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L. Cohen, R. Kimmel, March 26, 1996. 11 IntroductionAn active contour model for boundary integration and features extraction, introducedin [26], has been considerably used and studied during the last decade. Most of theapproaches that were introduced since then try to overcome the main drawbacks of thismodel: initialization, minimization and topology changes.The model requires the user to input an initial curve close to the goal. Often, ithas to be a very precise polygon approximation and it may be fastidious to use for anapplication dealing with a large number of images. In a sequence of images where thereare small changes between two successive images, once initialization is made for the �rstimage, it is possible to use the resulting contour of the �rst image as initial conditionfor the second and so on, as proposed in [26]. Using the balloon model [12] allows a lessdemanding initialization since any initial closed curve inside an object may be used toobtain its complete boundary. It enables in some cases, to obtain a completely automaticinitialization. For example, in [12] preprocessing is used to get an initial guess that has tobe inside the desired area. The same property can be realized using the geometric modelintroduced in [8, 36] and recently improved in [9]. In [43], only two end points on theboundary are needed to follow the contour.Although the smoothing e�ect of the snakes may overcome small defaults in the data,spurious edges generated by noise or in a complex image may stop the evolution of thecurve so that it might be trapped by an insigni�cant local minimum of the energy. Thein
ation or expansion force [12] may help the contour to avoid being trapped by isolatededges into a local minimum. A region based approach introduced in [14] also makesthe solution less sensitive to local minima and initialization. It considers a mixed energyincluding a snake like term on the boundary and an homogeneous value constraint insidethe region.For segmenting several objects simultaneously or an object with holes, it is possible[8, 36] to model the contour as a level set of a surface, allowing it to change its topologyin a natural way. These approaches have motivated many other recent works like [9, 10,61, 27, 57] for 2D and 3D implicit deformable models. Other models that can handletopology changes have also been used for curves in [38] or surfaces [33, 55, 56].In this paper we present a new approach for �nding the global minimum of energyminimizing curves given only one or two end points. Our goal is to help the user in solvingthe problem in hand by mapping it into a single minimumproblem. The proposed methodcontributes to the improvement of the �rst two items above, initialization and minimiza-tion which are obviously related. Only end points are needed as an easy initialization andwe are guaranteed that the global minimum is found between these points.We modify the snake energy in a way that makes it `intrinsic' or free of the parameter-ization. Most of the classical snake models are non-intrinsic models. Therefore, di�erentparameterizations of the same (i.e. having the same geometric shape) initial curve, couldlead to di�erent solutions.The modi�cation we follow enables us to include the internal regularization term inthe external potential term in a natural way, since the snake energy depends only on thelocation of the point and not on the geometry of the curve at this point.



L. Cohen, R. Kimmel, March 26, 1996. 2We use an evolution scheme that provides at each image pixel an output of the energyalong the path of minimal integrated energy joining that pixel to the given start point.We use the Sethian fast marching method [51, 50, 1]. The search for a global minimumis then done e�ciently. While this minimum is restricted to connect two given points, wealso present a topology{based saddle search that helps in automatically closing contoursby clicking on a single point along the boundary. We stress the fact that the proposedalgorithm is based on a search for the global minimum and may therefore lead to mean-ingless classi�cations in some cases. Yet, since the whole process is controlled by the user,such pathological cases may be easily avoided.An upper bound of the curvature along the minimal path is introduced. It enablesa direct control over the �nal result by simple changes of the potential function. Thisjusti�es the fact that although our approach is a path integration, it also incorporates theregularization of the path like a \snake" model. Qualitatively, the relation between thepotential and the smoothness of the result was understood and used in [22], long before theage of snakes. Here, we introduce a quantitative bound expressing the connection betweenthe curvature and the generated potential. This bound is useful in many applications.Section 2 explores the relation of deformable models to the proposed solution. Section3 gives a formal de�nition of our edge integration procedure for the shape modelingproblem, and a description of two numerical methods, leading to Sethian's fast marchingmethod. In Section 4, we explore the relation between the smoothing properties of ourmodel and the potential. Section 5 presents an extension of our minimal path approachto �nd a closed boundary given a single point. Section 6 presents results of applying theproposed procedure to real images.2 Deformable ContoursThe inherent di�culty in active contour models is that searching for a minimum overa non convex functional is possible only under prede�ned limitations that lead to thedesired solution. One such possibility is allowing the user to specify an initial guess thatis close, in some sense, to a local minimum. Starting from the user selection, like an initialgiven contour, a minimization scheme re�nes the initial guess to �t it to the given imagedata. Searching for the global minimum of the given functional does not necessarily makesense and initial and boundary conditions are important in the process of locating thedesired local minimum. Searching for a global minimum is meaningless in the case offree end points or closed curves, since in both cases, the curve can vanish into a singlepoint achieving a global minimum of the potential (which is then 0). In other cases,where some points known to be part of a contour are given as �xed end points or asa constraint for a closed curve to pass through, it is more sensible to search for a pathachieving the global minimum between end points. Roughly speaking, we can distinguishbetween \good" and \bad" local minima for snakes. The bad local minima that we wouldlike to avoid are those that trap the curve in some noisy or spurious non interesting areasas shown in Figure 9. The desired solution is usually found by active contours with anadequate initialization. It is also a local minimum when it has free ends, and actuallyeach boundary in the image corresponds to such a minimum. However, when the curve is



L. Cohen, R. Kimmel, March 26, 1996. 3forced to pass through some given points along the same boundary, we may assume thatthe global minimum is the desired solution, since the potential will be the smallest alongthe path that joins the end points. Our approach gives the global minimumpath betweentwo end points, and thereby simpli�es the initialization process in this case.To motivate the proposed solution let us explore its relation to the classical activecontour model.Since the introduction of \snakes" [26], deformable models have been extensively usedto integrate boundaries and extract features from images. The extraction of local featuresis speci�ed by initial conditions that lead to the selection of one of the local minima.Snakes are a special case of deformable models as presented in [58]. The deformablecontour model is a mapping:C(v) : 
 �! IR2 (1)v 7�! (x(v); y(v))where 
 = [0; 1] is the parameterization interval. In some cases v is chosen to be the arc-length parameter, and then 
 = [0; L] where L is the length of the curve1. In some othercases, like periodic closed curves, 
 = S1 is the unit circle (in this case the parameterv is a mapping from the unit circle to the curve). The deformable model is a space ofadmissible paths or deformations A and a functional E. This functional represents theenergy of the model which will be minimized on A and has the following form:E : A ! IR (2)C 7! E(C) = Z
 w12 kCv(v)k2 + w22 kCvv(v)k2 + P (C(v))dvwhere Cv and Cvv are the �rst and second derivatives of C with respect to v, and P isthe potential associated to the external forces. The potential is computed as a functionof the image data according to the desired goal. If, for example, we want the snake tobe attracted to edge points, the potential should depend on the image gradient. Forthe problem to be well-posed, the space of admissible deformations A is restricted byboundary conditions. These may be free boundaries, as in the original snakes [26], cyclicboundaries by using periodic closed curves [58], or �xed boundaries by giving C(0), Cv(0),C(1) and Cv(1) [12, 15]. The mechanical properties of the model are controlled by thefunctions or constants wj.If C is a local minimum of E, it satis�es the associated Euler-Lagrange equation:( �(w1Cv)v + (w2Cvv)vv +rP (C) = 0given boundary conditions. (3)In this formulation each term appears as a force acting on the curve. A solution can beviewed either as realizing the equilibrium of the forces in the equation or as reaching theminimum of the energy. Thus the curve is under the control of two kinds of forces:� The internal forces (the �rst two terms) which impose the regularity on the curve.The choice of constants w1 and w2 determines the elasticity and rigidity of the curve.1We shall refer to arc-length parameter as s, to di�er from an arbitrary parameter v



L. Cohen, R. Kimmel, March 26, 1996. 4� The image force (the potential term) pushes the curve to the signi�cant lineswhich correspond to the desired attributes. It is de�ned by a potential of the formZ 10 P (C(v))dv where for exampleP (C) = g(krI(C)k): (4)Here, I denotes the image and g(�) is a decreasing function. In the classicalsnakes [26], we have g(x) = �x2. The curve is then attracted by the local minima ofthe potential, i.e. edges (see [23] for a more complete discussion of the relationshipbetween minimizing the energy and locating contours). Other forces can be addedto impose constraints de�ned by the user. As introduced in [12] and detailed inSection 4.2, previous local edge detection might be taken into account as data forde�ning the potential.A geometric approach for deformable models was recently introduced in [8, 37]. A levelset approach for curve evolution [44, 49] is used to implement a planar curve evolution ofthe form:@C(s; � )@� = P (C)(Css + w ~n); (5)where s is the arc-length parameter of the curve C in this case. Therefore, Css � �~nis the curvature vector (~n being the unit normal), and w is some prede�ned constant.This constant term is thus similar to the pressure force introduced for the balloon model[12]. It is also related to the dilatation transform in mathematical morphology and thegrass-�re transform [34].It was shown that the geometric snakes model performs better than the classicalsnakes in some cases like topology changes when implemented by the implicit embeddingfunction technique proposed by Osher and Sethian [44]. It was recently proven thatintroducing the `gradient of potential' (rP ) term of the classical energy minimizationsnakes [26, 15, 34] into the geometric snakes [8, 37, 36] is based on geometrical as well asenergy minimization reasoning, leading to the \geodesic active contour" [9].The basic idea of the geometric model is that the curve follows an evolution by expan-sion in the normal direction, with lower speed when P (C) is small. Yet, it never comesto a complete stop, and heuristic stopping procedures are used to switch o� the evolutionprocess when an edge is reached. The `gradient of potential' term added in the geometricmodel forces it to stop at the boundary similar to the image force in the classical activecontours.The geodesic active contours [9] were shown to `behave' better than both its `ances-tors' since they enjoy the advantages of both. Given an initial curve C(s; 0), the geodesicactive contours is based on the planar evolution equation@C(s; � )@� = P (C)Css � hrP; ~ni~n; (6)where s is the arclength. There is a major di�erence between (5) and (6). In (5), thegeometric snake evolution is slower when the potential is small but the curve does not



L. Cohen, R. Kimmel, March 26, 1996. 5necessary stop completely at the boundary. It may reduce its speed but keep on propa-gating since it never reaches an equilibrium. This might be a drawback when part of theinitial curve is close to the boundary and part of it is far. When the further part of thecurve has reached the boundary, the closer part may already have passed through. In (6),the curve reaches an equilibrium which is similar to the classical snakes. The term witha rP is a projection of the attraction force �rP on the normal to the curve. This forcebalances the other term close to the boundary and causes the curve to stop there.It is shown in [9] that (6) is a result of minimizing the functionalE(C) = Z
 P (C(s))ds;where s is the arclength (or E(C) = R
 P (C(v))kCvkdv, for the arbitrary parameter v). Thecurve evolution equation is then reformulated and implemented using the Osher-Sethian[44] numerical algorithm. Similar geometric models were also introduced in [27, 61, 53]and extended to color and texture in [47].Although our work is related to [9], it is a totally independent approach. Actually,the geodesic active contours may be considered as a natural re�nement procedure to theproposed approach. We note that following the formulation of [9], the minimization ofthe classical energy (2) may be modi�ed into the problem of �nding local geodesics ina Riemannian metric computed from the image, where we propose to �nd the minimalgeodesics in a similar Riemannian metric (see Equation (7) in the following section).Although it is shown in [9] that �nding the solution of active contour models is closelyrelated to �nding geodesics, no method is proposed to �nd the minimal ones. In [9], likein most of the previous approaches, the algorithms search for some local minimum thatis close to the initial guess, while we propose a method for �nding the global minimum ofthe same energy between two points as a minimal path (minimal geodesic).3 Paths of Minimal ActionGiven some potential P that takes lower values near the edges or features, our goal is to�nd a single contour that best �ts the boundary of a given object or a line of interest.This `best �t' question leads to algorithms seeking for the minimal path, i.e. paths alongwhich the integration over P is minimal. As mentioned earlier, snakes start from a pathclose to the solution and converge to a local minimum of the energy. Given only the endpoints, our goal is to �nd the minimal path between these points, thereby simplifying theinitialization process and avoiding erroneous local minima. At �rst glance, this limits theproblem to the type of boundary conditions with �xed end points, however, as we willsee in Section 5, the proposed approach may also be used for closed contours. Motivatedby the ideas put forward in [28, 30] we develop an e�cient and consistent method to�nd the path of minimal cost between two points, using the surface of minimal action[46, 30, 60] and the fact that operating on a given potential (cost) function helps in �ndingthe solution for our path of minimal action (also known as minimal geodesic, or path ofminimal potential). Thereby, we are able to isolate the boundary of a given object in theimage.



L. Cohen, R. Kimmel, March 26, 1996. 63.1 Problem FormulationThe minimization problem we are trying to solve is slightly di�erent from the deformablemodels, though there is much in common. One may still di�er between \internal" and\external" forces, yet now all terms are geometric which means a result of an intrinsicenergy functional. Contrary to the classical snake energy, here s represents the arc-lengthparameter, which means that kCs(s)k = 1. The reason we modi�ed the energy is thatwe now have an expression in which the internal regularization energy is included in thepotential term in a natural way. We can then solve the energy minimization in a similarway to that of �nding the shortest path on a surface using the method developed in [28].The fact that the energy integral is now intrinsic will also help us to explore the relationbetween the smoothness of the result and the potential. The energy of the new model hasthe following form:Ap0;p1 ! IR (7)C 7! E(C) = Z
 wkCs(s)k2 + P (C(s))ds = Z
 ~P (C(s))ds = wL+ Z
 P (C(s))ds;with ~P (p) = w + P (p): (8)Here Ap0;p1 is the space of all curves connecting two given points (restriction by boundaryconditions): C(0) = p0 and C(L) = p1, where L is the length of the curve. Contrary tothe classical snake energy, here s represents the arc-length parameter. So, Eq. (7) shouldactually be read asC 7! E(C) = Z
 (w + P (C(v)))kCvkdv;for an arbitrary parameter v. This makes the energy depend only on the geometric curveand not on the parameterization. The regularization term multiplied by the constant w,now exactly measures the length of the curve. We note that a similar regularization e�ectmay be also achieved by smoothing the potential P [22]. Section 4 gives more detailsabout the smoothing e�ects of the energy.Having the above minimization problem in mind, we �rst search for the surface ofminimal action U0 starting at p0 = C(0). At each point p of the image plane, the value ofthis surface U0 corresponds to the minimal energy integrated along a path starting at p0and ending at p.U0(p) = infC(L)=p�ZC ~Pds� = infAp0;p E(C); (9)here s is the arclength parameter.We next present our approach to determine the value of U0 everywhere in the imagedomain.



L. Cohen, R. Kimmel, March 26, 1996. 73.2 Shortest Paths As a SetFollowing [28], given the minimal action surfaces U0 to p0 and U1 to p1, then the minimalgeodesic between p0 and p1 is exactly the set of coordinate points pg that satisfyU0(pg) + U1(pg) = infp2IR2fU0(p) + U1(p)g: (10)Usually, the set of points pg needs to be re�ned from a given "fat" set of points into acurve. Since we operate on a discrete data, in order to keep the two end points connectedby the minimal set we need to threshold the function U0 + U1 using a value larger thanits in�mum. This operation results in a fat set. In [30] a thinning algorithm was applied.In our case, a natural re�nement of this set is to select any curve in the set connectingthe two points, and apply a local minimization based on the Euler-Lagrange equationsminimizing the same functional. The geodesic active contours without the constant termand �xed end points is the right 
ow for this case. Observe that it should operate onlywithin the "fat" set, which can be considered as a �xed narrow band [2], thereby reducingdrastically the computational complexity of this re�ning.When there are two or more minimal paths, as will be seen in Section 5, the destinationpoint p1 is a saddle point and each path can be obtained by one of the decreasing directionsat p1. By using the sum of the two distances, one can simultaneously obtain all minimalpaths.The above is a global way for extracting the global minimum. In our experimentswe have preferred to use a back propagation procedure that results in a single curve (seeSection 3.5.2.)3.3 Minimal Action Level Sets EvolutionIn what follows, we assume that P � 0. Applying the ideas of the previous section tominimize our energy (7), it is possible to formulate a partial di�erential evolution equationdescribing the set of equal energy contours L in `time', where t is in fact the value of theenergy. These are the level sets of U0 de�ned by Equation (9). In the evolution equationt represents the height of the level set of U0:@L(v; t)@t = 1~P ~n(v; t); (11)where ~P = P + w and ~n(v; t) is the normal to the closed curve L(:; t) : S1 ! IR2.The motivation for this evolution is that we need to propagate with a velocity that isproportional to the inverse of the penalty. So that at `low cost' area the velocity is highwhile at a `high cost' area the velocity is low.The curve L(v; t) corresponds here to the set of points p for which the minimal energyU0(p) is t:fL(v; t); v 2 S1g = fp 2 IR2 j U0(p) = tg: (12)This evolution equation is initialized by a curve L(v; 0) which is a small circle aroundthe point p0. It corresponds to a null energy. It then evolves according to Equation (11),



L. Cohen, R. Kimmel, March 26, 1996. 8similar to a balloon evolution [12] with an in
ation force depending on the potential.Considering the (x; y; t)-space, the family of curves L(v; t) construct the level sets of thesurface U(x; y) : IR2 ! IR+ de�ned in (9). The t level set of U is exactly the curve L(:; t).Although a rigorous proof of this statement can be found in [6], it can be understoodsimply by the following geometric interpretation. Observe that adding to a path endingat a point of L(:; t) a small segment in the normal direction to L(:; t) and of length 1~P dtwill add to the accumulated energy of (7) a contribution of ~P 1~P dt = dt. This means thatthe new point is on the level t+ dt, that is on the curve L(:; t+ dt) . Figure 15 presentssuch a surface U and its corresponding level sets.It is possible to compute the surface U in several ways. We shall describe three ofthem that are consistent with the continuous case while implemented on a rectangulargrid. It is, however, possible to implement a simple approximation like the shading fromshape algorithm introduced in [60], or even graph search based algorithms (see Section3.4.1), if consistency with the continuous case is not important, see also [46].3.4 Numerical ImplementationThe numerical schemes we propose are consistent with the continuous propagation rule.The consistency condition guarantees that the solution converges to the true one as thegrid is re�ned. This is known not to be the case in general graph search algorithms thatsu�er from digitization bias due to the metrication error when implemented on a grid[41, 32]. This gives a clear advantage to our method over minimal path estimation usinggraph search. Before introducing the proposed method, let us review the graph searchbased methods that try to minimize the energy given in (7).3.4.1 Graph Search Algorithms and Metrication errorTo evaluate and minimize the snake energy (2), the \internal" terms can be evaluatedonly by using the shape of the curve, leading to curve deformation and evolution schemesfrom an initial curve. Based on the new energy de�nition (7), we are able to compute the�nal path without evolving an initial contour, by using the surface of minimal action. To�nd the surface of minimal action, graph search and dynamic programming techniqueswere often used, considering the image pixels as vertices in a graph [42, 22, 11].A description of A� and F � algorithms, applied to road detection, can be found in [22].The distance image is initialized with value 1 everywhere except at a start point withvalue zero. At each iteration, the A� algorithm expands to a neighbor pixel a previouslyobtained minimal path ending at the vertex with smallest current cost value. Since ateach iteration one pixel gets a �nal value, and a search for the minimal vertex to update isperformed, the algorithm complexity is O(NlogN) where N is the number of pixels in theimage. Our approach solves a continuous version of the problem. Sethian fast marchingmethod [51], described in section 3.4.4, has a similar complexity, yet it is consistent!The A� algorithm has to search among all vertices the one to expand at each iteration.This is why the F � algorithm was preferred in several applications. The F � algorithm (so



L. Cohen, R. Kimmel, March 26, 1996. 9called in [22]) computes the distance with a sequential update of the pixels. It is similarin spirit to the algorithm used in Section 3.4.3 (see also [21]), except that Equation (16)is again consistent. Using the F �, the global minimum is reached only after the image isscanned iteratively top to bottom, row by row, left to right followed by right to left, andthen bottom to top. The number of such passes depends on the shape of the minimalpath, which is unknown in advance in general. If that path expands from the startingpoint monotonically with respect to the row index, one pass is su�cient. However, if ithas a spiral shape from the starting point, it needs as much iterations as turns in thepath, to propagate the information from the start point to the end point. The resultingcomplexity is of O(N R �ds), where the integral is along the longest path and � is thecurvature (R kds=2� = number of loops of a planar curve). In practice, the iterations arestopped either when there is no more change in the process (this has to happen in a �nitenumber of iterations) or after a given number of passes. This kind of approach was usedto compute distance maps in [5, 17]. It was also used for road detection in [39, 40], usingsome improvements in the potential de�nition. The authors also add some constraint onthe curvature by taking into account sets of three vertices instead of two in the graphsearch to update the distance. In their algorithm, they �nd that 8 passes are su�cientfor their applications.A simpli�ed F � algorithm is used in [11] to minimize a snake energy. It assumes thepath expands from the starting point only in a restricted range of directions and makesonly one pass. Thus, it only �nds the global minimum among all paths restricted bythis condition. This is a problem for non monotonic paths. In case there are gaps in thepotential that can lead the expansion of the path in a wrong direction, then the algorithmhas no way to come back to the correct path. Although these last authors generalize theirapproach to the continuous case, they solve it only for the discrete graph approach andtheir approach, as well as other graph search algorithms, is also subject to metricationerror.A completely di�erent approach related to dynamic programming for detection of salientboundaries was introduced in [52]. It de�nes iteratively at each pixel of the image a valueof the maximal energy of a path passing through this pixel. Then high valued pixels aregrouped to get salient curves. The context is di�erent there since each pixel or vertex isconsidered as a start point and the algorithm should �nd simultaneously all interestingfeature curves.Dynamic programming has also been used for snakes, �rst by authors of [3]. Althougha complete theoretical description of continuous dynamic programming is reviewed, theproposed application to active contours is di�erent from the ones above and our approach.The dynamic programming minimization is not applied there to �nd a minimal path be-tween two points but to �nd the local deformation from an initial curve that gives the bestenergy descent. This is applied iteratively from an initial curve, exactly as in the classicalcurve evolution scheme for snakes. However, instead of using gradient descent, it �nds ateach iteration the global minimization among all possible local deformations, i.e. pathsobtained by giving each node of the curve the ability to move in a small neighborhood(3 � 3 pixels usually). This reduces considerably the size of the graph, since the verticesare the nodes on the curve and the possible values for these are only the eight neighbors



L. Cohen, R. Kimmel, March 26, 1996. 10of the initial vertex. In [24], the range of possible local deformations is broadened usinga multiscale dynamic programming algorithm. However, in both approaches, this kind ofgraph search does not avoid undesirable local minima of the energy, and the solution re-mains very sensitive to the initialization, as in classical snakes. Also, like classical snakes,it is non intrinsic and the same looking two initial contours with di�erent control pointsmay lead to completely di�erent solutions.One may argue that using previously mentioned graph search algorithms like the A�,Dijkstra [19, 48], or F � as proposed in [22] for road tracking, might be su�cient. Thesealgorithms are indeed e�cient, yet su�er from `metrication errors'. The graph basedalgorithms consider the image as a graph in which each pixel is a node, and the 4 (or 8)connections to the neighboring pixels are the vertices of the graph. The weights along thesevertices are usually taken as the average of the potential at the two end pixels, multipliedby the length of the L1 \city block" distance between these pixels (1 for horizontal andvertical connections). However, it is clear that measuring length of the shortest pathbetween the lower left and the upper right corners of the graph in Figure 1 this way, thelength of P1 is equal to that of P2. It does not matter how �ne the grid gets, P2 is stillan optimal path. Our goal is to get the diagonal connection as the optimal path withthe `right' Euclidean distance measure (L2) in this simple case. Our problem is that ingraph search algorithms we are obligated to the distance measure imposed by the graph(L1 in Figure 1). Of course the result of the graph-search could be improved by taking a
P2

P1Figure 1: An L1 norm cause the shortest path to su�er from errors of up to 41%. In thiscase both P1 and P2 are optimal, and will stay optimal no matter how much we re�ne the(4-neighboring) grid.larger neighborhood as structuring element, giving better approximations of the distancein some directions (like p2 for the diagonals) [5, 59].These give a di�erent polygonal approximation of the circle, but there will alwaysbe an error in some direction that will be invariant to the grid resolution, which is notthe case in the approach we use. Also, some �xes that minimize the average error bymodifying the weights along the connections between the pixels were proposed in [32]and used in [29]. We show the example of Figures 1 and 2 for the simplest case of graphsearch, to clarify the metrication error e�ect.Our philosophy here is di�erent. We propose to deal with the continuous problem aslong as possible. In that, we follow the numerical analysis community, by �rst analyzing



L. Cohen, R. Kimmel, March 26, 1996. 11the underlying problem in the continuous domain. Then, at the last stage which involvesnumerical implementation we will consider the image given as a grid of pixels, computeoptimal paths and the surface of minimum action in a relatively e�cient way, while atthe same time enjoy the `consistency' property of converging to the desired continuoussolution as the grid is re�ned. The main reason is obviously accuracy which is importantfor example in medical applications. As an illustration, Figure 2 shows the isodistancecurves using a graph-search approach and the continuous level-set approach. These curvesare squares in the �rst case, not depending of the size of the grid, while in our case, thecurves are getting closer to a perfect circle when the size of the grid is re�ned.
0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

Figure 2: Illustration of metrication error for computation of the distance map to a singlepoint, showing level sets of the distance. On the left: a graph search-like discrete distancecomputation gives squares; On the right: the distance is obtained by our approach, givingcircles.3.4.2 Osher-Sethian Front Propagation ApproachAccording to this �rst continuous approach, the curve evolution L(t) of Equation (11) isreformulated into an evolution of an implicit representation of the curve de�ned by anevolving surface � : IR2 � [0; T )! IR, where for each value of t, L = ��1(0). This meansthat curve L(t) is the zero level set of �(t) : IR2 ! IR. This Eulerian formulation forcurve evolution was introduced in [44, 49] to overcome numerical di�culties and handletopological changes. As initialization for L(0), we start with an in�nitesimal circlearound the start point p. We mean a small one for practical implementation. The function� is initialized at t = 0 to be negative in the interior and positive in the exterior of thecurve L(0). This is obtained by setting one pixel to �1 and the rest to +1. Theevolution rule of � is then given by:@�@t = � 1~P kr�k: (13)



L. Cohen, R. Kimmel, March 26, 1996. 12It was this same idea of considering the curve as the zero level set of an evolving surfacethat initiated the geometric snake approach [37, 8] described in the end of Section 2. Fora fast implementation, of order O(M R ds�t ) where M is the number of points in a narrowband around the front and �t is the time step of the scheme, of the above approach werefer to [2].3.4.3 Rouy-Tourin Shape from Shading ApproachThe second approach is based on a shape from shading method [45, 21] and searches forthe surface U itself instead of tracking its level sets. In this case the surface may be foundaccording to the following minimization procedure:Given U = 0 at the start point as boundary condition,@U@� = ~P � krUk; (14)where the solution U is the steady state of U(p; � ) when � is large. The limit valueU = U1 is such thatkrUk = ~P ; (15)with obviously U = 0 at the start point. We can again give a geometric interpretation thatrelates (11) to (15). The gradient of U is normal to its level sets L(t), and the gradientnorm is thus the value of the spatial directional derivative in the normal direction. AsU increases by dt, the normal displacement of the level set L(t) is dt~P from (11). So thederivative @U@~n = hrU;~ni = krUk is equal to dt=dt~P = ~P . A rigorous proof of this ideacan be found for example in [6]. (see also Bellman [4] for a nice proof on the orthogonalityof the wave fronts and the geodesics). Here, boundary conditions are given in the formof �xing the point C(0) = p0, i.e. U(p0; � ) = 0 for all � . Authors of [45] also presented adirect numerical approach to solve (15) and gave a convergence proof to that minimizationprocedure in the viscosity solutions framework [16]. We shall discuss this method and itsdiscretization in more details in the following section. The method we recommendis presented in the following section. It is in some sense a hybrid of both methods justdescribed.3.4.4 Sethian Fast Marching MethodIn his recent report [51], Sethian presents a fast and e�cient method for solving Equation(15). It is based on a clever way for propagating the information on the grid. Motivatedby the two methods above, his method uses the proposed numerical scheme in [44, 45].However, by marching in an ordered way, the problem is solved after a �nite number ofsteps, and by that contradicting Remark 5 in [45]. We recommend this method for anyreal time application.



L. Cohen, R. Kimmel, March 26, 1996. 13Given the potential values Pi;j = P (i�x; j�y) on a grid (e.g. the pixel grid), thenumerical method approximating Ui;j in Eq. (15) is given by(maxfu� Ui�1;j; u� Ui+1;j ; 0g)2 + (maxfu� Ui;j�1; u� Ui;j+1; 0g)2 = P 2i;j ; (16)where, for simplicity, we assume �x = �y = 1. In [45] the numerical viscosity solutionwas obtained by solving the above equation at each grid point, selecting for Ui;j the largestu that satis�es Eq. (16). The grid points were selected in an arbitrary way, and thus itwas claimed that convergence is obtained after in�nite number of such iterations. Whereeach iteration involves an arbitrarily selection of a grid point (i; j), and updating the valueof Ui;j at that point.The `fast marching level set method' introduces order in the selection of the grid points.It is based on the fact that information is propagating form the source point `outwards'.Following [51], the method goes as follows:� Initialization:{ For each point in the grid, let Ui;j =1 (large positive value). Label all pointsas far.{ Set the start point (i; j) = p to be zero: Up = 0, and label it trial.� Marching Forward Loop:{ Let (imin; jmin) be the trial point with the smallest U value.{ Label the point (imin; jmin) as alive, and remove it from the trial list.{ For each of the 4 neighboring grid points (k; l) of (imin; jmin):� If (k; l) is labeled far, then label it trial.� If (k; l) is not alive, then compute Uk;l according to Eq. (16), selecting thelargest solution to the quadratic equation, which is the only valid solution.i.e. solve(maxfu�minfUk�1;l; Uk+1;lg; 0g)2+(maxfu�minfUk;l�1; Uk;l+1g; 0g)2 = P 2k;l;(17)and let Uk;l = u.For e�ciency, the trial list is kept as min heap structure. We refer to [51, 50, 1, 31]for further details on the above algorithm, as well as a proof of correct construction.Using a min-heap structure for the trial list, the algorithm computational complexity isO(NlogN) where N is the number of grid points. It has similar complexity to that ofgraph search based algorithms like the A� or Dijkstra [19, 48]. For example on a SPARC1000, it took a second to compute the U surface of a 256 � 256 image. This is a �rstorder numerical scheme. As an example for accuracy we should note that the Euclideandistance (Pi;j = 1) from a straight line is accurate with sub pixel accuracy (error = 0).In general, the consistency condition guarantees that as the grid is re�ned, the solutionconverges to the true continuous one.



L. Cohen, R. Kimmel, March 26, 1996. 143.5 Global Snake Minimization Between Two End Points3.5.1 Shortest path between p0 and p1Using the approach described in Section 3.2, the shortest path between a start pointp0 and a destination point p1, according to the energy minimization is the set of pointspm = (xm; ym) that satisfy:U0(xm; ym) + U1(xm; ym) = inf(x;y)fU0(x; y) + U1(x; y)g; (18)where U0 and U1 correspond to the minimal action obtained in the previous section withpaths starting at p0 and p1 respectively. A natural combination is to use the abovemethod in order to locate the minimal set, and then let the model de�ned in [9] take overand re�ne the result. However, we recommend an easier way to compute the path by backpropagation.3.5.2 Back propagation from p1In order to determine the minimal path between p0 and p1, we need only to calculate U0and then slide back on the surface U0 from (p1; U0(p1)) to (p0; 0). The surface of minimalaction U0 has a convex like behavior in the sense that starting from any point (q; U0(q))on the surface, and following the gradient descent direction, we will always converge to p0.It means that U0 has only one local minimum that is of course the global minimum andis reached at p0 with value zero. We show in Figure 15 an example of 3D representationof the U0(x; y) surface and a level set image of the same U0. Given the point p1, the pathof minimal action connecting p0 (the minimal point in U0, U(p0) = 0) and p1 is the curve~C(�) starting at p1 and following the opposite gradient direction on U0:8<: @ ~C@� = �rU0;~C(0) = p1 (19)Then the solution C(s) is obtained by arclength parameterization of ~C(��) with C(0) =p0 and C(L) = p1. The minimal path can be obtained this way since rU is tangentto the geodesic. This is a consequence of the results in [4] that show that the light rays(geodesics, constant parameter curves ) are orthogonal to the wave fronts (equal costcontours). The gradient of U is also orthogonal to the wave fronts since these are its levelsets.The back propagation procedure is a simple steepest gradient descent. It is possibleto make a simple implementation on a rectangular grid: given a point q = (i; j), the nextpoint in the chain connecting q to p is selected to be the grid neighbor (k; l) for whichU(k; l) is the minimal, and so forth. Of course, a better tracking can be obtainedusing a more precise estimation of the gradient of U . In our examples we have chosenthe discrete steepest descent just described, because of its simplicity, and the fact thatit is used only for presentation purpose. See [31] for more sophisticated high order ODEintegrators. We back track the path of minimal action connecting the two points, whichis the global minimum of the snake energy de�ned in Eq. (7). Being a local operation,



L. Cohen, R. Kimmel, March 26, 1996. 15back propagation su�ers from angular error accumulation. In [31], a more sophisticatedback propagation technique developed for other purposes is introduced, it is used in theexamples of Figure 12.Using back propagation following the gradient of U , once the surface U is available, theminimal path between the start point p0 and any other point p can be obtained withoutadditional computation. This approach is used for example to simultaneously track fourroads in the same image, as shown in Figure 11.4 Discussion on the Potential term4.1 Regularization propertiesWe now show how the constant w and the potential P in Eq. (7) control the smoothnessof the solution. A qualitative understanding of a similar control was used in [22]. Here,we �rst introduce quantitative results in the form of geometric bounds on the curvatureof the �nal contour.We shall make use of the following lemmas to introduce an upper bound on the cur-vature along the resulting contour C(s) by controlling the potential P . We also assumethat the potential is given as a positive function.Lemma 1 Given a potential P > 0, the curvature magnitude j�j = kCssk along thegeodesics minimizingZ
 P (C(s))ds; (20)where s is the arclength parameter, or R P (C(v))kCvkdv for an arbitrary parameter v, isbounded byj�j � sup
 (krPkP ) : (21)Proof. Following [9] (see also [20]), the Euler-Lagrange equation of (20) is given byP�~n� hrP; ~ni~n = 0:It indicates the curve's behavior at the minima of (20). This yields the following expressionfor the curvature along the geodesics of P :� = hrP; ~niP :Since ~n is a unit vector, the numerator is a projection on a unit vector operation. Thus,we can conclude that along any geodesic path minimizing (20) the curvature magnitudeis bounded by Equation (21).Using Lemma 1, an a priori bound of the curvature magnitude may be obtained byevaluation of sup and inf over the image domain D instead of the curve domain 
 in (21).We readily have the following result which applies to our case with the energy of (7):



L. Cohen, R. Kimmel, March 26, 1996. 16Lemma 2 Given a potential P � 0 de�ned on the image domain D, and let ~P = w+ P ,the curvature magnitude j�j along the geodesics minimizing the energy of (7) is boundedby j�j � supDfkrPkgw : (22)Proof. Since P � 0 we have that inf
f ~P g � w. Using this relation and Equation (21) wehave:j�j � sup
 (kr ~Pk~P ) = sup
 (krPkP + w) � supD ( krPkP + w) � supDfkrPkgw + infDfPg � supDfkrPkgw :Equation (22) enables us to control the behavior of any geodesic minimizing (7), andespecially the minimal geodesics that interest us. Lemma 1 also gives a nice interpretationof the connection between the curvature of the resulting contour, and the ratio betweenthe gradient magnitude and the value of the potential P . When the curve`s normal isorthogonal to the slope of P , so that the curve is directed towards the valley, then thecurvature is zero implying a straight line. While if the curve travels along a contour ofequal height in P , then the normal ~n coincides with the slope of P and the curvatureincreases causing the curve to bend and direct the curve to 
ow into the valley, where thepotential is lower.The conclusion is that to decrease the limit of the curvature magnitude of the geodesicsin Equation (22), and thereby lead to a smoothing e�ect on the resulting contour, we havetwo alternatives:� Smoothing the potential (or the image) to decrease supDfkrPkg.� Increasing the constant w added to P , increases the denominator without a�ect-ing supDfkrPkg. This gives a justi�cation for referring to w as a regularizationparameter in Section 3.1.Figure 4 shows the e�ect of changing w on the solution (it varies between 0.04 and0.4). The potential is based on the image gradient like in (4) (the range of P and rP isnormalized between 0 and 1).4.2 Attraction PotentialAs noted in Section 2, it is useful in some cases to de�ne a potential from an edgeimage. These edge points may be extracted from the original image using an edgedetection operator or given as a set of data points. This kind of potential is often usedin the literature (see [15] for several possibilities of selecting such potential functions).Choosing this potential function is useful when the edge detection operation producesmost of the edge points but has gaps in the contours, as shown in Figure 5. The distance
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Figure 3: Bird image: original on the left, potential in the middle and minimal path onthe right.

Figure 4: Regularization e�ect by increasing the coe�cient w from left to right.



L. Cohen, R. Kimmel, March 26, 1996. 18based potential considers the distance from the detected edge points to be the penalty.In this case the gradient of the potential points towards the closest detected point. Also,the use of such a potential may avoid node concentration at some high gradient points.Indeed, since the gradient norm usually changes its values along a boundary contour, thisoperation assigns an equal attraction weight along the boundary. Several approaches ofgenerating `attraction potentials' from such data for various reconstruction methods weresurveyed in [15] and a `physical' interpretation was given as weak springs linking the curveto data points.Let I(x; y) : D � IR2 ! IR+ be a given gray level image. Applying a standard edgedetector to I results in a set of points in the image domain (D) some of which correspondto true edge points. These points are scattered over the image domain and serve as thekey points in generating a single boundary contour. Finding such a contour is usuallyreferred to as `shape modeling' that is used for object segmentation and classi�cation[37, 36, 35]. The di�culty here is that there is no order in the set of points and that itis unknown in advance which points belong to the boundary. This is de�ned as implicitconstraints in [13].Denote by E(x; y) : D ! f0; 1g a binary function representing the result of applyinga standard edge detector on the image I, where 1 corresponds to a detected edge point.One possible way of de�ning a potential P : D ! IR+ is as a function of the distancemap [15], where each point p is assigned with a value representing the shortest Euclideandistance to an edge point:dE (p) = infE (q)=1fdist(p; q)g; and P (p) = f(dE (p)) (23)where dist(p; q) is the Euclidean distance between the two points p and q and f is anincreasing function. An example of distance map is shown in Figure 5. Consistent nu-merical approximations of (23) for the computation of dE on a sequential computer mayagain be implemented by using the fast marching method [51]. Quick sequential algo-rithms [5, 17] were used for de�ning the attraction potential in [15]. Sub-pixel estimationof the distance using a parallel algorithm was presented in [30]. It gives a high sub-pixelprecision of the distance. This is one possible application of shortest path estimation[28, 54] presented brie
y in Section 3.2. Note also that the distance potential selectionP may be also considered as the normalized force introduced in [12] for stabilizing theresults (i.e. for P = dE we have krPk = rPkrPk) since krdEk = 1 almost everywhere.The motivation for choosing such a potential is that the penalty grows as a function ofthe distance from the edge points.This last equality is useful in the context of the previous section to obtain an estimationof the curvature`s bound when ~P = w + dE . From Equation (22), we have:j�j � 1w; (24)i.e. w is the minimumcurvature radius along the �nal contour. In the case ~P = w+f(dE ),the upper bound becomesj�j � supd f 0(d)w + d: (25)



L. Cohen, R. Kimmel, March 26, 1996. 19where d ranges from 0 to the maximal distance in the image. The bound in (25) can beeasily found for the functions f(d) = �d2 or f(d) = 1� e��d2 which corresponds to robuststatistics (see [13]).A synthetic example is presented in Figure 5 where the potential used is obtainedfrom a distance map to the edge points. Observe the way the level curves propagatefaster along the line.
Figure 5: Line image. From left to right: original, potential, minimal action (randomlook up table to show the level set propagation starting from the bottom left), minimalpath between bottom left and top right.5 Closed Boundary Extraction from a Single PointIt is often needed to detect a closed contour. Our previous approach of �nding a minimalpath between two given end points, detects the two paths that complete a closed contouronly if both ways correspond to a global minimum. In the general case of selecting thesecond point, it is clear that although both ways are local minima, only one is a globalminimum. Assuming only one start point p0 is given on the closed contour, let us computethe minimal action U from this start point. We should then �nd a second point p1 thatis located on the unknown contour and from where the two half paths have the sameenergy. This means we have to �nd a point p1 from which there is more than one curveconnecting it to the source p0. These special points are the saddles of U .5.1 Justi�cation of the search for saddle pointsA saddle point is a surface point at which there are two descents and two ascents. Theascents indicate reachability by two minimal geodesics in our case. Assuming that allthe points at the boundary of a closed shape, belong to one of two (\left" or \right")geodesics connecting it to the start point. There is only one point p1 at which the \left"and \right" geodesics have the same length, i.e. their meeting point, which is a saddle ofU . Since U is maximal at p1 along both ways (\left" or \right"), the derivative of U alongthe direction tangent to the path is 0. As mentioned before, the two minimal paths are



L. Cohen, R. Kimmel, March 26, 1996. 20orthogonal to the level sets of U . Thus, the derivative of U along the normal to the pathis also 0, which means that Du(p1) = 0. Since U is maximal at p1 along the path, U has anegative second derivative in that direction. Since w > 0, at any point of the image therehas to be a direction in which U increases, and for which the second directional derivativehas to be positive. As a consequence, D2u(p1) has to have opposite sign eigenvalues, thatis one de�nition of a saddle.The saddle points may serve as clues in closing contours of objects that are containedwithin the image domain. When the user searches for a closed contour from p0, anautomatic search for saddle points on U is performed. Back propagating from a saddlepoint p1 to both directions will connect the saddle to the source point p0 by two curves.Alternatively, computing the minimal action surface from the saddle point and searchingfor the minimal set of the sum of both action surfaces, yields the desired result as a setof points (to be re�ned). Thereby, a closed contour is formed representing the completeboundary of an object.5.2 Saddle points characterizationAs mentioned, to detect such a saddle point, we can compute the gradient jrU j and theGaussian curvature (�1�2), and check for jrU j < � and �1�2 < 0.Another possibility to isolate the saddle points on U is to use a simple test to determinethe number of level crossings. Consider a small radius circle centered at a candidate pointq and embedded in the horizontal plane (x; y; U(q)). Denote the number of level crossingsto be the number of points this circle intersects with the surface (x; y; U(x; y)). It is shownin Figure 6 that this number at a saddle point is equal to four, while for most surfacepoints it is two, and at maximum and minimumpoints there are no level crossings. In ourimplementation of the number of level crossings, for each point (i; j) in the pixels grid,we simply count the number of sign changes in U(k; l) � U(i; j) while traveling aroundthe 8 neighbors (k; l) of the point.5.3 Saddle points �lteringAlthough there are only few saddle points in U (see Figure 16 for example), �nding thelevel crossing for every point q in the domain is not enough. It is necessary to �lterout the insigni�cant saddles that have a relatively large value of P or U .This usually reduces the number of candidates to a relatively small number (only tworemain after simple �ltering of the saddles in Figure 16). In a favorable case where thereare not many gaps in the boundary contour, another criteria that will do the work is toconsider only those saddle points that are close to edge points, since it is obvious that thecontour should pass close to an edge point. Selecting the right regularization constant wwill obviously �lter out most of the saddles that are formed due to noise, yet will obviouslyintroduce further constraints on w. According to our experience, selecting the right w fora smoothing e�ect reduces the number of saddles to the only interesting ones. Since weare dealing with a user interactive procedure, it is possible to paint the candidate saddlepoints on the image and let the user pick the right saddle among the �ltered saddle points.
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Figure 6: Illustrating the number of level crossings. At the top, a maximum and aminimum points give 0, at the bottom left, a saddle point gives 4, and at the bottomright, other points give 2 level crossings.



L. Cohen, R. Kimmel, March 26, 1996. 22Selecting the right saddle point will close the contour and segment the object.6 Examples and ResultsWe demonstrate the performance of the proposed algorithm (using the minimal actionalgorithm described in section 3.4.4) by applying it to several real images. The imageswere scaled to 128� 128 pixels, and the gray levels for P were normalized between 0 and1. Parameter w is usually of the order of 0:1.6.1 Open contour: Road and Medical ImageIn the �rst example, we are interested in a road detection between two points in the imageof Figure 7. Road areas are lighter and correspond to higher gray levels. The potentialfunction P was thus selected to be the opposite of the gray level image itself: P = 1� I.Minimizing this potential along a curve yields a path that follows the middle of the road.This example illustrates the e�ciency of our approach compared to classical snakes. Wedo not claim that this is a road detection algorithm as one can �nd for example in [22, 25].For such an application, if the two edges of the road are needed rather than the middleway, our result could be re�ned using either ribbon snakes [43] or a thick contour modellike in [18].Given a start point p0 on the bottom left, the image of minimal action U(x; y) fromthis point is shown in Figure 8. Observe the way the level curves propagate faster alongthe road. In the top example of Figure 9, we show how a bad initialization for classicalsnakes leads to a wrong local minimum and it requires a very accurate initial guess, as inthe middle example, to guarantee convergence to the desired solution. It is shown thatgiven two end points, the proposed procedure detects the path of minimal action along theright road. Note, that using a completely di�erent approach based on classical snakes,the authors of [43] have also found a way to solve e�ciently the snake problem betweentwo end points. Although their method behaves better than classical snakes, it does notensure to converge to the global minimum and may be trapped in a bad local minimumsolution as we illustrate in the following example. Using the same road image, Figure 10presents two examples for which their method leads to a local minimum. On the right,taking the same end points as in Figure 9, the part of curve close to the upper right endpoint is trapped by the white building below it, like in the upper example of Figure 9.On the left, if the end point is slightly shifted, the curve follows the road correctly fromboth ends but at some point it prefers a short-cut. Note, that in both examples we donot present the �nal curve position but its position at some intermediate time from whichit is not possible to return back to the correct road. The interactive tool for outliningroads in aerial or medical images presented in [43] could also make use of our methodbetween fewer constraint points or key-points to solve some cases in which there are manyerroneous local minima.Our approach can be used for the minimization of many paths emerging from the samepoint in one single calculation of the minimal action. Figure 11 shows an application ofthis operation for the road image. Given a start point in the upper left area, the path
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Figure 7: Original Road Image.

Figure 8: Minimal action U from bottom left start point. On the left, black correspondsto lower values of U , on the right a random look up table is used to render the level curvesof U .



L. Cohen, R. Kimmel, March 26, 1996. 24

Figure 9: Local and global Minimum. The initial data is shown on the left and the resulton the right. The top and middle rows show the results of two di�erent initializations ofthe classical snakes. The bottom example shows our path of minimal action connectingthe two black points as start and end points.
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Figure 10: Two examples of applying the approach of [43] with two slightly di�erentinitializations. In both cases the curve is trapped by a local minimum (see text).achieving the global minimum of the energy is found between this point and four othergiven points to determine the roads graph in our previous image.In a second example, we show an application to the detection of blood vessels in amedical angiographic image of the eye fundus. Here also, the potential is obtained fromthe image itself to detect higher gray levels. These results make use of high order ODEintegrators for the back propagation as described in [31].
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Figure 11: Many paths are obtained simultaneously connecting the start point on theupper left to 4 other points. The minimal action is shown on the left.
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Figure 12: Finding vessels in medical angiographic image of the eye fundus: original imageand multiple path detection to the start point on the left of the image.
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L. Cohen, R. Kimmel, March 26, 1996. 296.2 Closed contour: Medical ImageIn this third example, we want to extract the left ventricle in an MR image of the heartarea. The potential is a function of the distance to the closest edge in a Canny [7] edgedetection image (see Figure 14). Since it is a closed contour we use the saddle pointsclassi�cation in closing the boundaries of a single object in the heart image (see Figures15 and 16). Given a single point, saddle point classi�cation is used to �nd the second endpoint. The closed contour is formed of the two minimal paths joining the start and endpoints.
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Figure 14: MRI heart image: Original image on the top left, edge image on the top right,distance map on the bottom.
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Figure 15: MRI heart image: minimal action U represented as a graph surface and itslevel set curves below. The start point is the lower point (U = 0) located on the bottomleft of the ventricle at pixel (48,44).
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Figure 16: Heart ventricle detection: To �nd the second end point, saddle point classi�-cation is used on the left (after �ltering, only two of these points remain). The numberof level crossings appears in black for 0 (maximum and minimum), gray for 2 (most ofthe points) and white for 4 (saddle). After �ltering the white pixels, the selected saddlepoint is used to �nd the two half contours on the right. The contour is white and the twoend points are the two black pixels. The start point is on the lower left and the other oneis the detected saddle.
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