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75775 Paris cedex 16, France,

cohen@ceremade.dauphine.fr

Abstract. We address the problem of finding a set of contour curves in a 2D or
3D image. We consider the problem of perceptual grouping and contour comple-
tion, where the data is an unstructured set of regions in the image. A new method
to find complete curves from a set of edge points is presented. Contours are found
as minimal paths between connected components, using the fast marching algo-
rithm. We find the minimal paths between each of these components, until the
complete set of these “regions” is connected. The paths are obtained using back-
propagation from the saddle points to both components.
We then extend this technique to 3D. The data is a set of connected components
in a 3D image. We find 3D minimal paths that link together these components.
Using a potential based on vessel detection, we illustrate the capability of our
approach to reconstruct tree structures in a 3D medical image dataset.

1 Introduction

Since their introduction, active contours [?] have been extensively used to find the con-
tour of an object in an image through the minimization of an energy. In order to get
a set of contours with T-junctions, we need many active contours to be initialized on
the image. The level sets paradigm [13, 1] allows changes in topology. It enables to get
multiple contours by starting with a single one. However, it does not give satisfying
results when there are gaps in the data since the contour may propagate into a hole and
then split into several curves where only one contour is desired. This is the problem en-
countered when we try to group a set of incomplete contours. For example, in a binary
image like in figure 1 with a drawing of a shape with holes, human vision can easily
fill in the missing boundaries and form complete curves. Perceptual grouping is an old
issue in computer vision. It has been approached more recently with energy methods
[15, 9, 16]. These methods make use of a criteria for saliency of a curve component or
for each point of the image. This saliency measure is based indirectly on a second order
regularization snake-like energy ([?]) of a path containing the point. However, the final
curves are generally obtained in a second step as ridge lines of the saliency criteria af-
ter thresholding. Motivated by this relationship between energy minimizing curves like
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snakes and completion contours, we worked upon finding a set of completion contours
on an image as a set of energy minimizing curves.

In order to solve global minimization for snakes, the authors of [3] used the minimal
paths, as introduced in [12, 11]. The goal was to avoid local minima without relying too
much on user initialization, which is a main drawback of classic snakes [?]. Only two
end points were needed. The numerical method has the advantage of being consistent
(see [3]) and efficient using the Fast Marching algorithm introduced in [14].

In [2], we proposed a way to use this minimal path approach to find a set of curves
drawn from a set of points in the image. We also introduced a technique that automat-
ically finds a set of key end points. In this paper, we extend the previous approach to
connected components instead of end points. In order to obtain a set of most salient
contour curves, we find a set of minimal paths between pairs of connected components.

This approach is then extended for application in the completion of tube-like struc-
tures in 2D and 3D images. The problem is here to complete a partially detected object,
based on some detected connected components that belong to this object.

For perceptual grouping, the potential
�

to be minimized along the curves is usually
an image of edge points that represent simple incomplete shapes, as in figure 1. These
edge points are represented as a binary image with small potential values along the
edges and high values at the background. The potential could also be defined as edges
weighted by the value of the gradient or as a function of an estimate of the gradient
of the image itself,

���������
	��
���
, like in classic snakes. The potential could also be

a grey level image as in [3]. It could also be a more complicated function of the grey
level. In our real examples of vascular structures in 2D and 3D, we use a potential based
on a vesselness filter [8].

The paper is presented as follows. We first give a summary of minimal paths and fast
marching in 2D and 3D images in section 2. We then present in Section 3 how to find a
set of curves from a given set of unstructured points. Grouping the points in connected
components, we propose a way to find the pairs of linked connected components and
the paths between them. We then extend this approach to 3D and show an application
in 3D medical images.

Fig. 1. Examples of connected regions to be completed
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2 Minimal Paths in 2D and 3D

2.1 Global Minimum for Active Contours

We present in this section the basic ideas of the method introduced in [3] to find the
global minimum of the active contour energy using minimal paths. The energy to mini-
mize is similar to classical deformable models (see [10]) where it combines smoothing
terms and image features attraction term (Potential

�
):� ��� � ��������	 � �
��� ��
 �
� ��� 	 � ����� � ��
 �
� ��� � ��� ��
 � �
����
 (1)

where
� ��
 �

represents a curve drawn on a 2D image and � is its domain of definition.
The authors of [3] have related this problem to the recently introduced paradigm of the
level-set formulation. In particular, its Euler equation is equivalent to the geodesic active
contours [1]. The method introduced in [3] improves energy minimization because the
problem is transformed in order to ensure global minimization.

2.2 Problem formulation

As explained in [3], we are lead to minimize� ��� � � � ����� �
� ����� 	 � � ��� ��
 � �! "�#
%$

(2)

where



is the arclength parameter (
�
� � ��
 �
� �'&

). The regularization of this model is
now achieved by the constant

	)(+*
(see [3] for details). Given a potential

�-,+*
, the

energy is like a distance weighted by .� � � � 	
. The minimal action / is defined as

the minimal energy integrated along a path between a starting point 0 � and any point 0 :

/ � 0 � �2143657�8:9<; 8 � ��� � �2143=57�8:9>; 8@? � � .� ��� ��
 � �A��
CB (3)

where DFE 9 � E is the set of all paths between 0 � and 0 . The minimal path between 0 �
and any point 0 � in the image can be easily deduced from this action map by a simple
back-propagation (gradient descent on / ) starting from 0 � until 0 � is reached.

2.3 Fast Marching Resolution

In order to compute the map / , a front-propagation equation related to Equation (3) is
solved: G �GIH � & .�KJL MON (4)

It evolves a front starting from an infinitesimal circle shape around 0 � until each point
inside the image domain is assigned a value for / . The value of / � 0 � is the time

H
at

which the front reaches the point 0 .
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Fig. 2. Finding a minimal path between two points. On the left, the potential is minimal on the
ellipse. In the middle, the minimal action or weighted distance to the marked point. On the right,
minimal path using backpropagation from the second point.

The Fast Marching technique, introduced in [14], was used in [3] noticing that the
map / satisfies the Eikonal equation:

� 	 / � � .� and / � 0 � � � * N
(5)

Classic finite difference schemes for this equation tend to overshoot and are unstable.
An up-wind scheme was proposed by [14]. It relies on a one-sided derivative that looks
in the up-wind direction of the moving front, and thereby avoids the over-shooting
associated with finite differences:

� ����� � � J /��
	 ��� � $ � J /���
 � � � $ *6 � � �� ����� � � J / � � � 	 � $ � J / � � � 
 � $ *6 � � � .� �
� � �
$

(6)

giving the correct viscosity-solution � for /�� � � . The improvement made by the Fast
Marching is to introduce an order in the selection of the grid points. This order is based
on the fact that information is propagating outward, because the action can only grow
due to the quadratic Equation (6).

This technique of considering at each step only the necessary set of grid points was
originally introduced for the construction of minimum length paths in a graph between
two given nodes in [7]. The algorithm is detailed in Table 1. An example is shown in
Figure 2. The Fast Marching technique selects at each iteration the Trial point with
minimum action value. In order to compute this value, Equation (7) has to be solved for
each trial point, as detailed in section 2.4.

2.4 Algorithm for 2D Up-Wind Scheme

Notice that for solving Eqn. (6), only alive points are considered. Considering the neigh-
bors of grid point

�
�!$�� �
in 4-connexity, we note � � � $ � �  and � � � $�� �  the two couples

of opposite neighbors such that we get the ordering / � � � ��� / � � � � , / ��� � ��� / ��� � � ,
and / � � � ��� / ��� � � . Considering that we have � , / ��� � � , / � � � � , the equation
derived is � � J / � � � � � �

� � � J / ��� � � � � � .� �
� � � (7)

Based on testing the discriminant � of Eqn. (7), one or two neighbors are used to solve
it:
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Algorithm for 2D Fast Marching

– Definitions:�
Alive set: grid points where the action value

�
has been reached and will not

be changed;�
Trial set: next grid points (4-connexity neighbors) to be examined. An esti-
mate � of

�
has been computed using Eqn. (6) from alive points only (i.e.

from
�

);�
Far set: all other grid points, where there is no estimate for � yet;

– Initialization:�
Alive set: start point �������
	����
��� � 	���������� ;�
Trial set: reduced to the four neighbors � of � � with initial value �
	��������� 	����
(
� 	�������� );�

Far set: all other grid points,
� ������� ;

– Loop:�
Let ����	����! #"$�&%
�! #"'� be the Trial point with the smallest action � ;�
Move it from the Trial to the Alive set;�
For each neighbor 	��(�&%)� of 	��&�! *"��&%
�! #"�� :+ If 	��(�&%)� is Far, add it to the Trial set;+ If 	��(�&%)� is Trial, update �� -, . with Eqn. (6).

Table 1. Fast Marching algorithm

1. If ��  -, .0/ � 	-1 � ��2 � 	-3 � ��� solution of Eqn. (7) is 4�� 576#8:9<;>=?576A@$9B;C=ED ��FG:HI ; J�K 6 576#8:9<; K 5L6A@$9B;>; H
� M

2. else 4N� � 	-3 � �:O ��  -, . .
2.5 Minimal Paths in 3D

A 3D extension of the Fast Marching algorithm was presented in [5] and detailed in [6].
Similarly to previous section, the minimal action / is defined as/ � 0 � � 143=57�8:9>; 8 ? �I� .� ��� ��
 � � ��
 B (8)

where D E 9 � E is now the set of all 3D paths between 0 � and 0 . Given a start point 0 � ,
in order to compute / we start from an initial infinitesimal front around 0 � . The 2D
scheme equation (6) is extended to 3D, leading to the scheme

� ����� � � J / ��	 � � � � P $ � J / � 
 ��� � � P $ *= � � �� ��� � � � J / � � � 	 ��� P $ � J / � � � 
 � � P $ *= � � � (9)
� ����� � � J /�� � � � P 	 � $ � J /�� � � � P 
 � $ *= � � � .� �

� � � � P
giving the correct viscosity-solution � for /�� � � � P .

3 Finding Contours from a Set of Connected Components QSR
3.1 Minimal Path between two Regions

The method of [3], detailed in the previous section allows to find a minimal path be-
tween two endpoints. From there, a straightforward extension allows to define a mini-
mal path between two regions of the image. Given two connected regions of the image
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�
�

and
� � , we consider

�
�

as the starting region and
� � as a set of end points. The

problem is then finding a path minimizing energy among all paths with start point in�
�

and end point in
� � . The minimal action is now defined by/ � 0 � � 143657��%9>; 8 � ��� � � 1 365E 9���� 9 1 3657�8 9>; 8 � ��� � (10)

where D � 9 � E is the set of all paths starting at a point of
�
�

and ending at 0 . This minimal
action can be computed the same way as before in table 1, with the alive set initialized
as the whole set of points of

�
�
, with / � *

and trial points being the set of 4-connexity
neighbors of points of

�
�

that are not in
�
�
. Backpropagation by gradient descent on /

from any point 0 in the image will give the minimal path that join this point with region�
�
.
In order to find a minimal path between region

� � and region
�
�
, we determine a

point 0 ��� � � such that / � 0 � � � � 143 E ��� 9 / � 0 � . We then backpropagate from 0 � to�
�

to find the minimal path between 0 � and
�
�
, which is also a minimal path between� � and

�
�
.

3.2 Minimal Paths from a Set of Connected Components

We are now interested in finding many or all contours in an image. We assume that
from some preprocessing, or as data, we have an initial set of contours. We denote

� P
the connected components of these contours. We propose to find the contours as a set
of minimal paths that link pairs of regions among the

� P ’s. If we also know which
pairs of regions have to be linked together, finding the whole set of contours is a trivial
application of the previous section. The problem we are interested in here is also to find
out which pairs of regions have to be connected by a contour. Since the set of contours� P ’s is assumed to be given unstructured, we do not know in advance how the regions
connect. This is the key problem that is solved here using a minimal action map.

3.3 Method

Our approach is similar to computing the distance map to a set of regions and their
Voronoi diagram. However, we use here a weighted distance defined through potential�

. This distance is obtained as the minimal action with respect to
�

with zero value at
all points of regions

� P . Instead of computing a minimal action map for each pair of
regions, as in Section 3.1, we only need to compute one minimal action map in order
to find all paths. At the same time the action map is computed we determine the pairs
of regions that have to be linked together. This is based on finding meeting points of
the propagation fronts. These are saddle points of the minimal action / . In Section 2,
we said that calculation of the minimal action can be seen as the propagation of a front
through equation (4). Although the minimal action is computed using fast marching, the
level sets of / give the evolution of the front. During the fast marching algorithm, the
boundary of the set of alive points also gives the position of the front. In the previous
section, we had only one front evolving from the starting region

�
�
. Since all points 0

of regions
� P are set with / � 0 � � *

, we now have one front evolving from each of the
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starting regions
� P . In what follows, when we talk about front meeting, we mean either

the geometric point where the two fronts coming from different
� P ’s meet, or in the

discrete algorithm the first alive point which connects two components from different� P ’s (see figures 3 and 4).
We use the fact that given two regions

� � and
� � , the saddle point � where the two

fronts starting from each region meet can be used to find the minimal path between
� �

and
� � . Indeed, the minimal path between the two regions has to pass by the meeting

point � . This point is the point half way (in energy) on a minimal path between
� � and� � . Backpropagating from � to

� � and then from � to
� � gives the two halves of the

path.

3.4 Notations and definitions

Here are some definitions that will be used in what follows. � being a set of points in
the image, /�� is the minimal action obtained by Fast Marching with potential .� and
starting points � 0 $ 0 � �  

. This means that all points of � are initialized as alive points
with value 0. All their 4-connexity neighbors that are not in � are trial points. This is
easy to see that /�� � � 1 3 E � �O/ E . � may be a connected component

�
or a set of

connected components.
The label � at a point 0 is equal to the index � of the region

� P for 0 closer in energy
to
� P than to other regions

� � . This means that minimal action / ��� � 0 ��� / � J � 0 �<$	� ��
�
� N We define the region � P � � 0�
�� � 0 � � �  . If � ��� � � � , we have /�� � / ��� on � P
and the computation of /�� is the same as the simultaneous computation of each / ���
on each region � P . These are the simultaneous fronts starting from each

� P .
A saddle point � � � � $ � � � between

� � and
� � is the first point where the front

starting from
� � to compute / � I meets the front starting from

� � to compute / � J ; At
this point, / � I and / � J are equal and this is the smallest value for which they are equal.

Two different regions among the
� P ’s will be called linked regions if they are se-

lected to be linked together. The way we choose to link two regions is to select some
saddle points. Thus regions

� � and
� � are linked regions if their saddle point is among

the selected ones.
A cycle is a sequence of different regions

� P $�&�� � ���
, such that for

& � � �
� J &

,
� P and

� P 
 � are linked regions and
���

and
� � are also linked regions.

3.5 Finding and Selecting Saddle Points

The main goal of our method is to obtain all significant paths joining the given regions.
However, each region should not be connected to all other regions, but only to those
that are closer to them in the energy sense. There are many possibilities for deciding
which regions connect together depending on the kind of data and application. In some
cases, the goal would be to detect closed curves and avoid forming branches, as in [2].
Then the criterion would be to constrain a region to be linked to at most two other
regions in order to make cycles. In our context, we are interested in detecting branches
and avoiding closed curves. Therefore the criterion for two regions

� � and
� � to be

connected is that their fronts meet without creating a “cycle”.
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Fig. 3. Minimal Action map from the four regions of the example of figure 1. On the right with a
random LUT to show the level sets.

Fig. 4. Zoom on saddle points between regions.

We see in figure 4 a zoom on the saddle points detected between regions
� � and

� �

and
���

and
���

. Once a saddle point � � � � $ � � � is found and selected, backpropagation
relatively to final energy / should be done both ways to

� � and to
� � to find the two

halves of the path between them. We see in figure 5 this backpropagation at each of the
three automatically selected saddle points. They link

� � to
� � ,

� � to
���

and
���

to
���

.
At a saddle point, the gradient is zero, but the direction of descent towards each point
are opposite. For each backpropagation, the direction of descent is the one relative to
each region. This means that in order to estimate the gradient direction toward

� � , all
points in a region different from ��� have their energy put artificially to � . This allows
finding the good direction for the gradient descent towards

� � . However, as mentioned
earlier, these backpropagations have to be done only for selected saddle points. In the
fast marching algorithm we have a simple way to find saddle points and update the
linked regions.

As defined above, the region � P associated with a region
� P is the set of points 0 of

the image such that minimal energy / � � � 0 � to
� P is smaller than all the / � J � 0 � to other

regions
� � . The set of such regions � P covers the whole image, and forms the Voronoi

diagram of the image (see figure 5). All saddle points are at a boundary between two
regions � P . For a point 0 on the boundary between � � and � P , we have / ��� � 0 � �/ � J � 0 � . The saddle point � � � P $ � � � is a point on this boundary with minimal value of
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Fig. 5. Example with four regions. On the left we show the minimal paths obtained by backprop-
agation from the three saddle points to each of the regions from where the front comes; on the
right, and the Voronoi diagram obtained.

/ ��� � 0 � � / � J � 0 � . This gives us a rule to find the saddle points during the fast marching
algorithm.

Each time two fronts coming from
� P and

� � meet for the first time, we define the
meeting point as � � � P $ � � � . This means that we need to know for each point of the
image from where it comes. This is easy to keep track of its origin by generating an
index map updated at each time a point is set as alive in the algorithm. Each point of
region

� P starts with label � . Each time a point is set as alive, it gets the same label
as the points it was computed from in formula (6). In that formula, the computation of� � � � depends only on at most two of the four pixels involved. These two pixels, said� � and

� � , have to be with the same label, except if
�
�!$�� �

is on the boundary between
two labels. If

� � and
� � are both alive and with different labels � and � , this means

that regions
� P and

���
meet there. If this happens for the first time, the current point

is set as the saddle point � � � P $ ��� � between these regions. A point on the boundary
between

� P and
���

is given the label of the neighbor point with smaller action
� � . At

the boundary between two labels there can be a slight error on labeling. This error of at
most one pixel is not important in our context and could be refined if necessary.

3.6 Algorithm

The algorithm for this section is described in Table 2 and illustrated in figures 3 to 5.
When there is a large number of

� P ’s, this does not change much the computation time
of the minimal action map, but this makes more complex dealing with the list of linked
regions and saddle points and testing for cycles.

The way we chose to test for cycles is as follows. Assume a saddle point between
regions

� � and
� � is found. We then test if there is already a link between these regions

through other regions. This means we are looking for a sequence of different regions� P $
& � � � �
, with

� � � � � and
� � � � � , such that for

& � � � � J &
,
� P and� P 
 � are linked regions.

This kind of condition can be easily implemented using a recursive algorithm. When
two regions

� � and
� � are willing to be connected - ie that their fronts meet - a table

storing the connectivity between each region enables to detect if a link already exists
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Minimal paths between Regions ���
– Initialization:�

��� ’s are given����� � � �	�	��� ��
 	��������
����	������ �
�N� alive.��� ������������ ��
 	����E� ����� 	���� � 2���� � is Far except 4-connexity neighbors

of ��� ’s that are Trial with estimate � using Eqn. 6.
– Loop for computing 
�� ��� ��� �

:�
Let ����	�� �! #" �&% �! #" � be the Trial point with the smallest action � ;�
Move it from the Trial to the Alive set with V(p) = U(p);�
Update � 	���� with the same index as point 3 � in formula (6). If � 	-3 � ����
� 	-1 � � and we are in case 1 of section 2.4 where both points are used
and if this is the first time regions of labels ��	-3 � � and � 	-1 � � meet,� 	��� 6�@ 9B; ���! 6#8:9B; � � � is set as a saddle point between �� 6A@$9B; and �! 6#8:9�; .
If adding a link between these regions does not create a cycle, they are set as
linked regions and

� 	��  6A@$9B; �"�  6#8:9<; �E� � is selected,
For each neighbor 	��(�&%)� of 	��&�! *"��&%
�! #"�� :+ If 	��(�&%)� is Far, add it to the Trial set;+ If 	��(�&%)� is Trial, update action �  �, . .

– Obtain all paths between selected linked regions by backpropagation each way
from their saddle point (see Section 3.5).

Table 2. Algorithm of Section 3

between those regions. Having # different regions, we fill a matrix $ � # $ # � with
zeros, and each time two regions

� � and
� � meet without creating a cycle, we set

$ �
�!$ � � � $ ���%$ � � � &
. Thus, when two regions meet, we apply the algorithm detailed

in table 3.

Algorithm for Cycle detection when a region �  meets a region � . :
Test 	��(�&%���%�� � �&��' �)("*
Test 	��(�&%���%��"���&�

– if % 	�����%)���+� , return 1;
– else�

count=0;�
for

�
�-,.����/10 with

�
�� �(� � �� %�� � ��2� : count O�� Test 	 � �&%���%������&��

return count;
Table 3. Cycle detection

If two regions are already linked, the pixel where their fronts meet is not considered
as a valuable candidate for back-propagation. The algorithm stops automatically when
all regions are connected.

3.7 Application

The method can be applied to connected components from a whole set of edge points
or points obtained through a preprocessing. Finding all paths from a given set of points
is interesting in the case of a binary potential defined, like in figure 3, for perceptual
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grouping. It can be used as well when a special preprocessing is possible, either on
the image itself to extract characteristic points or on the geometry of the initial set of
points to choose most relevant points. We show in figure 6 an example of application to
a medical image of the hip where the objects of interest are the vessels. Potential

�
is

defined using ideas from [8] on vesselness filter (detailed later in section 4.2).

Fig. 6. Medical Image. First line: original image and vesselness potential; Second line: from the
set of regions obtained from thresholding of potential image, our method finds links between
these regions as minimal paths with respect to the potential.

4 Finding a Set of Paths in a 3D Image

4.1 Extension to 3D

We now extend our approach to finding a set of 3D minimal paths between regions in
3D images. All definitions and algorithms of section 3 are not affected by changing the
dimension of the image from 2D to 3D. The main changes are that 4-connexity in 2D is
now 6-connexity in 3D and that we deal with minimal paths and minimal action in 3D
images. We presented briefly in section 2.5 the fast marching extension to 3D and for
more details on minimal paths in 3D images, we refer to [5] and [6].
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4.2 Application to Real Datasets: a MR Image of the Aorta

The problem here is to complete a partially detected object. In figure 7 is shown a
3D MR dataset of the aorta, which presents a typical pathology: an abdominal aortic
aneurysm. The anatomical object is made visible on the image by injecting a contrast
product before the image acquisition.

We propose here to give a method for extracting from the grey level image a set of
paths that will represent an approximate skeleton of the tree structure. This is based on
extracting first a set of unstructured voxels or regions that belong to the object.

For this, we propose to extract valuable information from this dataset, computing a
multiscale vessel enhancement measure, based on the work of [8] on ridge filters. Hav-
ing extracted the three eigenvalues of the Hessian matrix computed at scale � , ordered� �

�
� � � �

�
� � � � � �

, we define a vesselness function
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where
��� ��� � H �� ����� , ��� � � � 9 �� � � H � � � , and � � D � � � � � � � � � � � . See [8] for a detailed

explanation of the settings of each parameter in this measure.
In figure 8 you can observe the response of the filter, based on the Hessian infor-

mation, at three different scales: � � & $
�6$�& *
. Visualization is made with Maximum

Intensity Projection (MIP). Using this information computed at several scales, we can
take as potential the maximum of the response of the filter across all scales (Fig. 9-left).
And we can easily give a very constrained threshold of this image, that will lead to sets
of unstructured voxels that surely belong to the anatomical object of interest, as shown
in figure 9-middle.

Based on this set of regions, we apply our algorithm of section 3, using the 3D
version of the Fast-Marching algorithm presented briefly in section 2.5 and which is
detailed in [6]. We find the set of paths that connect altogether all the seed regions in
our image, leading to the representation shown in figure 9-right.

5 Conclusion

We presented a new method to find a set of contour curves in an image. It was applied
to perceptual grouping to get complete curves from a set of edge regions with gaps. The
technique is based on finding minimal paths between two end points [3]. However, in
our approach, start and end points are not required as initialization. Given a unstructured
set of regions, the pairs of regions that had to be linked by minimal paths are automat-
ically found. Once saddle points between pairs of regions are found, paths are drawn
on the image from the selected saddle points to both points of each pair. This gives
the minimal paths between selected pairs of regions. The whole set of paths completes
the initial set of contours and allows to close these contours. This method was applied
in order to reconstruct vascular structures, and we showed examples for 2D vascular
image and 3D medical dataset of the aorta.
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Fig. 7. Three orthogonal slices of the aorta MR dataset

Fig. 8. from left to right and bottom to down: Ridge detection at three different scales ( � �
� � � � � � ), and resulting 3D potential (MIP visualization of the 3D images)
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Fig. 9. Perceptual Grouping in the aorta of figure 7; left: a rough detection of the aorta; right: the
Reconstructed aorta.


