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Minimal Paths and Fast
Marching Methods for Image
Analysis

Laurent D. Cohen

ABSTRACT We present an overview of part of our work on minimal paths.
Introduced first in order to find the global minimum of active contours’
energy using Fast Marching [13], we have then used minimal paths for
finding multiple contours for contour completion from points or curves in
2D or 3D images. Some variations allow to decrease computation time,
make easier initialization and centering a path in a tubular structure. Fast
Marching is also an efficient way to solve balloon model evolution using
level sets. We show applications like for road and vessel segmentation and
for virtual endoscopy.
Keywords: Minimal paths, active contours, deformable models, fast march-
ing, Eikonal Equation, level sets, weighted distance, energy minimization, Per-
ceptual grouping, salient curve detection, medical imaging, aerial images.

1 Introduction

Deformable models have been the object of considerable studies and vari-
ations since their introduction in [20]. Most of the approaches that were
introduced since then tried to overcome the main drawbacks of this model:
initialization, minimization and topology changes. The model requires the
user to input an initial curve close to the goal. Using the balloon model [7]
allows a less demanding initialization. Level sets approaches have the same
property [4, 24, 5]. A region-based approach (for example [10, 8]) also makes
the solution less sensitive to local minima and initialization. Also, a priori
knowledge included in a parametric deformable model (for example [3, 6])
allows to be more robust.

However, for images like the one in figure 4, a very precise initialization
is needed to avoid the active contour being trapped by an insignificant local
minimum of the energy [8, 7]. In order to find a global minimum for the
energy, authors of [13] have introduced a minimal path approach. This is
based on previous work by [22, 21] in a different framework. Curve initial-
ization is replaced by just giving two endpoints. The numerical method has
the advantages of being consistent (see [13]), fast and efficient, using the
Fast-Marching algorithm introduced in [26].
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This chapter contains various improvements of the original method, rel-
evant in 2D or 3D. Some of the problems we dealt with for segmentation
and contour extraction, finding trajectories and perceptual grouping are
presented in this paper as follows:

e Minimal path between two points: The solution proposed in [12, 13]
with Fast Marching is reviewed in Section 2.

e Minimal paths between an ordered list of points or a given set of pairs
of points is a simple application of the previous case.

e Minimal paths for a given unstructured set of points: we propose a
way to find pairs of linked neighbors and paths between them [9]
(Section 3).

e Minimal paths between an unknown set of key points to be deter-
mined from a larger set of admissible points [9].

e Minimal paths for an unstructured set of connected components, by
extending the previous approaches to determine pairs of regions to
be linked. [17] (Section 4).

e Segmentation of 2D and 3D tubular and tree structures [15, 16] (sec-
tions 4.2 et 5).

¢ Finding a centered path inside a tubular structure and application to
virtual endoscopy [15] (section 6).

2  Minimal Paths

2.1 Geometrical optics

In order to understand Fermat Principle which is the physical interpretation
of minimal paths described afterward, we illustrate light propagation in two
simple cases.

According to Fermat Principle, the path followed by monochromatic light
to go from a point pg to a point p; is the path which takes least time. In
the case of an homogeneous medium, light speed is constant, and thus
light follows a straight line, since shortest time is proportional to distance,
as seen on figure 1-left. Sets of points that are reached at a given time
are circles. Let us now consider a non homogeneous medium composed
of two homogeneous regions separated by a horizontal line in the middle,
like in Figure 1-middle. Assuming that light speed is larger in the bottom
rectangle, the trajectory will ” prefer” to remain in this rectangle as much as
possible. As a consequence, trajectories are submitted to a refraction effect,
as seen on a few trajectories shown in the figure. Angles between the two
lines and the normal to the interface between the two media satisfy Snell-
Descartes’law (ratio of their sines is equal to the ratio of refraction indices).
The refraction index n > 1 is the ratio between light speed in emptiness ¢
and its speed in the considered medium v. From this definition, travel time
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FIGURE 1. Cost function by front propagation and minimal paths for a potential
with one or two values. See text.

T between two points is the integral along the followed path of the inverse
of the speed £ = Z. The followed path is a minimum for T = [ zi) ' nds.
The Eikonal equation (see section 2.4) was obtained for this minimization
by Hamilton, as a special case of Hamilton-Jacobi equations.

One of the trajectories shown again on figure 1-right illustrates the well
known mirage effect. Light source S is visible from points Ry et Ro. But the
path followed between S and R is not a straight line, since light “prefers”
going through the smaller refraction index area to go faster. This is a com-
mon phenomenon when temperature variations are large enough between
the ground and atmosphere, making believe an observer at R, there is an
oasis in the desert. Similarity will be obvious in the following sections where
active contours potential P takes the same place as refraction index n.

2.2 Global Minimum for active contours

We present in this section the basic ideas of the method introduced in [13] to
find the global minimum of the active contour energy using minimal paths.
The energy to minimize is similar to classical deformable models (see [20])
where it combines smoothing terms and image features attraction term:

E(C)= / {willC" ()IP+ wallC" () +P(C(s)) }ds (1.1)

where C(s) represents a curve drawn on a 2D image and {2 is its domain
of definition. The method of [13] improves energy minimization since the
problem is transformed in a way allowing to find the global minimum.

2.3  Problem formulation

As explained in [13], skipping second order term, we are lead to minimize
EC) = / {w + P(C(s))}ds, (1.2)
Q=[0,L]

where s is the arclength parameter (||C'(s)|| = 1). The regularization of this
model is now achieved by the constant w > 0 (see [13] for details). Given a
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potential P > 0, the energy is like a distance weighted by P = P +w. The
minimal action U is defined as the minimal energy integrated along a path
between starting point py and any point p:

U(p) = inf E(C) = inf {/ P(C(s))ds} (1.3)
P0>P APO:P Q

where A, p is the set of all paths between py and p. The minimal path

between py and any point p; in the image can be easily deduced from this

action map by a simple back-propagation (gradient descent on If) starting

from p; until py is reached. This backpropagation step is made possible

FIGURE 2. On the left, the potential is defined to be minimal on the ellipse. In
the middle, the minimal action or weighted distance to the marked point. On the
right, minimal path using backpropagation from the second point.

due to the fact that ¢/ has no local minimum except point pg, therefore the
descent converges to pg for any p;. More accurate gradient descent methods
like Runge-Kutta midpoint algorithm or Heun’s method can be used.

FIGURE 3. Global minimum of active contour model. After giving two points on
the left, the minimal path between them is found in the middle image. On the
right we show the cost function from the start point. Notice faster propagation
along the roads. Potential is defined as a decreasing function of the gray level.

2.4 Fast Marching Resolution

In order to compute U, a front-propagation equation related to Eqn. (1.3)

is solved: % = %ﬁ. It evolves a front C starting from an infinitesimal circle

shape around pg until each point inside the image domain is assigned a value
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FIGURE 4. Many minimal paths are obtained from a same start point and many
end points. This allows extracting the set of roads in the aerial image on the left
and vessels in the eye fundus image on the right.

for U. The value of U(p) is the time ¢ at which the front passes over p. The
Fast Marching technique, introduced in [26], was used in [12, 13] noticing
that the map U satisfies the Eikonal equation |VU|| = P and U(po) = 0.
The relation with this equation will be explained in section 5. Since classic
finite difference schemes for this equation are unstable, an up-wind scheme
was proposed by [26]:

(max{u = Us—1,j,u = Uit1,5,0})* + (max{u — Ui j_1,u = Ui j41,0})* = P;.

The improvement made by the Fast Marching is to introduce order in the
selection of the grid points. This order is based on the fact that informa-
tion is propagating outward, because the action can only grow due to the
quadratic Eqn. (1.4). The main idea is similar to the construction of min-
imum length paths in a graph between two given nodes introduced in [18]
(see discussion in [13]). Complexity of Fast Marching on a grid with N
nodes is bounded by O(N log, N) for the Fast Marching on a grid with N
nodes. The algorithm is detailed in Table 1.1. Examples are shown in Fig.
2 to 4. Solving Eqn. (1.4) is detailed next.

2.5 2D Up-Wind Scheme

Notice that for solving Eqn. (1.4), only values of alive neighbor points are
considered (Table 1.1). Considering the neighbors of grid point (7,j) in
4-connexity, we note {A;, A2} and {Bj, B2} the two couples of opposite
neighbors such that we get the ordering U(A;) < U(As), U(B1) < U(Bs),
and U(A1) < U(B1). Considering that we have v > U(B1) > U(A1), the
equation derived is

(u—U(A1))” + (u—U(BL))* = P (1.5)

Based on testing the discriminant A of Eqn. (1.5), one or two neighbors
are used to solve it:
1. If Pij > U(B1) —U(A,), solution of Eqn. (1.5) is

v U(B1)+U(AD)+,/2P2; —(U(B1)-U(A1))?
= : )

(1.4)
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Algorithm for 2D Fast Marching for minimal action ¥/
Definitions:

o Alive set: grid points at which values of &/ have been reached and will not
be changed;

e Trial set: next grid points (4-connexity neighbors) to be examined. An
estimate U of I is computed using Eqn. (1.4) from alive neighbors only;

e Far set: all other grid points, there is not yet an estimate for U;

Initialization:

e Alive set: start point po, U(po) = U(po) = 0; _
e Trial set: four neighbors p of po with initial value U(p) = P(p) (U(p) = o0);
e Far set: all other grid points, U = U = oo;

Loop:

Let p = (4min, jmin) be the Trial point with the smallest action Uj;
Move it from the Trial to the Alive set;
For each neighbor (4, 5) of (imin, jmin):

— If (4,7) is Far, add it to the Trial set;
— If (4,7) is Trial, update U;,; with Eqn. (1.4).

TABLE 1.1. Fast Marching algorithm

2. else u = U(Al) + Pi,j.

2.6 Minimal Paths in 3D

A 3D extension of the Fast Marching algorithm was presented in [15].
Similarly to previous section, the minimal action U is defined as U(p) =
infa,, , {fQ P(C(s))ds} where A, , is now the set of all 3D paths be-
tween pg and p. Given a start point pg, in order to compute U we start

from an initial infinitesimal spherical front around py. The 2D scheme of
equation (1.4) is extended to 3D, leading to:

(max{u — Ui_1 j k,u — Uiy1,j 5, 0}) Hmax{u — Us j_1 4, u — Ui j11,5,0})
+(max{u — U je—1,u — Ui jkr1,01)* = PF (1.6)

giving the correct viscosity-solution u for U; ;. An example is given in
figure 14 of section 6.

2.7 Simultaneous Front Propagation

The idea is to propagate simultaneously a front from each end point pg
and p; [15]. Let us consider the first grid point p where those fronts meet.
This point has to be on the minimal path between py and p;. Since during
propagation the action can only grow, propagation can be stopped at this
step in order to make backpropagation. Adjoining the two paths, respec-
tively between pg and p, and p; and p, gives an approximation of the exact
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FIGURE 5. Simultaneous propagation: The left image is the data set, used as
potential to extract a path in a vessel. In the middle, the action map is obtained
from the first point till second point is reached. The right image shows the action
map resulting from a simultaneous propagation from both extremities points, and
the two paths from the intersection point.

minimal action path between py and p;. Since p is a grid point, the exact
minimal path might not go through it, but in its neighborhood. Precise
location can be obtained through interpolation between grid points like in
[25]. This algorithm is described in table 1.2. This approach allows a par-

Algorithm

e Compute the minimal action maps Up and U; to respectively po and p:
until the two fronts have an Alive point ps in common;

o Compute the minimal path between po and p» by back-propagation on Uy
from po;

o Compute the minimal path between p; and p» by back-propagation on U
from po;

e Join the two paths found.

TABLE 1.2. Minimal Path from two action maps

allel implementation of the two propagations. Also, the region covered by
Fast Marching is greatly reduced (see Figure 5).

2.8 Simultaneous estimate of the path length

In some cases, like for giving extremities in a 3D image, it is easier for the
user to give only one start point and the second should be found automat-
ically. We now describe an approach which builds a path given a starting
point and a given path length to reach [15]. We are able to compute si-
multaneously at each point of the front energy U of the minimal path and
its length. The end point is then chosen as the first point that reach the
expected length. Propagation is stopped when this point is reached and
minimal path is computed from it. Since the front propagates faster along
small values of the potential, the interesting paths are longer among all
paths which have same minimal action U. When the front propagates in a
tubular structure, all points who reach first the given length are in a same
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FIGURE 6. Simultaneous estimate of the path length. On the left, potential; In
the middle, minimal action map; on the right, length of the minimal path. These
maps are computed only until a given length is reached.

Notations

e a start point po is manually set;

e the minimal energy map U, a min-heap #y and a potential image P;

e a distance map D to compute the Euclidean length of the minimal path ;

e a min-heap Hp, where the ordering key for any point p is the value of D(p)
(the first element of this heap will be the Trial point with smallest D);

Initialization

e initialize the front propagation method, by setting U(po) = D(po) = 0 and
storing po in both min-heaps Hy and #Hp;

Loop: at each iteration, consider pmin the Trial point with smallest U

e Move it to Alive set, and remove it from both Hy and Hp
e for each neighbor p of pmin:

— proceed according to the classical Fast Marching algorithm: update
U(p) and re-balance Hy;

— update D(p) according to ||VD|| = 1 using the same neighbors of p
that were involved in updating U(p) and re-balance Hp

TABLE 1.3. Computing the Euclidean Distance traveled by the front.

region of the image, far from the starting point and inside the tubular
shape. This gives a justification for this choice of end point (see Figure 6).

Once the path is extracted by gradient descent, we can easily compute
its length. But this is a very time consuming process to systematically do
this at each point visited. Therefore we proposed to compute on-the-fly an
approximation of the distance traveled by the front. We use the property
that when propagating a front with a constant speed equal to one, the
minimal energy obtained at each point represents the Euclidean distance
D to the starting point. The Euclidean length of the path is found solving
[|[VD|| = 1 using with the same neighbors involved for P in Eqn. (1.5). The
corresponding algorithm is described in table 1.3. This algorithm was used
for reducing user-intervention in the Virtual Endoscopy process presented
in section 6 by giving only one point [15].
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3 Minimal paths from a set of endpoints p

FIGURE 7. Ellipse. From left to right: potential is an incomplete ellipse and
points py are given; level sets of minimal action U from pg’s; zoom on a saddle
point; backpropagation from selected saddle points to their two source points give
the set of paths and voronoi diagram.

Minimal paths between points p;, minimal action V = Uy, o<k<n}

e Initialization:

— pr’s are given; Vk, V(pr) = 0;l(pr) = k is the front index, py alive.
- Vp & {pr},V(p) = o0;l(p) = —1; p is far except 4-connexity neigh-
bors of pi’s that are trial with estimate U using Eqn. (1.4).
e Loop for computing V' = Uy, o<k<ny:

— Let p = (imin, jmin) be the Trial point with the smallest action U;

— Move it from the Trial set to the Alive set with V(p) = U(p);

— Update I(p) with the same index as point A; in formula (1.5). If
I(A1) # I(B1) and we are in case 1 of section 2.5 where both points
are used and if this is the first time regions of labels I(A;) and I(By)
meet, S(pya,),PiB,)) = p is set as the saddle point between p;ca,)
and p;(p,). If these points have not yet two linked neighbors, they are
put as linked neighbors and S(pyca,), Pi(8,)) = P is selected,

For each neighbor (%, j) of (imin, jmin):
* If Ei,jg is Far, add it to the Trial set;
* If (4,7) is Trial, update action Uj; ;.

e Obtain all paths between selected linked neighbors by backpropagation

each way from their saddle point.

TABLE 1.4. Algorithm for unstructured set of points.

3.1  Multiple minimal paths

We propose to use the minimal path approach to extract a set of contours
from an unstructured set of points given on an image. In order to find the
set of most representative contours on the image, we are looking for minimal
paths between pairs of points. We describe briefly the method when points
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pi are already known. An approach to automatically find points py that are
most representative among a larger set of admissible points was introduced
in [9], based on an iterative farthest point strategy relative to the weighted
distance. Such a strategy was used later on to find adaptive or uniform
remeshing of a surface using fast marching [25].

We assume here that points pr are known. If we knew as well which
pairs of points have to be linked among py,’s, finding all contours is a trivial
application of section 2. The problem we are interested in here is also to
find out which pairs of points have to be connected by a contour. Since
the set of points py’s is assumed to be given unstructured, we do not know
in advance how the points connect. This is the key problem that is solved
here using a minimal action map.

- . .
I I ) . D
e = kS -

FIGURE 8. Two circles: from left to right: incomplete noisy data set; the set of
found pg’s; multiple minimal paths between pg’s.

The main goal of our method is to obtain all significant paths joining
the given points. However, each point should not be connected to all other
points, but only to those that are closer to them in the energy sense. There
are many possibilities to decide which pairs of points have to be linked.
It depends on data and on the application in view. In some cases, it is
necessary to detect closed curves and avoid bifurcation, or T-junctions.
The criterion is then to constrain a point p; to be linked to at most two
other points among pj s, in order to generate a closed curve. In case we are
looking for tree structures, the criterion is different, as in section 4.2.

For perceptual grouping, potential P to be minimized along the paths is
often a binary image of edge points, that form incomplete contours, as on
figure 7-left. Attraction potential to the set of edge points can be defined
(see [11]) in order to have lower values along edge points and higher values
in the background.

3.2  Main ideas of the approach

Our approach is similar to computing the distance map to a set of points
and their Voronoi diagram. However, we use here a weighted distance de-
fined through the potential P. This distance is obtained as the minimal
action with respect to P with zero value at all points pg. Instead of com-
puting a minimal action map for each pair of points, as in Section 2.3, we
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only need to compute one minimal action map in order to find all paths.
At the same time the action map is computed we determine the pairs of
points that have to be linked together by finding meeting points of the
propagation fronts. These are saddle points of the minimal action i.

Although the minimal action is computed using fast marching, the level
sets of U give the evolution of the front. During the fast marching algorithm,
the boundary of the set of alive points also gives the position of the front.

Figure 7 illustrates the steps of the algorithm. Figure 8 shows the result
with points py found automatically. More details can be found in [9].

4 Multiple minimal paths between regions Ry

We consider perceptual grouping and contour completion from an unstruc-
tured set of regions in a 2D or 3D image. As an extension of previous section
3, complete curves are obtained as minimal paths between pairs of regions
[17]. This approach is extended to finding a set of minimal paths that con-
nect a set of 3D regions in 3D images. This makes use of Fast-Marching in
a 3D image, as in section 2.6 [15, 14].

FIGURE 9. From left to right: examples of regions to link; level sets of the
minimal action from the 4 regions; minimal paths obtained from the 3 selected
saddle points.

4.1  Minimal path between 2 regions

Defining a minimal path between two regions is an easy extension of [13].
Consider two connected regions, the start region Ry and the set of end
points R;. The problem is finding a minimal path among all paths starting
from a point in Ry and ending on R;. Minimal action is then defined as:

U(p) = inf E(C)= inf inf E(C 1.7

(p) = jnf E(C)= f inf E(C) (1.7)

where Ag, , is the set of paths starting from a point in Ry and ending at
p. This is computed using Fast Marching as in table 1.1, with initial set of
Alive points being Rg, with &/ = 0. In order to find a minimal path between
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Ry and Ry, we determine a point p1 € Ry such that U(p1) = minyer, U(p).
We then make backpropagation from p; to Rp.

FIGURE 10. Perceptual grouping in the 3D aorta image: MIP view of vascularity
potential; detection of regions in the aorta; vascular tree completion by minimal
paths relatively to vascularity potential.

4.2 Tubular structures

Linking regions can be useful when these regions are for example connected
components obtained after edge detection. In the example of Fig. 9, which
represent a tree structure, regions are selected in a way that they do not
form together a closed curve. In medical imaging, finding vessels is a very
important problem. Regions can then be defined from thresholding a vas-
cularity criterion of [19] to detect tubular regions in a vessel image. In Fig-
ure 10, we show a MIP view of the vascularity potential [19] obtained from
3D MRI of the aorta with contrast product. We obtain a set of regions by
thresholding the multiscale criterion. Our method helps completing these
region and finding the structure of the vascular tree.

5 Segmentation by Fast Marching

FIGURE 11. Propagation inside colon using Fast Marching.

Several approaches are possible to segment the boundary surface of an
object starting from points inside. We can use for example a balloon model
[7] or its level-sets implementation, as in [24]. In fact, this kind of region
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growing method can also be solved fast using the Fast Marching algorithm
[23]. This allows to make a segmentation step in the same framework as
minimal path finding. Having searched for the minimal action from one
point, the algorithm provides the following regions:

e Inside : the points whose action is set, labeled Alive;

e Qutside : the points not yet examined, labeled Far;

e the points at the interface between Alive and Far points, whose ac-
tions are not set, labeled Trial.

This last region, on the boundary of the visited points, is a contour in 2D
and a surface in 3D. If the potential is a lot higher along edges than it is
inside the shape, the edges will act as an obstacle to the front propagation.
In this case the Trial points define a surface which segments the object.
In order to see the precise relation between fast marching propagation
and active contours, consider the usual evolution equation of an interface
(2D curve or 3D surface) that appears in level sets methods %—f(p) = F(k)n
and C(p,0) = Co(p). Assume the speed F = £ > 0, and thus the front
moves always outwards in the normal direction n, like an inflating balloon
[7], but with a speed which is not necessarily constant. A way to characterize
the interface is to compute at each point x of the image the arrival time
T'(x) of the interface C(t) when it sweeps the domain. Using the classical
properties of a level set of T' that its normal is in the direction of VT, the
following equation is obtained from the evolution of interface C(t):

VT
IVT|

where we recognize the Eikonal equation seen above in section 2.4. This
equation was thus solved by fast marching in [23] for surface segmentation
since it has the same advantages as the level set formulation, but is much
faster. This equation is solved using 3D Fast Marching (see section 2.6) in
the example for segmentation of the colon shown in figure 11, [15].

When the front propagates in a long and thin structure for which the
potential contrast between inside and outside is not sufficient, the front will
likely flood out of the object during propagation. Indeed, when the front
propagates in the tubular structure, there is only a small part of the front,
which we could call the “head” of the front, that really moves. Most of
the front is located close to the boundary of the structure and moves very
slowly. For example voxels that are close to the starting point, the “tail”
of the front, are moving very slowly. However, since the structure may be
very long, in order for the “head” voxels to reach the end of the structure,
the “tail” voxels may flow out of the boundary since their speed is always
positive, and integrated over a long time. This is illustrated in the example
of Figure 12.

We introduced in [16] an approach where points of the front are ” frozen”
when a distance criterion is satisfied. This makes use of the length of the

T(C(x,t)):t:>VT-C’t:1:>VT-(F ):1:>F-|VT|:1
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)

FIGURE 12. Front Propagation in a 3D MR image of the aorta. On the left it
floods, in the middle, freezing prevents flooding. On the right, virtual endoscopy
in the tree structure, with visible paths.

minimal paths computed as in section 2.8. Figure 12 shows the result with
freezing which gives a correct segmentation.

6 Centered Minimal Paths and virtual endoscopy

- idedl path

FIGURE 13. Centered path in a vessel: Two images on the left show both paths
on a sketch and original image.Two images on the right show propagation and
path for classical potential and centering distance potential obtained.

A minimal path minimizes the integral of the potential in equation (1.2).
If the potential is constant in some areas, like inside a tubular object, it
will lead to a shortest geodesic path. The same thing happens when the
potential does not vary much inside a tubular shape. The minimal path
extracted is often tangential to the edges, as shown on the left of figure 13,
and this is a problem when looking for a trajectory for virtual endoscopy
[15]. A centered path is more relevant. The method we proposed to obtain a
centered path in a tubular shape first segments the tubular region and then
looks for a path inside as far as possible from the walls, using a distance
map. The complete method is detailed in [15], here are the main steps:

1. Segmentation: compute the weighted distance map by front propaga-
tion from the given start point till reaching the end point, which can
be found automatically using a length criterion of section 2.8.

2. Segmentation: set of trial points, as described in section 5.
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3. Centering Potential : compute inside the tubular object the distance
map D to the surface previously obtained (fast marching with P = 1).

4. Centered path : this is the minimal path between start and end points
relatively to a decreasing function of the distance D. The path locates
as far as possible from the walls, which means in the center where
distance to the boundary is larger. The final step is to make back-
propagation from the end point using the last action map.

Figure 13 compares the resulting path with classical potential and center-
ing potential on brain vessels. Figure 14 shows an example of the centered
minimal path obtained in a 3D colon image. This path is used as a tra-
jectory for a virtual camera by image rendering at each point of the path
from the 3D image data giving a virtual endoscopy. Movies are available
on the website http://www.ceremade.dauphine.fr/~cohen/MPEG

This approach can be extended [16] to extraction of a set of paths in a
tree structure and the possibility of virtual endoscopy where the user can
choose at each bifurcation the path he wishes to follow (figure 12).

FIGURE 14. On the left, example of a minimal path on a 3D image of colon.
On the right, virtual endoscopy through the colon (coloscopy).

Acknowledgments. A large part of the presented work was done in
collaboration with R. Kimmel or during PhD supervision of T.Deschamps
and I thank both of them greatly.

Conclusion

We have presented various aspects of minimal paths methods and their
applications, in particular for medical imaging. These approaches allow to
extract a contour or a set of contours in a 2D image, as well as tubular
structures, or tree structures in 2D and 3D images. The Fast marching
algorithm makes the task much easier and also allows to segment curves
or surfaces in an image very fast. Let us quote some of our more recent
related work : surface segmentation defined as a set of minimal paths, [2],
image segmentation from a set of source points using an extension of the
definition of minimal action [1] and fast marching on a triangulated surface
used for adaptive remeshing [25].
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