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Laurent Cohen. CVGIP:IU March 1991. 21 IntroductionWe introduce a new model for active contours, which signi�cantly improves the detection qualityof closed edges. Our model was used to segment automatically noisy ultrasound and MagneticResonance images of the beating heart, both in 2 and 3 dimensions. We present the features ofthis new model, with a number of various signi�cant experimental results, and we discuss futureresearch.The use of deformable contour models to extract features of interest in images has beenintroduced by Kass et al [7, 9]. These models are known as \snakes" or energy-minimizingcurves.We are looking for mathematical descriptions of the shapes of objects appearing in images.We assume that the objects we are looking for are smooth.We thus de�ne an elastic deformable model as in [7]. The model is placed on the image and issubject to the action of \external forces" which move and deform it from its initial position tobest �t it to the desired features in the image.We are interested in extracting good edges. Usually in edge detection, after computing thegradient of the image, the maxima are extracted and then edges are linked together. Here wedo it another way; we start with a continuous curve model and we try to localize it on themaxima of the gradient. We draw a simple curve close to the intended contours and let theaction of the image forces push the curve the rest of the way. The �nal position corresponds tothe equilibrium reached at the minimum of the model's energy.The external forces are derived from the image data or imposed as constraints. Internalforces de�ne the physical properties of the model.If this original idea is due to [3, 7, 10], our model presents the following interesting newfeatures which can solve some of the problems encountered with the original snake method :� The external image forces applied on the curve to push it to the high gradient regions aremodi�ed to give more stable results.� The original \snake" model, when it is not submitted to any external forces �nds its equi-librium at a point or a line according to the internal parameters and boundary conditions.Also a snake which is not close enough to contours is not attracted by them.We de�ne a new Active Contour model by adding an in
ation force which makes the curvebehave well in these cases .The curve behaves like a balloon which is in
ated. When it passes by edges, it is stoppedif the edge is strong, or passes through if the edge is too weak with respect to the in
ationforce. This avoids the curve being \trapped" by spurious isolated edge points, and makesthe result much more insensitive to the initial conditions.� We take into account edge points previously extracted by a local edge detector. Thisallows to combine the quality of a good local edge detector, e.g. a Canny-Deriche edgeextractor [4, 5, 8], with a global active model.After reviewing in the next section the main ideas of \snakes", the following section describesthe new aspects of our method. We illustrate our technique by showing the results of featureextraction in medical images. Finally, we give the �rst 3D reconstruction results obtained bypropagating the segmentation in a series of successive slices.



Laurent Cohen. CVGIP:IU March 1991. 32 Energy Minimizing Curves2.1 Active contour ModelSnakes are a special case of deformable models as presented in [9] .The deformable contour model is a mapping :
 = [0; 1]! R2s 7! v(s) = (x(s); y(s))We de�ne a deformable model as a space of admissible deformations Ad and a functional E tominimize. This functional represents the energy of the model and has the following form:E : Ad! Rv 7! E(v) = Z
 w1jv0(s)j2 + w2jv00(s)j2 + P (v(s))dswhere the primes denote derivation and where P is the potential associated to the externalforces. It is computed as a function of the image data according to the desired goal. So if wewant the snake to be attracted by edge points, the potential should depend on the gradientof the image. In the following, the space of admissible deformations Ad is restricted by theboundary conditions v(0),v0(0),v(1) and v0(1) given. We can also use periodic curves or othertypes of boundary conditions.The mechanical properties of the model are controlled by the functions wj . Their choicedetermines the elasticity and rigidity of the model.If v is a local minimum for E, it satis�es the associated Euler-Lagrange equation:( �(w1v0)0 + (w2v00)00 +rP (v) = 0v(0); v0(0); v(1) and v0(1) being given: (1)In this formulation each term appears as a force applied to the curve. A solution can be seeneither as realizing the equilibrium of the forces in the equation or reaching the minimum of theenergy.Thus the curve is under control of two forces:� The internal forces (the �rst two terms) which impose the regularity of the curve. w1 andw2 impose the elasticity and rigidity of the curve.� The image force (the potential term) pushes the curve to the signi�cant lines which cor-respond to the desired attributes. It is de�ned by a potential of the shape R 10 P (v(s))dswhere P (v) = �jrI(v)j2:I denotes the image. The curve is then attracted by the local minima of the potential,which means the local maxima of the gradient, that is edges (see [6] for a more completerelation between minimizing the energy and locating contours).� other external forces can be added to impose constraints de�ned by the user.



Laurent Cohen. CVGIP:IU March 1991. 42.2 Numerical SolutionWe discretize the equation by �nite di�erences.If F (v) = (F1(v); F2(v)) = �rP (v) + ::: is the sum of image and external forces, the equation:�(w1v0)0 + (w2v00)00 = F (v);becomes after �nite di�erences in space (step h):1h(ai(vi � vi�1)� ai+1(vi+1 � vi))+bi�1h2 (vi�2 � 2vi�1 + vi)� 2 bih2 (vi�1 � 2vi + vi+1) + bi+1h2 (vi+2 � 2vi+1 + vi)�(F1(vi); F2(vi)) = 0where we de�ned vi = v(ih); ai = w1(ih)h ; bi = w2(ih)h2 .This can be written in the matrix form :AV = Fwhere A is pentadiagonal and V and F denote the vectors of positions vi and forces at thesepoints F (vi).Since the energy is not convex, there are many local minima of E. But we are interestedin �nding a good contour in a given area. We suppose in fact we have a rough estimate ofthe curve. We impose the condition to be \close" to this initial data by solving the associatedevolution equation 8>>><>>>: @v@t � (w1v0)0 + (w2v00)00 = F (v)v(0; s) = v0(s)v(t; 0) = v0(0) v(t; 1) = v0(1)v0(t; 0) = v00(0) v0(t; 1) = v00(1) (2)We �nd a solution of the static problem when the previous solution v(t) stabilizes. Then theterm @v@t tends to 0 and we achieve a solution of the static problem.The evolution problem becomes after �nite di�erences in time (step �) and space (step h):(Id + �A)vt = (vt�1+ �F (vt�1)) (3)where Id denotes the identity matrix.Thus, we obtain a linear system and we have to solve a pentadiagonal banded symmetric positivesystem. We compute the solution using a LU decomposition of (Id + �A). The decompostionneed be computed only once if the wi remain constant through time. We stop iterating whenthe di�erence between iterations is small enough.3 Improving the modelSolving the formulation described in the previous section leads to two di�culties for which wegive solutions in this section. In both cases we give a new de�nition of the forces, focusing onthe evolution equation formulation even though the forces no longer derive from a potential.



Laurent Cohen. CVGIP:IU March 1991. 53.1 Instability due to image forcesLet us examine the e�ect of the image force F = �rP as de�ned in the previous section . Thedirection of F implies steepest descent in P , which is natural since we want to get a minimumof P . Equilibrium is achieved at points where P is a minimum in the direction normal to thecurve.However, even though the initial guess can be close to an edge, instabilities can occur due tothe discretization of the evolution problem. We see from equation 3 that the position at time t,vt is obtained after moving vt�1 along vector �F (vt�1) and then solving the system, which canbe seen as smoothing the curve. This leads to the following remarks :� Time discretization: If �F (vt�1) is too large the point vt�1 can be moved too far acrossthe desired minimum and never come back (see �gure 1). So the curve can pass throughthe edge and then make large oscillations without reaching equilibrium, or stabilize to adi�erent minimum. This problem was avoided by the authors of [7] by manual tuning ofthe time step.If we choose � small enough such that the move �F (vt�1) is never too large, for examplenever larger than a pixel size, then the previous problem is avoided.However only very few high gradient points will attract the curve and small F will nota�ect much the curve (see �gure 5) since they are too small compared with the internalforces. So instead of acting on the time step, we modify the force by normalizing it, takingF = �k rPkrPk , where �k is on the order of the pixel size. So the steps cannot be too large,and since the magnitude for F is about one pixel, when a point of the curve is close to anedge point, it is attracted to the edge and stabilizes there if there is no con
ict with thesmoothing process. Thus, smaller and larger image gradients have the same in
uence onthe curve. This is not a di�culty since, in either case, the points on the curve �nd theirequilibrium at local minima of the potential, along edge points.� Space discretization: The force F is known only on a discrete grid corresponding tothe image, and therefore, there can be a zero-crossing without any zero in the grid. Thismeans that in the best case a point always oscillates between the pixels neighboring theminimum (see �gure 2). This problem is simply solved by bilinear interpolation of F atnon integer positions. Thus we have a continuous de�nition of F and equilibrium pointscorrespond to the zeros of F .� Accounting for previous local edge detection:We want to account for a previous local edge detection, obtained for instance with aCanny-Deriche edge detector [4, 5, 8]. We would like the curve to be attracted by thesedetected edges. To do this, we de�ne the attraction forces by simulating a potential de�nedby convolving the binary edge image with a Gaussian impulse response. This can be usedeither as the only image forces or together with an intensity-gradient image to enforce thedetected edges. This is useful when the detected edges are broken into small segmentswhich are not linked together. Using energy-minimizing curves in this case is a way toclose contours. For example if we use a high threshold in order to keep only the pointsthat are very likely to be real contours, the curve both closes and smooths the contour.Remark that even though the equation changed, the curve is still pushed to minimize thepotential and the energy.



Laurent Cohen. CVGIP:IU March 1991. 6We give below examples of results applying this method, �rst to a drawn line and then tomedical images. In �gure 3, we see how the corners are slightly smoothed due to the regulariza-tion e�ect. The corner on the left seems to be better, but it is due to the discretization neededto superimpose the curve on the image, the right angle is more precise in the horizontal-verticalcorner than in the rotated one.In �gure 4, the top image is taken from a time sequence of ultrasound images during a cardiaccycle and the problem is to detect and follow the deformation of the mitral valve in the heart.As mentioned above, we used the Canny detector ([4]) as implemented recursively by Deriche([5]) to compute the image gradient.The other image is a slice from a 3D NMR image in the heart area. We want to extract theleft ventricle. We use here the 3D edge detector ([8]) obtained by generalization of the 2DCanny-Deriche �lter.We give in comparison examples of what happens when we do not normalize the image force(�gure 5). If the time step is too large, the force �F (vt�1) is too large and beginning from theresult in �gure 4, we get instabilities. These are such that points that are slightly on one sideof a contour are moved far away on the other side. On the contrary, when the time step is toosmall, we see that, taking the same initial curve as in �gure 4, in the left region of the curve,the image forces are too small and smoothing occurs only.3.2 Localization of the initial guess. The balloon ModelTo make the snake �nd its way, an initial guess of the contour has to be provided manually.This has many consequences on the evolution of the curve (see �gure 6).� If the curve is not close enough to an edge, it is not attracted by it.� If the curve is not submitted to any forces, it shrinks on itself.The �nite di�erence formulation of the problem makes the curve behave like a set of masseslinked by zero length springs. This means that if there is no image force (F = 0), the curveshrinks on itself and vanishes to a point or straightens to a line depending on the boundaryconditions. This happens if the initial curve or part of it is placed in a constant area.Suppose we have an image of a black rectangle on a white background and a curve is placedinside the rectangle. Even though we have a perfect edge detection, the curve vanishes. If apoint is close enough to an edge point, it is attracted by it and neighboring curve points alsostick to the edge. If there are enough such points, eventually the rest of the curve follows theedge little by little. On the contrary, if the initial curve is surrounding the rectangle, even if itis far from the edges, it will shrink and, as it does so, stick to the rectangle.Let us also note that, often, due to noise, some isolated points are gradient maxima and canstop the curve when it passes by (see �gure 7).All these remarks suggest we add another force which makes the contour have a more dy-namic behavior. We now consider our curve as a \balloon" (in 2D) that we in
ate. From aninitial oriented curve we add to the previous forces a pressure force pushing outside as if weintroduced air inside. The force F now becomesF = k1~n(s)� k rPkrPkwhere ~n(s) is the normal unitary vector to the curve at point v(s) and k1 is the amplitude ofthis force. If we change the sign of k1 or the orientation of the curve, it will have an e�ect of



Laurent Cohen. CVGIP:IU March 1991. 7de
ation instead of in
ation. k1 and k are choosen such that they are of the same order, which issmaller than a pixel size, and k is slightly larger than k1 so an edge point can stop the in
ationforce. The curve then expands and it is attracted and stopped by edges as before. But sincethere is a pressure force, if the edge is too weak the curve can pass through this edge if it is asingularity with regard to the rest of the curve being in
ated. It means that it tends to createa tangent discontinuity at this point. The smoothing e�ect with the help of the in
ation forcethen removes the discontinuity and the curve passes through the edge. (see bottom left of �gure11).In the gradient image of the rectangle above, we have removed some edges and added somespurious ones to illustrate those remarks. Starting from the same small curve as in the previousexamples, we obtain the whole rectangle (see �gure 8). When the curve passes by a noise pointin the rectangle image, it sticks to the point. But since the curve is expanding, the noise pointbecomes a singular point of the curve and it is removed by the regularization e�ect after a fewiterations. When the balloon reaches an equilibrium, the points which stick to edges are slightlyoutside of the real contour since the edge force has to be in equilibrium with the in
ation andregularization forces. We can then reduce the in
ation force to localize the position of the curve.3.3 Optimizing elasticity and rigidity coe�cientsThe coe�cients of elasticity and rigidity have a great importance in the behavior of the curvealong time iterations. If w1 and w2 are around unity, the internal energy has a major in
uenceand the image forces have small e�ect. In this case the curve is only regularized.A correct choice for parameters is guided by numerical analysis considerations. We wish thatthe coe�cients of the rigidity matrix have all the same order of magnitude. We obtain goodresults when the parameters are of the order of h2 for w1 and h4 for w2 where h is the spacediscretization step.4 Applications and future directionsWhen we have an initial curve detected which is known to lie inside the object, our balloontechnique is particularly e�cient. For example, we are looking for the boundary of a cavity inan ultrasound image of the heart ( see �gure 9). An approximation of the cavity is given bythresholding the image at a low value after applying mathematical morphology operations. Weknow that this approximation lies inside the real cavity. By taking the approximated boundaryas the initial value for v, we expand the balloon and it comes to stick more precisely to thecavity boundary.In �gure 10 we give another application of balloons to the same problem as in �gure 4, butwe now take a curve which is not close to the ventricle, either in shape or in position. After afew steps of evolution of the balloon, we obtain almost the same �nal result as before, but ittakes more iterations. In fact the �nal curve in �gure 10 is slightly external to the ventricle. Aswe noted above, if we now cancel the expansion force, we obtain the same result as in �gure 4.We show in �gure 11 the same steps as in �gure 10, but superimposed on the potential image.We can see in the two middle steps how a point of the curve is stuck to an edge and creates asingularity there. This is removed after a few iterations by the cumulative e�ect of the pressureforce and smoothing.The directions of our research after contour extraction is surface extraction in 3D images.A �rst step is to follow the contour from one slice to the other. With our method, weexperimented the reconstruction of a 3D surface by initializing a balloon model in an intermediate



Laurent Cohen. CVGIP:IU March 1991. 8cross section, and by propagating the result to neighboring cross-sections, initializing in a crosssection the curve with the result obtained in the previously processed connected section (as wasdone for motion tracking in [7]). We made a �rst approach to 3D reconstruction by extractingthe contour slice by slice (as in [1] where the curves were extracted by hand, on each slice, usingan image of edges). Figures 12 and 13 show the reconstruction of the left and right ventricles.This reconstruction is almost automatic. Indeed, when the contour undergoes a big change fromone slice to the next, the initial curve in that slice may have to be rede�ned in order to obtaina good contour, problem which can be avoided by adding interpolated slices when necessary.The next step is to follow the deformation in time of this surface. This can be done eitherslice by slice or globally by generalizing to a 3D surface model, or 3D balloon, as in [11]. Thisis possible since the active contour model is a particular case of deformable models as seen in[9, 10]. In [11], the surface was a tube around a spine and an in
ation force was used to controlexpansion and contraction of the tube around the spine. The two ends of the tube were cinchedshut using contraction force and in
ation was used to counteract smoothing. So the use of anin
ation force in our \balloon" model is signi�cantly di�erent from the one in [11].We can add internal forces to control the deformation so as to follow the desired contours.This is possible if we have a physical model of the desired object (for example, to follow thedeformation of a ventricle during a cycle), or to make the curve expand or collapse from theinitial data using some knowledge of the deformation.Another application of our research is the elastic matching of extracted features to an atlas,which is related to the work in [2]. This was also studied in [12] with simple geometric shapesas templates which are deformed to match the image.5 ConclusionWe presented a model of deformation which can solve some of the problems encountered withthe \snake" model of [7]. We modi�ed the de�nition of external forces deriving from the gradientof the image to obtain more stable results. We also introduced a pressure force which makes thecurve model behave like a balloon. This enables us to give an initial guess of the curve whichis far from the desired solution. We showed promising results of our model on MR (magneticresonance) and ultrasound images to extract features like the contour of a heart ventricle on 2Dslices. Using a series of such contours in successive cross sections, we made a 3D reconstructionof the inside surface of the ventricles. This method has been tested for several applications inmedical image analysis. Our main goal is to generalize this method to obtain surface boundariesin 3D images.6 AcknowledgementsThe author wishes to thank the reviewer for the useful comments on this paper and also NicholasAyache and Isaac Cohen for their constant help during this work.7 Figures
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Figure 1: instability due to time discretization. Starting from x0; tF (x0) is too large and we goaway from the good minimum to x2 which is also an equilibrium.
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Figure 2: instability due to space discretization. On the left, with the discrete force there is noequilibrium point. There is an oscillation between the points x0 and x1. On the right, aftercontinuous interpolation of F , there is convergence after a few iterations.
Figure 3: left: initial curve, right: result.
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Figure 4: Above: Ultrasound image. left: initial curve, right: the valve is detected. Below:NMR image of the heart. left: initial curve, right: the ventricle is detected.
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Figure 5: Instabilities. Above: Time step too large; left: initial curve, right: result after oneiteration. Below: Time step too small; left: initial curve, right: result;in the left part of thecurve the regularization forces were dominant.
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Figure 6: rectangle. left: initial curve, right: result is only the e�ect of regularization since noedges are close enough.

Figure 7: rectangle. left: initial curve, right: result is stopped at one edge point.
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Figure 8: rectangle. left: initial curve, right: result after in
ating the balloon.

Figure 9: Ultrasound image. left: initial cavity, right: result.
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Figure 10: NMR image. Evolution of the balloon curve to detect the left ventricle.



Laurent Cohen. CVGIP:IU March 1991. 16

Figure 11: NMR image. Evolution of the balloon curve to detect the left ventricle superimposedon the potential image.
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Figure 12: two views of the reconstructed inside cavity of the left ventricle.
Figure 13: two views of the reconstructed inside cavity of the right ventricle.
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