action value has been
reached and will not be changed;

— Trial is the set of next grid points (6-connexity neighbors) to be examined
and for which an estimate of U has been computed using equation 8;

— Far is the set of all other grid points, for which there is not yet an estimate
for U;

o Initialization:
— Alive set is confined to the starting point pg, with Uy, = 0;
— Trial is confined to the six neighbors p of po with initial value U, = f’(p);
— Far is the set of all other grid points with Up,,. = oc;

e Loop:
— Let (4min, jmin, kmin) be the Trial point with the smallest action U;

— Move it from the Trial to the Alive set (i.e. U;,_; . . & is frozen);

— For each neighbor (%, j, k) (6-connexity in 3D) of (4min, Jmin, kmin):
* If (i, , k) is Far, add it to the Trial set and compute U using table 2;
* If (4, j, k) is Trial, recompute the action Uj jx, and update it.

Table 1: Fast Marching algorithm

path extraction method adapted to the problem of tubular structures in images.
The methods presented in this section are valid in 2D as well as in 3D and this is
an important contribution that can be useful for image analysis in general.

Examples in 2D are used to make the following ideas easier to understand. We
also illustrate the ideas of this section on two synthetic examples of 3D front propa-
gation in figures 1 and 3. Examples of minimal paths in 3D real images are presented
for the application described in Section 4.

3.1 Back-propagation methods

After discussing the previous back-propagation method, we show how we can limit
the front propagation to a subset of the image domain, for speeding-up execution.

3.1.1 Examples of front propagation

The minimal action map U computed according to the discretization scheme of
equation (7) is similar to convex, in the sense that its only local minimum is the
global minimum found at the front propagation start point py where U(py) = 0.
The gradient of U is orthogonal to the propagating fronts since these are its level
sets. Therefore, the minimal action path between any point p and the start point
po is found by sliding back the map U until it converges to py. It can be done with
a simple steepest gradient descent, with a predefined descent step, on the minimal
action map U, choosing p,.1 = p, — step X VU(p,). More precise gradient descent
methods like Runge-Kutta midpoint algorithm or Heun’s method can be used for this
path extraction. A simpler descent can be choosing p,y1 = ming,eighbors of pn} U(p),
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Algorithm for 3D Up-Wind Scheme
1. Considering that we have u > Ug, > U, > Ua,, the equation derived is

(w=Un,)? + (u—Us,)? + (u—Us,)* = P (9)
Computing the discriminant A; of equation (9) we have two possibilities

e If Ay >0, u should be the largest solution of equation (9);

— If the hypothesis u > Ug, is wrong, go to 2;
— If this value is larger than Uc,, go to 4;

o If Ay <0, at least one of the neighbors A;, By or Ci, has an action too
large to influence the solution. It means that the hypothesis v > Uc, is
false. Go to 2;

2. Considering that we have u > Up, > Ua, and v < Ug, , the new equation
derived is
(u=Ua,)” + (u—Us,)* = P’ (10)

Computing the discriminant A, of equation (10) we have two possibilities
e If Ay >0, u should be the largest solution of equation (10);

— If the hypothesis u > Up, is wrong, go to 3;
— If this value is larger than U, , go to 4;
e If Ay < 0, By has an action too large to influence the solution. It means
that uw > Usg, is false. Go to 3;

3. Considering that we have v < Up, and u > Ua,, we finally have u = Ua, + P.
Go to 4;

4. Return u.

Table 2: Solving locally the upwind scheme

but it gives an approximated path in the L; metric. Such a descent has no more the
property of being consistent. As an example, see in figure 3 the computed minimal
action map for a 3D potential defined by P(i,j,k) =1 V(i j, k)-

See in figure 1-middle the action map corresponding to a binarized potential
defined by high values in a spiral rendered in figure 1-left. The path found between
a point in the center of the spiral and another point outside is shown in figure 1-right
by transparency.

3.1.2 Partial front propagation

An important issue concerning the back-propagation technique is to constrain the
computations to the necessary set of pixels for one path construction. Finding
several paths inside an image from the same seed point is an interesting task, but in
the case we have two fixed extremities as input for the path construction, it is not
necessary to propagate the front on all the image domain, thus saving computing
time. In figure 2 is shown a test on an angiographic image of brain vessels. We can
see that there is no need to propagate further the points examined in figure 2-right,
the path found being exactly the same as in figure 2-middle where front propagation
is done on all the image domain. We used a potential P(x) = |VG, * I(x)| + w,
where I is the original image (5122 pixels, displayed in figure 2-left), G, a Gaussian
filter of variance o = 2, and w = 1 the weight of the model. In figure 2-right, the
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Potential P = spire action map with P = spire 3D path in the spire

Figure 1: Examples on synthetic potentials

Figure 2: Comparing complete front propagation with partial front propagation method on a
digital subtracted angiography (DSA) image

partial front propagation has visited less than 35% of the image. This ratio depends
mainly on the length of the path tracked.

3.1.3 Simultaneous partial front propagation

The idea is to propagate simultaneously a front from each end point py and p;. Lets
consider the first grid point p where those front collide. Since during propagation
the action can only grow, propagation can be stopped at this step. Adjoining the
two paths, respectively between py and p, and p; and p, gives an approximation of
the exact minimal action path between py and p;. Since p is a grid point, the exact
minimal path might not go through it, but in its neighborhood. Basically, it exists
a real point p*, which nearest neighbor on the Cartesian grid is p which belongs to
the minimal path. Therefore, the approximation done is sub-pixel and there is no
need to propagate further. This colliding fronts method is described in table 3.
It has two interesting benefits for front propagation:

e It allows a parallel implementation of the algorithm, dedicating a processor to
each propagation;
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Algorithm

o Compute the minimal action maps Up and U; to respectively po and pi until they have
an Alive point p in common;

e Compute the minimal path between po and p by back-propagation on Up;

o Compute the minimal path between p; and p by back-propagation on Us;

e Adjoin the two paths found.

Table 3: Minimal Path as intersection of two action maps

e [t decreases the number of pixels examined during a partial propagation. With
a potential defined by P = 1, the action map is the Euclidean distance.

— In 2D (figure 3-right), this number is divided by giR; =2

— In 3D (figure 3-left), this number is divided by éiR}); = 4.

Simultaneous and partial propagation in 2D

3D action map with P =1

Figure 3: 2D and 3D front propagation examples

In figure 4 is displayed a test on a digital subtracted angiography (DSA) of brain
vessels. The potential used is P(x) = |I(x) — C| + w, where I is the original image
(256 x 256 pixels, displayed in figure 4-(a)), C' a constant term (mean value of the
start and end points gray levels), and w = 10 the weight of the model. In figure 4-(b),
the partial front propagation has visited up to 60% of the image. With a colliding
fronts method, only 30% of the image is visited (see figure 4-(c)), and the difference
between both paths found is sub-pixel (see figure 4-(d) the paths superimposed on
the data).
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A

(a)DSA image (b)Partial (c¢)Colliding (d)Image with paths

Figure 4: Comparing the partial front propagation with the colliding fronts method on a DSA
image

3.2 One end point propagation

We have shown the ability of the front propagation techniques to compute the
minimal path between two fixed points. In some cases, only one point should be
necessary, or the needed user interaction for setting a second point is too tedious
in a 3D image. Here we derive a method that builds a path given only one end
point and a maximum path length. The technique is similar to that of section 3.1.2,
but the new condition will be to stop propagation when a path corresponding to a
chosen Euclidean distance is extracted.

As we explain below, we can compute simultaneously at each point the energy
U of the minimal path and its length. We choose as end point the first point for
which the length of the minimal path has reached a given value. Since the front
propagates faster along lower values of Potential, interesting paths are longer for a
given value of U.

An example of this path length condition is shown on figure 5 which is a DSA
image of brain vessels. Propagating a front with potential P = 1 computes the

The original image The minimal action The path length map

Figure 5: Computing the Euclidean path length simultaneously

Euclidean distance to the start point. This is obvious from definition (3), and
we can see its illustration with figure 3-left. Therefore, we use simultaneously an
image-based potential P;, for building the minimal path and a potential P, =1 for
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computing the path length.

While we are propagating the front corresponding to P; on the image domain, at
each point p examined we compute both minimal actions for P; (shown in figure 5-
middle) and for P, (shown in figure 5-right). In this case the action corresponding
to P, is an approximate Euclidean length of the minimal path between p and
po. Although this length is an approximation, it is still a good estimation since it
makes use of the same Fikonal equation scheme. The main advantage of doing so
is that it does not add much computation time to the algorithm.

Note that this Euclidean path length is discontinuous and must be smoothed in
order to be used in a robust manner.

3.3 The path centering method

The path is the set of locations that minimize the integral of the potential in equa-
tion (2). If the potential is constant in some areas, it will lead to the shortest
Euclidean path. The same thing happens when the potential does not vary much
inside a tubular shape. The minimal path extracted is often tangential to the edges,
as shown in figure 6, and would not be tuned for a problem of finding the optimal
trajectory for virtual endoscopy, which may require a centered path. In this section
we derive a technique to track centered paths, in the case we have segmented the
considered structure. Using front propagation techniques, we compute the distance

- ideal path

—— real path
““““““ wrong path

Figure 6: Problem of path centering

to the edges of the region of interest and we use the opposite of this distance in our
front propagation in the potential, thus attracting the minimal path in the center
of the regions. This technique is general and can be used as well for other problems
in Image Analysis where a centered path is needed, like road detection for example.

3.3.1 Extracting the edges

Several edge detection operator can be used, but in some cases a Fast Marching can
provide the necessary edge information. It has been already used for segmentation
in (Malladi and Sethian, 1998). This allows us to include the segmentation step in
the same framework as our minimal path finding.
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Having searched for the minimal action path between two given points, using a
partial front propagation (see subsection 3.1.2), the algorithm provides different sets
of points:

e the points whose action is set and labeled Alive;
e the points not examined during the propagation and labeled Far;

e the points at the interface between Alive and Far points, whose actions are not
set, and labeled Trial.

This last category, the border of the visited points, is a contour in 2D and a
surface in 3D which defines a connected set of pixels or voxels. If the potential is a
lot higher along edges than it is inside the shape, the edges will act as an obstacle
to the propagation of the front. Therefore, the front propagation can be used as a
segmentation procedure, recovering the object shapes. In this case the Trial points
define a surface which can be described as a rough segmentation of a part of the
vessel. Once the front has reached the endpoint, we use the front itself to define its
shape.

3.3.2 The centering potential

Having obtained this interface of Trial points, we can use a new front propagation
procedure to compute the distance to the edges inside the object considered. The
potential and the initial action for this second front propagation are defined as
follows

P(i,j)=1  V(i,j) inside the shape
P(i,j) =00  V(i,7) outside the shape

U(i,j) =0  ¥Y(i,7) € {interface}
U(i,j) = o0 elsewhere

When the distance map, said £, is computed, it is used to create a potential P
which weights the points in order to propagate faster a new front in the center of
the desired regions. Choosing a value d to be the minimum acceptable distance to
the walls, we propose the following potential:

Pi(x) = max (d — £(x);0)7 (11)

The complete method is described in figure 7. The first step is to propagate the
front from the start to the end point. The second step is to store the front position
at the end of the first step. The third step is to propagate inward the front towards
the center of the object with a uniform potential P = 1. This computes the distance
to the boundary front. The fourth step is to propagate faster in the center of the
object, using the new potential (11) based on the distance computed during the
third step. The final step is to make back-propagation from the end point using the
last action map. The extracted path is now centered inside the object.

As an illustration, a test is proceeded on a DSA image of the brain vessels shown
in figure 8-left. In figure 8-center is shown the result obtained using a potential
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Propagating the front inward

SsS> Levd Sets

[ ™
i,
L) ©
L)
i)
a0
Yt § 5 |
)| &g \\
A = 5
i .
&3

i

)

Propagating the front outward

Minimal paths in 3D, T. Deschamps, L. D. Cohen, June 26, 2000

s .

2 YF
m Y \\\\\\\\\\\\\\\\\\ww\\\\w\ww\\\ww\“@
A = 4 X, 8

&\\

Due to the shape of the iso-action lines of the centered

Figure 7: Centering the path inside the object
and it can immediately compute the distance inside the object

7

7
Y
o0
W \\\M?

/
7
0r
i
0 \\\\\w@s

End point

i

Yty
Uit

ae,

1, it is similar to a skeletonization. But an inherent benefit of using the Fikonal

scheme instead of another method is to be a very fast re-initialization technique: the

propagates only along the vessel direction, and is rapidly stopped transversally,

allowing to compute the distance to the walls. Defining a new potential according
to equation (11) based on this distance map, the second front propagates faster in

the center of the vessel.
minimal action shown in figure 8-right, the path avoids the edges and remains in

the center of the vessel. We will present results on real 3D data in subsection 4.2

applied to the problem of virtual endoscopy (see figure 16).
At this step, it seems important to compare the results obtained with this front

propagation with another centered line extraction technique, the skeletonization,
and particularly the definition of the medial axis function of (Blum, 1967) which
treats all boundary pixels as point sources of a wave front. Considering that the
at the end of the first partial front propagation, the edge points are already stored in

border points are managed by a min-heap data structure, (as detailed in B). Then
this data structure,

based on the image, where the shortest path is tangential to edges. But the front
Fast Marching computes the Euclidean to an arbitrary set of points using a potential

3.3.3 Remarks on the method
by just modifying the potential.

P
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The two paths With a normal potential With a centering potential

Figure 8: Comparing classic and centered paths

The main advantage of our approach is that we find only one path while skele-
tonization is very unstable and creates a lot of undesired small parts.

Another benefit of our method is to extract more than the exact central line
of the tubular structures: the purpose of our application is to have a smooth line
which always stays inside the tubular object and which is far from the edges. This
is motivated by the application to virtual endoscopy (see next section). Then our
method comprises steps of segmentation and path extraction, and achieves them in
a very fast way. Therefore, it cannot be replaced by a simple medial-axis transform.

Our method can be seen as a way to compute the skeleton of a tubular shape
without the problems encountered in most skeletonization methods.

4 Application to Virtual Endoscopy

In previous sections we have developed a series of issues in front propagation tech-
niques. We study now the particular case of virtual endoscopy, where fast extraction
of centered paths in 3D images with minimum user interactivity is required.

4.1 Targets for Virtual Endoscopy

Visualization of volumetric medical image data plays a crucial part for diagnosis
and therapy planning. The better the anatomy and the pathology are understood,
the more efficiently one can operate with low risk. Different possibilities exist for
visualizing 3D data: three 2D orthogonal views (see figure 9), maximum intensity
projection (MIP, and its variants), surface and volume rendering. In particular, vir-
tual endoscopy allows by means of surface/volume rendering techniques to visually
inspect regions of the body that are dangerous and/or impossible to reach physically
with a camera (e.g behind an airway stenosis or obstruction, or too small). A virtual
endoscopic system is usually composed of two parts:

1. A Path construction part, which provides the successive locations of the fly-
through in the tubular structure of interest (see figure 10-left);
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Figure 9: Three orthogonal views of a volumetric CT data set of the colon

2. Three dimensional interior viewing along the endoscopic path. Those views are
adjoined creating an animation which simulates a virtual fly-through through
them (see figure 10-right).

Original CT slice + path

Endoscopic view

Figure 10: Interior view of a colon, reconstructed from a defined path

A major drawback in general remains when the path construction is left to the
user who manually has to “guide” the virtual endoscope/camera. The required
interactivity can be very tedious for complex structures such as the colon for example
(see figure 11). Actually, on most clinical platforms the user must define all path
points manually, using for example three 2D orthogonal views, as shown in figure 9,
leading to problems as the following:

e Since the anatomical objects have often complex shapes, they tend to pass
in and out of the three orthogonal planes. Consequently the right location is
accomplished by successively entering the projection of the desired point in
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each of the three planes;

e The path is approximated between the user defined points by lines or Bezier
splines. If the number of points is not enough, it can easily cross an anatomical
wall.

Figure 11: The complex shape of the colon

Path construction in 3D images is thus a very critical task and precise anatomical
knowledge of the structure is needed to set a suitable trajectory, with the minimum
required interactivity.

Numerous techniques try to automate this path construction process by using a
skeletonization technique as a pre-processing (Yeorong et al., 1993). It requires first
to segment the object in order to binarize the image, then it extracts the skeleton
of this volume. The skeleton often consists in lots of discontinuous trajectories,
and post-processing is necessary to isolate and smooth the final path. But those
methods can lead to critical cases: if there is a stenosis in the tubular structure, the
binarization can produce two separate objects, where a skeletonization is inefficient.
The front propagation techniques studied in this paper propose an alternative to the
tedious manual path construction by building paths in 3D images with minimum
interactivity. In contrast to other methods, it does not require any pre- or post-
processing.

It is sometimes necessary to smooth the path extracted by the front propagation.
The point of view in the volume rendering of the tubular structure is very important,
because it constrains the result of the examination. Thus, during the virtual fly
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through, the point of view of the camera must change smoothly. Traditionally, the
position of the virtual camera frame at a particular path point is orthogonal to the
path. If the path is not smooth, the point of view of the virtual camera will change
in an abrupt manner. There are two ways to achieve this regularization:

e by modifying the view angle of the virtual camera, being non more orthogonal
to the path, but looking in the direction of a path point which is located far
from its current position (see figure 12), or using a running average of the local
direction of the camera;

e by increasing the weight w in equation (2) since it has a smoothing effect on
the minimal path (see (Cohen and Kimmel, 1997) for details). We preferred to
use this technique in the following examples, since it is efficient and very simple
to add.

looking
along the path

Figure 12: Examples on synthetic potentials

We first apply the minimal path construction to the case of virtual endoscopy in
the colon in section 4.2, then we extend this technique to other anatomical shapes
in section 4.3.

4.2 Building a potential for virtual colonoscopy

All tests are performed on a volumetric CT scan of size 512 x 512 x 140 voxels,
shown in figure 9. The grey level range is between 0 and 1500. The target is to
build a potential P with the 3D data set allowing paths to stay inside the anatomical
shapes where end points are located. We thus define the potential by a general model
P(X) = ‘I(X) — Imean‘a + w.

Firstly, the potential must be lower inside the colon in order to propagate the front
faster, and to avoid problems with crossing the edges of the anatomical object. In a
colon CT scan, an average position I pean of the grey level colon in the histogram can
be defined (see figure 13) as a peak in the histogram where Imean = 200. Secondly,
if the path to be extracted is very long, the situation can lead to pathological cases,
and the front can go through potential walls. This is frequent for large objects that
have complex shapes and very thin edges, as colon. Then, edges should be enhanced
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Figure 13: Localization of the colon in the histogram

to enable long trajectories, with a non-linear function. We thus take o = 2 in order
to enhance the dynamic of the image with a quadratic function.

However, this potential does not produce paths relevant for virtual endoscopy.
Indeed, paths should remain not only in the anatomical object of interest but as far
as possible from its edges. In order to achieve this target, we use the centering poten-
tial method as detailed in section 3.3. We first need to obtain a shape information.
In fact, a CT scan of the colon contains already a shape information sufficient to
constrain a front propagation. In figure 14-left is shown a slice of a colon volumetric
data set. Figure 14-right shows the profile along the line drawn in figure 14-left. Air

N 1200

Walls
Colon
200

T

Generated profile

Slice of a colon volumetric CT scan

Figure 14: Profile of the colon volume

fills the colon and is represented in our CT image by a grey intensity around 200
(see figure 14-right), while edges are defined by a grey intensity around 1200. Then,
using the potential P(x) = |I(x) — Imean|® + w, the front obtained through Fast
Marching is stopped by the anatomical shapes, as seen in figure 15. It illustrates
the fact that the Fast Marching can act also as a segmentation tool, as noted in
section 3.3.

In figure 16 we show the result of applying this new method to colonoscopy. The
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growingNarrowBand01.rpg [110] growingNarrowBand01.mpg [21] growingNarrowBand01.mpg [43]

grovingNarrowBandoT.mpg [65] growingharrowBand0 1.mpg [67]

Figure 15: Propagating inside the colon volume

edges are obtained via a first propagation: in figure 15 we can see the evolution of
the narrow band during propagation. It gives a rough segmentation of the colon
and provides a good information and a fast-reinitialization technique to compute
the distance to the edges.

Using this distance map as a potential (from equation (11)) that indicates the
distance to the walls, we can correct the initial path as shown in figure 16-left: the
new path remains more in the middle of the colon. The two different figures 16-
middle and 16-right display the view of the interior of the colon from both paths at
the u-turn shown in figure 16-left. With the initial potential, the path is near the
wall, and we see the u-turn, whereas with the new path, the view is centered into
the colon, giving a more correct view of the inside of the colon. The new centered
path is smooth because this final propagation is done on a synthetic potential (the
distance to the walls) where noise has been removed.

Therefore, the two end points can be connected correctly, giving a path staying
inside the anatomical object. But for virtual colonoscopy, it is often not necessary
to set the two end points within the anatomical object. The colon being a closed
object with two extremities, we can use the Euclidean path length stopping criterion
as explained in subsection 3.2. The figure 15 shows the front propagation in the Fast
Marching technique with a starting point belonging to the colon and an Euclidean
path length criterion of 500 mm. The image resolution is lmm for x and y axes and
4mm for the z axis. Figure 17 shows the minimal path obtained. Figure 18 shows
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Path centered

Initial Path

The two different paths with a normal potential with a centering potential

Figure 16: Centering the path in the colon

Figure 17: Views of the path inside the colon volume

rendered views from a few points along the path?.

Interaction is limited to setting the start point for front propagation and choosing
the minimal path length (as explained in subsection 3.2). It takes 30 seconds of
computing time for building the complete path on an Ultra 30 (with 300 MHz CPU
and 1 Go RAM), comprising steps of segmentation of the colon and calculation of the
distance to the walls in order to center the path as detailed in subsection 3.3. The
complete virtual fly-through renderings (300 images) are computed in approximately
10 minutes (the rendering is a tool included in the EasyVision workstation developed
by Philips Medical Systems).

LA video of this virtual fly through is available at http://www.ceremade.dauphine.fr/~cohen/MPEG /colon.mpg
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Figure 18: Virtual fly-through in the colon dataset

4.3 Results on Other Anatomical Objects

Trachea CT scan

Extracting paths inside the trachea is the same problem as in the colon. The dataset
used is shown in figure 19 by means of three orthogonal slices of the volume displayed
together with a path extracted. Air fills the object and give a shape information all

Figure 19: Views of the path inside the trachea

along from throat to lungs. Therefore, the anatomical object having a very simple
shape, the path construction with one or two fixed points is easier than in the colon
case. One example path tracks the trachea, using a nonlinear function of the image
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grey levels (P(x) = |I(x) — 200/ +1). Two views of an extracted path in 3D are
displayed in figure 19 together with 3 orthogonal slices of the dataset. An endoscopic
view along the path? is displayed in figure 20.

Figure 20: Virtual fly-through in the trachea dataset

Brain magnetic resonance angiography (MRA) image

Tests were performed on brain vessels in a MRA scan. Three orthogonal slices of
this dataset are shown in figure 21 together with a path extracted.

Figure 21: Views of the path inside a brain vessel

2 A video of this virtual fly through is available at http://www.ceremade.dauphine.fr/ cohen/MPEG /trachea.mpg
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Figure 22: Virtual fly-through in the brain dataset

The problem is different, because there is only signal from the dye in the cerebral
blood vessels. All other structures have been removed. The main difficulty here
lies in the variations of the dye intensity. The example path tracks the superior
sagittal venous canal, using a nonlinear function of the image grey levels (P(x) =
|I(x) — 1002+ 1). Two views of the extracted paths in 3D are displayed in figure 21
together with 3 orthogonal slices of the dataset. A sample of the virtual fly-through?
along the brain vessel is displayed in figure 22.

Aorta MR scans

A test was made on an aorta MR dataset, shown in figure 23. The propagation
measure is based on a nonlinear function of the intensity of the contrast solution
that fills the aorta. This data set is difficult since the intensity of the contrast
product will vary along the aorta (the contrast bolus dilutes during the acquisition
time). Due to this non-uniformity, paths can cross other anatomical structures with
similar intensities, if the mean value inside the aorta is not set correctly by the user.

Our example path tracks one illiaca, using the potential P(x) = |I(x)—1000[*+10
in the MR scan. The dataset contains noise, and we must use an important weight
to smooth the extracted paths. We have displayed a sample of the endoscopic views*
of the aorta along the path in figure 24.

5 Conclusion

In this paper we presented a fast and efficient algorithm that computes a path useful
for guiding endoscopic viewing that only depends on a start and end point. This work
was the extension to 3D of a level-set technique developed in (Cohen and Kimmel,

3A video of this virtual fly through is available at http://www.ceremade.dauphine.fr/"cohen/MPEG /brain.mpg
4A video of this virtual fly through is available at http://www.ceremade.dauphine.fr/~cohen/MPEG /aorta.mpg
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Figure 23: Views of the path inside the MR dataset of the aorta

1997) for extracting paths in 2D images, given only the two extremities of the path
and the image as inputs, with a front propagation equation. We improved this front
propagation method by creating new algorithms which decrease the minimal path
extraction computing cost, and reduce user interaction in the case of path tracking
inside tubular structures.

The results are promising for several clinical applications, including those with
very complex shapes. The success of the tracking approach for objects with non-
uniform grey-level contrast critically depends on the design of the cost function.
We have proved the benefit of our method towards manual path construction, and
skeletonization techniques, showing that only a few seconds are necessary to build
a complete trajectory inside the body, giving only one or two end points and the
image as input.
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A Level Sets Methods in Active Contouring

In this appendix, we discuss the problems of the classical approach in active con-
touring, introduced in (Kass et al., 1988), towards the improvements brought by
the level-set formalism. We examine the theory of level-sets methods introduced
in (Sethian, 1996a). A link is made with the theory of deformable models and the
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Figure 24: Virtual fly-through in the aorta MR dataset

problem of finding a minimal path in an image.

A.1 Classical Deformable Model

A.1.1 Definition

For a general overview on deformable models, see (Mclnerney and Terzopoulos,
1996). See also a description and references in (Cohen, 1995) and (Cohen and
Kimmel, 1997).

The deformable model C' is a mapping

c:Q - R
s = x(s) = (2(s),y(s), 2(s))
where Q = [0, 1] is the parameterization interval. We can define the energy E' of the

model as a functional which will be minimized on the space A of all possible curves.
A general model can be written for C € A and F: A — IR:

E(C) = [ {6 + 2IC" ()P + P(C(s) }ds (12)

In this formulation, each term appears as a potential acting on the shape. Thus
the mechanical properties of the deformable model are controlled by two kinds of
constraints:

e The internal potential: C' and C” are the smoothing terms on the curve. They
enable to control its regularity by means of w; which quantifies its rigidity and
wsy its elasticity;

e The external potential term P represents the likelihood. This “image” potential
traps the curve towards the regions with desired attributes.



Minimal paths in 3D, T. Deschamps, L. D. Cohen, June 26, 2000 26

A.1.2 Drawbacks
The main drawbacks of the classical deformable model approach are:

e Minimization: The functional is non-convex, and one difficulty is to find a good
local minimum. Spurious edges generated by noise may stop the evolution of
the surface, giving an insignificant local minimum of the energy;

e Initialization: The user must specify an initial shape that is close to the goal,
like a very precise polygon approximation, which may be tedious to draw;

e Topology changes: this method is unable to segment several objects simulta-
neously, and to merge different shapes;

One of the main issue in using deformable models is their initialization and min-
imization. The solution introduced in (Sethian, 1996b) allows to solve the global
minimization of a problem. His approach considers a slightly modified problem: a
curve is considered as an interface between two media, following a particular evo-
lution equation. We will see that under precise assumptions, this front evolution
efficiently builds a path between two fixed points, as detailed in (Cohen and Kimmel,
1997).

A.2 Front propagation model

This new formulation of the active deformable model into a front propagating in
an image will allow to work with objects of arbitrary topologies. The surface is
considered as an interface, often called front, between two media, which is a formal-
ism often used in physics. Therefore, from the variational formulation of the classic
deformable models, we can differentiate a new variational expression related to the
interface model.

A.2.1 Front propagation approach

Considering a surface £ as an interface between two media, we allow this interface
to move under the influence of internal and external normal forces. The sum of this
forces being F', the expression of the evolution of this interface is given by

0L (v, 1)
at
starting from an initial front, v being the position parameter and ¢ being time. This
evolution equation can be derived from an energy formulation in terms of potentials
as in equation (12). The equivalence between the potential terms and the forces is
recovered via the associated Euler-Lagrange equation of the energy.
Defining a potential P for this interface in the image domain, we propagate with
a velocity F' proportional to the inverse of the potential, to have high velocities in
low cost areas, and vice-versa.
But this formulation has several drawbacks. When tracking the motion of an in-
terface £ propagating along its normal direction with velocity F' = %, most numer-
ical techniques rely on markers, breaking it up into points connected by segments,

= F7(v,t) (13)
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and moving each point with speed F' (see figure 25-(a)). The solution is supposed
to gain in accuracy if the number of points is increased. Problems arise if different
parts of the front cross each other, or if the shape tries to break into two pieces
(see figure 25-(b) and reference (Sethian, 1996b) for details) or if two shapes try to
merge into one (see figure 25-(c)).

DOt
GED 1

Collision

(a) Markers technique (b) Cross over (c) Cannot merge two fronts

Figure 25: Markers methods and related problems in 2D

A.2.2 Level-sets method to propagate interface

We can reformulate the interface evolution of equation (13) by embedding the front
in a higher dimensional function. This allows to overcome numerical difficulties and
to handle topology changes.

Rather than evolving the interface £, the level set method embeds this propa-
gating interface in a higher-dimension interface ¢ which can be defined as follows:
#(x,t = 0) = d the signed distance from x to £ (negative inside £, positive outside).
See Figure 26 for the representation of the embedding in a synthetic 2D example.

Signed distanceto the initial front

‘ Initial front

Figure 26: Embedding a 2D interface in the signed distance function

Therefore, L is the set of point for which ¢ is zero: it is the zero level set of this
higher-dimension interface. Assuming that the zero level-set of the evolving surface
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¢ always matches the propagating hypersurface £ means that

¢(L(t),t) =0
We can differentiate this expression, leading to:

d¢(L, 1) L
S VO(L ). =0 (14)

Then, the surface £ evolution is implicitly described by that of the evolving surface
¢. Having W = V¢/||V4||, equation (12) and equation (14) lead to

0¢ B
S+ PVl =0 (15)

given initial ¢(x,t = 0)

The evolution of the level set equation is a special case of the so-called Hamilton-
Jacobi Equation (see (Sethian, 1996a)). In this setting, curvatures and normals may
be easily evaluated and topological changes occur in a natural manner. This equation
is solved using entropy-satisfying schemes borrowed from the numerical solution of
hyperbolic conservation laws which produce the correct viscosity solutions. For
details, see (Sethian, 1996b).

A.3 Paths of Minimal Action

We give here some remarks and comments on the minimal path approach described
in section 2 and introduced for 2D in (Cohen and Kimmel, 1997).

A.3.1 Relation with front propagation approach

The special case of a monotonically advancing front, i.e. moving with speed F' always
positive (which is the hypothesis P > 0) leads from equation (15) to a particular
stationary level set equation for the crossing time 7"

IVT||F =1 (16)

The gradient of arrival time ||VT|| is inversely proportional to the interface speed.
We study the particular case where F' = F(z,y,z) is a function of the pixels
position only. Then equation (16) is the well-known Eikonal equation. The speed
does not depend on the position of the interface.
Assuming that the isolines T = U and F' = 1/P (the speed being high in low
cost areas and vice-versa), we can relate equation (3) and equation (16):

VUil =P (17)

A rigorous proof is cited in (Cohen and Kimmel, 1997). Thus, we now have related
the minimal cost map and the FEikonal equation. This equation will propagate a
front and compute the values of U on the image domain.
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A.3.2 Understand the Role of the Potential Map

The aim of the potential used in equation (17) is to propagate the front in the desired
regions, in order to extract a minimal path corresponding to the wanted features.
In figure 27-(a) one can see the iso-action lines of the surface of minimal action
provided by a front propagation on a synthetic 2D example: a univalued potential
(V(¢,7) Bj = 1). Visualization is focused on the lines of iso-action. Without

(a) Cost map (b) Random minimal paths

Figure 27: Propagation and minimal paths for a univalued potential

any obstacle, the front is propagating in every direction at the same speed. The
corresponding iso-action lines are circles with the start point as center, and their
radius being the Euclidean distance to this start point.

In order to understand what occurs if the potential is multi-valued, one can ob-
serve figures 28-(a) and 28-(b). Figure 28-(a) represents the iso-action lines of the
surface of minimal action provided by a front propagation on a bivalued synthetic
potential - the higher value being the upper-half part of the image. One can easily
see that the front propagation speed is quicker in the lower half part, because the
space between the iso-action lines (level sets of the surface) is bigger. This is similar
to Fermat’s principle on the minimality of the light path: we can observe on fig-
ure 27-(b) that paths are straight lines in homogeneous media, and that paths are
deviated at the junction between two different homogeneous media on figure 28-(b).

We can also observe that equation (17) enables to compute distance maps. In
figure 27, the propagation over the entire image has given the FEuclidean distance
to the start point. This technique can be used to compute the distance from an
arbitrary set of points in 2D and 3D.

In particular, the initial condition of the higher-dimensional front ¢ is given
by the signed distance computed from the original surface £(.,0). In the case of
the front propagation from a starting point, we consider that the original front
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(a) Cost map (b) Random minimal paths

Figure 28: Front propagation and minimal paths for a bivalued potential

is an infinitesimal sphere around this start point. In a general case, initialization
(¢(x,t = 0) in equation (15)) may not be computed from just a single point, but
from a whole set of points (disconnected or not). Then, this initialization will be
computed using the Eikonal equation (17). And the propagation is done “forward”
or “outward” from the initial shape £, depending on the sign of the normal 77.

A.3.3 The Regularity of the Path

In (Cohen and Kimmel, 1997), it is proven that weight w in equation 2 can influence
curvature and be used as a smoothing term. An upper bound for the curvature
magnitude || along the minimal path is found, Z being the image domain:

P
k| < supz ||V P]| (18)

w

Length constraint The exact minimal path is obtained with a gradient descent.
But care must be paid on the choice of the gradient step to avoid oscillations.

If the weight w is set to a small value € the extracted path length is not limited
at all, nor the curvature magnitude in equation (18). Therefore in zones where
the action map is flattened, the slope being as small as €, the path can have a
spaggethi-like trajectory. The minimal path being obtained by steepest gradient
descent, directions are evaluated by interpolation based on nearest neighbors on the
Cartesian grid. If the discrete gradient step Ax is too large, the approximation of
this trajectory will produce oscillations between relative positions. Those oscillations
can lead to a huge number of path points larger than forecasted allocations.

In figure 29, we have displayed a test where the steepest gradient fails (with
a number of path points limited). The test is performed on a region of the data
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Figure 29: Fail of the steepest gradient descent on a bolus chase reconstruction data

shown in figure 29-left. The cost map for path tracking a vessel is displayed in
figure 29-middle. For this problem the upper bound curvature has been estimated
to be supz || VP|| = 130., with Ax = .5 and w = .1. Those values lead to a curvature
radius R, = 7.107*. The steepest gradient scheme oscillates and stops as shown in
figure 29-right.

A solution lies in increasing the cost of the path length. It increases the slope
on the action map, leading to the start point faster. It maintains a lower upper-
bound on the curvature magnitude and makes the steepest gradient descent scheme
robust. Alternatives are to decrease the space step, or take the steepest value
neighbor descent, but it might not correspond to the exact minimal path.

Curvature constraint This paragraph illustrates the influence of the weight w of
equation (2) on the extracted path regularity. In figures 30 is shown the tracking
of a vessel in a X-Ray image of the femoral vessels, using different weights w; = 1
and wy = 20. The smoothing done by increasing the weight can be observed in a
zoom on the paths shown in figure 30-right. We can also observe the influence of
increasing the weight in figure 31 where each path is displayed superimposed on its
respective action map. For a small weight wy; = 1, the path is unstable, as shown in
figure 31-left. For a weight wy = 20, leading to the inequality |ks| < 0.75, the path
is smooth. Differences remain also in the sets of points visited during propagations:
it is smaller than with weight wy = 20. It means that propagation is quicker for
small weights. It propagates in every directions for a higher weight (see figure 31)-
right), because the tune of w smoothes the image, as it reduces the upper-bound on
curvature magnitude in equation (18).

Conclusion on the use of w The estimation of the impact of the upper-bound is not
straightforward: in the test shown in figure 31, the value given by the case where
wy = 20 leads to a curvature magnitude |k| < 0.75. The corresponding lower bound
curvature radius is about R, = 1.33, which is not a relevant constraint. Thus, the
constraint acts mostly on the path length, and not on curvature. We can observe
that the constraint given in equation 18 is based on the value of the potential on all
the image domain, while the relevant a posteriori curvature constraint is restricted
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Figure 30: Smoothing the minimal path with the weight w: the paths

to the path domain.

An important issue is to have a more qualitatively relevant upper boundary, to
be used as a feedback correction. We can estimate a posteriori the real constraint
on the set of Alive points. Having {Alive points} C T leads to sup 4jjye || VP| <
sups ||V P||. Therefore, the zone of the potential that does not affect the minimal
path computation nor affect the magnitude curvature, leading to a more precise,
but a posteriori upper-bound. Even more, we can consider only the set of pixels
which the minimal path goes through to build this a posteriori upper-bound.

A test was performed on the problem shown in figure 31, and in the case w; =1,
the a posteriori evaluation on the path points of the upper-bound of equation (18)
has reduced it from 13.2 to 8.2. This estimation can be used as a feedback correction
but a remaining problem relies in the fact that an a posteriori value for the weight
will lead to different results, and as a consequence to a different set of estimation
for sup ||[VP||. In conclusion, the setting of the weight w is not straightforward, and
care must be taken with its parameterization.

B The Min-Heap Data Structure

The execution time of Sethian’s algorithm for minimal paths strongly depends upon
the underlying data structure used to store results of intermediate computations,
since most of the algorithm’s execution time is spent in sorting the data structure.
An efficient scheme is discussed in (Adalsteinsson et al., 1996). Execution time of
the algorithm depends upon the time spent for

e locating and removing the grid point in the narrow band with the minimum
action value;
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Figure 31: Smoothing the minimal path with the weight w: the action maps

e inserting a new grid point in the narrow band, and for updating the action
value of a narrow band point.

Then efficiency is determined by how quickly the data structure can execute the
operations of extracting the minimum and decreasing the action.

To perform these operations in minimum time, the narrow band points are stored
in a min-heap data structure. It is defined as a binary tree in which the action of
each node is smaller than the action of its children. This partial ordering, which
does not include any ordering between two children of the same element, allows all
operations to be in logarithmic complexity, provided this ordering is maintained at
all times. It means the tree should remain balanced. See (Sedgewick, 1998) for
details.

In particular, the tree element with smallest action is always located at the root,
thus leading to a fast execution of the Fast Marching algorithm.

In practice, a heap can be represented as an array, leading to a more efficient
implementation than with a tree structure: the nodes are stored sequentially in an
array, assuming that a node at location k£ has its children at locations 2k and 2k +1.
Then the values of U are stored together with the indices which give their location
on the grid structure (back pointers).

B.0.4 Introduction of a node and re-estimation

When a grid point labeled Far is met, adding it to the heap works by increasing the
heap size by one, putting it at the last location and moving it upward the tree to its
correct location. For grid points labeled Trial, according to the up-wind scheme, the
value of U at every node when recomputed under the influence of its 4 neighbors in
2D is lower than or equal to its former value. Then the operation of decreasing the
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action is involved when inserting or reexamining a grid point.

A(u=0.5) A(u=0.5)

B(u=2.3) B(u=2.3)
C(u=3.1) D(u=19)
D(u=4.7 -> u=1.9) C(u=3.l)>
Step 1: Change the action value of D Step2: Proceeding up the tree
A(U=0.5)

D(u=1.9)
B(u:2.‘3)>

C(u=3.1)
Step3: Stopping the process

Figure 32: Restoring the heap property when decreasing a node’s action

As an example, Figure 32 shows a typical heap structure and an operation of
restoring the heap property after the element D gets updated from 4.7 to 1.9. Since
the complexity of the operation of changing the value of one element of the heap
is bounded by a worst-case bottom-to-top proceeding of the tree in O(log, N), the
total work is about O(N log, N) for the Fast Marching on a N points grid.

B.0.5 Extract the minimum

The marching algorithm works by first looking for the smallest element in the narrow
band, and removing it. To ensure that the heap property is not violated, it involves
to put the last element of the heap at the first position, then moving down the
heap, exchanging the node with its smallest children until we reach a node with
both children bigger or until we reach the bottom.

As an example, Figure 33 shows an operation of restoring the heap property after
deletion of the minimum action node. With the operation of changing the value of
one element of the heap, the total work is bounded here by a worst-case root-to-
bottom proceeding of the tree in O(log, N). The total work is about O(N log, N)
for the Fast Marching on a N points grid, since all the grid points are visited.
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Step5: The tree is re-balanced

Figure 33: Restoring the heap property when deleting the root

35
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