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Abstract. In this paper, a new image-matching mathematical model is presented
for the mammogram registration. In a variational framework, an energy mini-
mization problem is formulated and a multigrid resolution algorithm is designed.
The model focuses on the matching of regions of interest. It also combines sev-
eral constraints which are both intensity and segmentationbased. A new feature
of our model is combining region matching and segmentation by formulation of
the energy minimization problem with free boundary conditions. Moreover, the
energy has a new registration constraint. The performancesof models with and
without free boundary are compared on a simulated mammogrampair. It is shown
that the new model with free boundary is more robust to initialization inaccura-
cies than the one without. The interest of the new model for the real mammogram
registration is also illustrated.

1 Introduction.

In this paper, we deal with the well-known problem of Image Registration. Our mo-
tivation is the registration of bilateral or temporal mammogram pairs. As can be seen
though the complete survey in [9], a lot of work has been done in Image Registration
since the early 80’s. However, the mammogram registration still remains a challeng-
ing problem. Indeed, most of the mammogram registration techniques have been only
based on breast contours and for that reason have not succeeded in registering accu-
rately breast interiors [6, 7, 16, 17]. In [10, 13–15], several authors attempted to register
breast interiors using the Bookstein warping technique with internal control points [2].
However, these authors faced with the difficult problem of reliable internal breast con-
trol point extraction and matching.

In a recent work [11, 12], F. Richard and C. Graffigne proposedan image-matching
approach for the registration of mammogram pairs. This approach is not based on inter-
nal control points but instead on image grey-level values. It is more akin to the intensity-
based approaches in [1, 3, 8, 19] than to the Bookstein technique. However, it differs
significantly from these usual intensity-based approaches. On the one hand, it focuses
on the mapping of regions of interest (the breast in the mammogram application) rather
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than the whole image matching. On the other hand, it combinessome matching con-
straints which are intensity-based and segmentation-based. More precisely, it consists in
minimizing an intensity-based energy with some boundary conditions (Dirichlet) which
are derived from a preliminary breast contour match (see section 2.2).

In [11, 12], it was shown that thanks to these combined constraints the computa-
tion time and the mammogram registration accuracy are improved. However, the model
performance depends on the quality of the preprocessing steps (the mammogram seg-
mentations and the breast contour match). Indeed, since theboundary conditions are
fixed, the preprocessing inaccuracies cannot be compensated for during the matching
process. Hence these inaccuracies may decrease the matching performances. Besides,
the Dirichlet boundary conditions constrain too strongly the problem and may some-
times disrupt the breast registration near the contours.

In this paper, we propose a model which fixes the drawbacks described above. As
in [11, 12], the model enables the matching of regions of interest. But, contrarily to the
previous model, the minimization problem is defined with free boundary conditions.
Consequently, the boundary conditions are relaxed and it also becomes possible to com-
pensate for the preprocessing inaccuracies during the matching process. Furthermore,
some constraints are proposed in order to compensate efficiently for the preprocessing
inaccuracies and increase the model robustness.

(a) (b) (c)

Fig. 1. (a) The source imageI0, (b) the geometric deformationI0� of I0 after the application of
model 1, (c) the target imageI1.

In section 2, the new image-matching approach is presented.In section 3, a multi-
grid algorithm is proposed for the numerical resolution of the problem. In section 4, it
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is given some preliminary illustrations and validations ofthe algorithm application to
mammograms.

2 Mathematical Problem Formulation.

In this section, three different image-matching problems are formulated. In section 2.1,
the formulation of the usual intensity-based problem is reminded. Sections 2.2 and 2.3
are both devoted to the matching of regions of interest. In section 2.2, we recall the
formulation of our previous model. In section 2.3, the new model is presented.

2.1 The Classical Model.

The classical variational framework for Image-Matching isthe following [1, 3, 8, 19].
Let 
 be a connected and open set ofR2 and I0 and I1 be two images defined on
 using interpolation. LetWa be a space composed of smooth functions mapping

onto itself. Let us denote byI0� the geometric deformation ofI0 that is induced by the
element� of Wa: 8 x 2 
; I0�(x) = I0 Æ �(x):
MatchingI0 andI1 consists in finding an element� which is as smooth as possible
and such that the deformed imageI0� is “similar” to I1. This is expressed in terms of an
inverse problem [1, 3, 8, 19]:

Model 1 Find inWa a minimum for an energyJa which is of the following form:Ja(u) = 12 A
(u; u) + 
12 jI0� � I1j2
 ;
with some boundary conditions on the boundary of
. In this energy definition,u is
equal to�� Id andj � jA is the usual quadratic norm onL2(A;R): jI j2A = RA I2(x)dx.

This energy is composed of two terms. The second term dependson the images. It is
the matching term: the more similar the imagesI0� andI1 are, the lower this term is. The
first term is a smoothing term which ensures that the problem has a solution in a space
of homeomorphisms. Its design is usually based on a strain energy of the continuum
media mechanics. In this paper, we choose the energy of the linearized elasticity [5]. Its
definition can be based on following bilinear form:A
(u; v) =< Lu; v >
= Z
 Lu(x) � v(x) dx: (1)

Let us denote by< �; � >
 the usual scalar product onL2(
;R2) and byL the follow-
ing operator:1 Lu = �divf� tr(e(u))Id + 2 � e(u)g: (2)

where� and� are two positive values ande(u) is the linearized strain tensor1=2(rut+ru). In figure 1, it is shown an application of model 1 to a mammogram pair; this
example will be commented further in section 4.

1 If M is a2�2-matrix, thentr(M) is equal toM1;1+M2;2. If m is a smooth function mapping
 into the2 � 2-matrix set, then the value ofdivfmg at a pointx of 
 is the bidimensional
vector having theith component equal to�x1m(x)i;1 + �x2m(x)i;2.
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2.2 Region-Matching With Fixed Boundary Conditions.

Unlike the previous model, the model presented in this section focuses on the matching
of regions of interest. The framework is the following. Let us assume that imagesI0
andI1 have single regions of interest that are respectively located on the connected and
open subsets
0 and
1 of
. Let us denote by�
0 and�
1 the respective boundaries
of
0 and
1. Let us assume that the contours�
0 and�
1 were previously segmented
and matched. Let us denote by�0 (or Id + u0) the function mapping the coordinates of�
1 onto those of�
0. In order to focus on the regions of interest, the minimization
problem is not defined onWa (see section 2.1) but on a spaceWb which is composed
of smooth functions mapping
1 onto
0. The inverse problem is stated as follows [11,
12]:

Model 2 Find inWb a minimum for an energyJb which is of the following form:Jb(u) = 12 A
1(u; u) + 
12 jI0� � I1j2
1 ;
with the following non-homogeneous Dirichlet boundary conditions:8 x 2 � 
1; u(x) = u0(x) = �0(x) � x:
The terms of energyJb have the same definitions and play the same roles as those of
energyJa in model 1. However, they are not defined on the whole domain
 but only
on the region of interest
1. Besides, the boundary conditions are specific to the regions
of interest and based on a known matching of their contours. An application of model
2 is shown on figure 2.

2.3 Region-Matching With Free Boundary Conditions.

The model presented in this section focuses on the regions ofinterest. But, unlike the
previous model, the problem is defined with free boundary conditions. Hence, the prob-
lem is not defined onWb (see section 2.2) but on a spaceW which is composed of
smooth functions mapping
1 ontoR2. The inverse problem is defined as follows:

Find inW a minimum for an energyJ
 which is of the following form:J
(u) = 12 A
1(u; u) + 
1 12 jI0� � I1j2
1 + 
2 Z
��(
1) S(jI0(x)j2)dx;
with free boundary conditions on�
1.
As in models 1 and 2, the energy has a matching and a regularityterm. It has also a
term which depends on the grey level values ofI0. This term is defined on a region
 � �(
1) which is expected to be the background ofI0 (see figure 3). It constrains
pixels of the set�(
1) not to be located on the background ofI0. For reasons that will
appear next, it will be refered as the segmentation term. An application of model 3 is
shown on figure 2.

Design of S. Assume that the imageI0 can be robustly segmented using a threshold;
that is to say there exists a value� such thatjI0(x)j2 < � if and only if x belongs to the
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(a) (b) (c) (d)

Fig. 2. (a) The source imageI0, the geometric deformationI0� of I0 after the application of (b)
model 2 and (c) model 3, (d) the target imageI1.

background of the imageI0. Then,S can be defined as a smooth distribution function
approximating on a bounded interval the function that is equal to 0 on ℄ �1; �[ and1 on [�;+1[. The value ofS at pointr of R may be interpreted as the conditional
probability for a pixelx not to be on the image background knowing thatjI0(x)j2 is
equal tor. In the case where the segmentation is not reliable, the design of S can be
based on an empirical estimation of these probabilities. Inthe mammogram application,
these probabilities are estimated using imageI1 for which segmentation is known. The
value ofS at r is defined as the frequency of pixels of
1 for which jI1(x)j2 is equal
to r.

Segmentation of I0. Contrary to model 2, a preliminary segmentation of the region
of interest inI0 is not needed for the problem formulation. A segmentation ofI0 may
be obtained after the problem resolution: the contour is given by the image�(�
1) of�
1 by a function� which minimizes the energy.

An equivalent problem. Assuming some regularity conditions (the elements� ofW belong to the Sobolev spaceW 1;2(
1;R2) [5] and are such thatdet(r �) > 0 on
1), it can be seen thatZ
��(
1) S(jI0(x)j2)dx = Z
 S(jI0(x)j2)dx � Z
1 S(jI0�(x)j2) det(r�) dx:
Thus, the previous minimization problem can be expressed inthe equivalent way:
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Model 3 Find inW a minimum for an energyJ which is of the following form:J(u) = 12 A
1(u; u) + 
12 jI0� � I1j2
1 � 
2 Z
1 S(jI0�(x)j2) det(r�) dx; (3)

with free boundary conditions on�
1.

φ

Ω

1
I1

BackgroundI0

φ(Ω1 )
1

)

Unknown

the region 
of interest

boundary of

Ω−φ(Ω

Fig. 3. A schematic picture of region-matching with free boundary conditions.

3 Problem Resolution.

In this section, a gradient descent algorithm is designed for the numerical resolution
of the problem of model 3. In section 3.1, the energy is derived and the algorithm
is expressed in terms of an ODE (Ordinary Differential Equation). In section 3.2, we
propose a spatial discretization of the ODE using the Galerkin method. In section 3.3,
an ODE initialization method is described. In section 3.4, amultigrid implementation
of the algorithm is designed.

3.1 Gradient Descent Algorithm.

The Frechet derivative of the energyJ (equation (3)) at pointu of W is as follows: for
all v in WdJju(v) = A
1(u ; v) + 
1 < (I0� � I1)rI0� ; v >�2
2 Z
1 det(r�) S0(jI0�j2)rI0� � vdx� 
2 Z
1 S(jI0�j2)tr(
of(r�)t � rv) dx;
where
of(M) denotes the cofactor matrix of a matrixM . But, by a Green formula [5],Z
1 S(jI0�j2) tr(
of(r�)t � rv) dx = � Z
1 divfS(jI0�j2) 
of(r�)g � v dx;
the gradient of the energyJ with respect to the inner productA
1(�; �) is given by:rJu = u� L�1 F (�(t)); (4)
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whereL is the operator defined by equation (2) andF is the following mapping:F (�) = �
1 (I0� � I1)rI0�+2 
2 det(r�) S0(jI0�j2)rI0� � 
2 divfS(jI0�j2) 
of(r�)tg: (5)

Thus, the gradient descent of the energyJ can be expressed in terms of the following
ODE:

Algorithm 1 (gradient descent)8 t > 0; dudt (t) = �u(t) + Æ(t) and u(0) =M0; (6)

where the initial deformationM0 will be defined in section 3.3, and at each timet Æ(t)
is the solution of the following PDE (Partial Derivative Equation):L Æ = F (�(t)); (7)

where�(t) = Id + u(t) andF is defined in equation (5).

3.2 Algorithm Discretization.

For the implementation of algorithm 1, equation (7) is discretized using the Galerkin
method [4]. First, it can be noticed that equation (7) is formally equivalent to the varia-
tional equation: 8 v 2 W ; A
1(Æ; v) = < F (�(t)); v >; (8)

whereF is defined in equation (5). We choose a spaceWh of dimensionh which
is included inW and spanned by a finite family of functions with compact support
(denoted byf hi gi2Ih ). In order to approximate the solution of equation (8), we find inWh the solution of the approximate variational equation:8 v 2 Wh; A
1(Æ; v) = < F (�(t)); v > :
The solution of this equation is the following:Æh = Xj2Ih �hj  hj ; (9)

where the coefficients�hj are the solution of the linear system:8 i 2 Ih; Xj2Ih �j A
1( hj ;  hi ) =< F (�(t));  hi > : (10)

In order to design the approximation spacesWh, the set
1 is decomposed intoh=2
fixed-size non-overlappingsquares. We defineWh as the space formed by the maps that
areC1 on
1 and polynomial on each of these squares. The design of the function familyf hi gi2Ih is based on spline functions.

When decomposed, the domain
1 may be slightly approximated near the bound-
aries. This may cause segmentation inaccuracies. However,these inaccuracies are taken
into account in model 3 via the estimation ofS (see section 2.3).
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3.3 Initialization Step.

Unlike model 2, the contour match is not used for the design ofmodel 3. However,
it is worth using it to have a better initialization of the ODE. Hence we define the
displacementsM0 in equation (6) as the solution of the problem in model 2 when
1
is equal to zero. The displacementsM0 are the same as those which are obtained at
the initialization step of the algorithm of model 2 [11, 12].Let us denote byW0 the
space composed of the functions ofWb (see section 2.2) and equal to 0 on�
1. The
displacementsM0 are equal tou0 + Æ0, whereu0 is defined in section 2.2 andÆ0 is the
solution inW0 of the following variational equation:8 v 2 W0; A
1(Æ; v) = �A
1(u0; v): Using the Galerkin method (see section 3.2),Æ0
can be approximated by the displacementsÆh0 which are found as follows:Æh0 = Xj2Ih �hj;0  hj 2 Wh0 ; (11)

where the coefficients�hj;0 are the solution of the linear system8 i 2 Ih; Xj2Ih �hj;0 A
1( hj ;  hi ) = �A
1(u0;  hi ): (12)

3.4 Multigrid Implementation.

In order to lower computation times and obtain better minimization results, we adopt a
multigrid implementation approach together with a coarse-to-fine strategy. We define a
seriesfWh(k)gk2N of embedded subspaces having the properties described in section
3.2: Wh(1) � � � � � Wh(k) � � � � � W :
The ODE is descritized with respect to time using the Euler method. We obtain the
following resolution scheme:

Algorithm 2 (Multigrid Implementation)
Initialization: u(0) = u0 + Æh(K)0 , whereu0 is defined in section 2.2 andÆh(K)0 is the

solution in a spaceWh(K)0 of equations (11) and (12).kth Iteration (k � 0) : u(k + 1) = u(k) + � Æ(k), where� is a small positive value
andÆ(k) is the solution inWh(k) of equations (9) and (10) witht equal tok.

4 Application to mammogram pairs.

The local comparison of bilateral or temporal mammogram pairs is an usual approach
for the automatic detection of abnormalities [6, 7, 16]. Forthis approach to be efficient,
the mammogram couples have to be registered. Indeed, unregistered mammograms
have a lot of normal differences which can be taken as abnormalities and generate high
false positive rates. At the finest scale, mammograms are toodifferent to be matched by
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homeomorphisms. Thus, a reasonable registration goal is toremove the image differ-
ences which are present at a coarse scale (differences of contours and of bright and dark
regions). In what follows, we only register coarse approximations of mammograms.

In this section, we apply the different models described in section 2 to mammogram
pairs. In section 4.1, it is given some preliminary evaluations and comparisons of the
algorithm performances based on a simulated mammogram pair. In section 4.2, we
illustrate the algorithm applications to real mammogram pairs.

(a) (b) (c) (d)

Fig. 4. Figures (a) and (b) shows the image�(
1) of the tessellated breast domain
1 in I1 by
the solution� obtained with the algorithm of model 2 (figure (a)) and model 3(
2 = 1000)
(figure (b)). Figures (c) and (d) shows the absolute differences between imagesI1 andI0 Æ �
where� are the solutions found using the algorithm of model 3 with
2 = 0 (figure (c)) and with
2 = 1000 (figure (d)).[black=high differences, white=low differences]

4.1 A simulated case.

In figures 2 (a) and (c), it is shown a simulated mammogram pair(I0; I1) whereI1 is
a geometric deformation ofI0: I1 = I0 Æ �?. The function�? is known. It results from
the application of model 2 to the real mammogram pair (I0,I1? ); I1? is shown on figure
6 (f). The algorithm of model 2 was applied to the simulated image pair with the exact
initialization derived from�?. A solution denoted by�ref was obtained. As can be seen
on figure 2 (c), the images are almost perfectly registered bythis algorithm. The image
difference was lowered by80:8 percent and the mean distance between the algorithm
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solution�ref and the exact mapping�? is 3:8 pixels. The image registration benefits
from the region-specific constraints: the algorithm of model 1 lowered the image dif-
ference by only68 percent. In this case, model 2 is the most relevant among the three
models described above since the boundary conditions are exact.

(a) (b)

Fig. 5. Correction effect of the segmentation term of model 3. In figures (a) and (b), the yellow
line is the correct segmentation of the breast and the pink one is the segmentation which is induced
by the wrong initialization map�0. The blue and red lines are the segmentations that are induced
by the solutions of the algorithm of model 3 with
2 equal to0 and1000 respectively.

Based on�?, we designed five wrong initialization functions�0 defined on the
breast contour ofI1 (see sections 2.2 and 3.3). Comparing the yellow and pink lines
in figures 5 (a) and (b), it can be seen that these functions do not correctly map into
the breast contour inI0. The algorithms of models 2 and 3 were applied toI0 andI1
with the wrong initializations functions. The mean resultsare shown in table 1. It can
be observed that the registration performance of model 2 is drastically reduced due to
the initialization errors. Indeed, the image difference islowered by only69:9 percent
on average with wrong initializations. Moreover, the solution regularity is decreased:
the regularity term reaches the mean value344:5 with wrong initializations whereas
it was only117 with the exact initialization. This regularity decrease isdue to some
compressions which can be observed in figure 4 (a) near the breast contours. These
compressions are caused by the opposition of the two registration contraints (the fixed
and wrong boundary conditions and the intensity-based energy term).
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Initialization Algorithm Algorithm of Model 3
Step of Model 2 
2 = 0 
2 = 500 
2 = 1000 
2 = 10000

Regis.Regul. Regis.Regul. Regis.Regul.Regis.Regul.Regis.Regul.Regis.Regul.
Mean 19.7 295.5 69.9 344.2 74.1 301 75.5 298.6 76.9 300 76.1 313.8

Std Dev 18.4 124.1 2.4 139.2 3.9 129.8 3.2 130.0 1.8 129.1 1.1 128.2
Table 1. Comparison of the applications of models 2 and 3 with wrong initializations. The
columns “Regis.” give the image registration scores (in percentage of the initial quadratic dif-
ference betweenI0 andI1): 100 � (jI0 � I1j2 � jI0� � I1j2)=jI0 � I1j2. The columns “Regul.”
give the values of the regularity term (equation (1)). The row “Mean” gives the means of the
registration and regularity scores of the algorithms with five different wrong initializations and
the row “Std Dev” the standard deviations of these scores.

Model 3 is more robust than model 2 to the initialization errors. Indeed, the regis-
tration score is higher (more than74:1 percent in mean) and the solution are smoother.
Comparing 4 (a) and (b), it can also observed that the compressions near the contours
are less important in the solution of model 3 than in that of model 2. The robustness of
model 3 is further attested by the comparisons of the algorithm solutions and the ref-
erence solution�ref : the mean and the standard deviation of the distances between the
solutions obtained with model 2 and�ref are9:6 and7:1 pixels respectively whereas
they are only7:1 and3:2 between the solutions of model 3 (
2 = 0) and�ref and6:1
and3:1 between the solutions of model 3 (
2 = 1000) and�ref . Besides, it can be
noticed that the performance of model 3 improves as the weight 
2 of the segmentation
term increases. When
2 is equal to1000, the algorithm of model 3 not only obtains the
registration score that is the closest to that of the solution �ref but also the results with
the lowest standard deviations. This shows that the segmentation term in model 3 is a
factor of robustness.

Comparing the image differences in figures 4 (c) and (d), it can be observed that the
mammograms are much better registered near the contours when 
2 is high. In figures
5 (a) and (b), it is shown the segmentations ofI0 which are induced by the algorithm
solutions. It can be seen that the segmentation obtained with model 3 when
2 is high
is close to the right segmentation whereas the segmentationobtained with model 3
when
2 is low remains close to the wrong initialization segmentation. In model 3, the
segmentation term is necessary for the initialization errors to be compensated for.

4.2 Application to a real mammogram pair.

The bilateral mammogram pair shown in figures 6 (a) and (f) comes from the MIAS
database [18]. Comparing both images and observing their absolute differences (figure
7 (a)), it can be noticed that they have a lot of important asymmetries, due in partic-
ular to differences in breast shape. Next, looking at the image I0 in figure 6 (a) and
the geometric deformationI0� in figure 6 (b), it can be seen that the initialization step
changes the breast shape and the nipple position inI0. As observed on figure 7 (b), these
changes significantly compensate not only for the asymmetries near the breast contours
but also for some inner differences. However, due to preprocessing step inaccuracies
and to the algorithm discretization (see section 3.2), the breast contour asymmetries are
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) The source imageI0, the geometric deformationI0� of I0 (b) after the initialization
step, (c) after the application of model 2, (d) after the application of model 3 with
2 equal to0,
(e) after the application of model 3 with
2 equal to1000, (f) the target imageI1.
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(a) (b) (c) (d) (e)

Fig. 7. The absolute differences between imageI1 and (a)I0, (b) the deformed imageI0� after the
initialization step, (c) the deformed imageI0� after the application of model 2, (d) the deformed
imageI0� after the application of model 3 with
2 equal to0, (e) the deformed imageI0� after the
application of model 3 with
2 equal to1000 [black=high differences, white=low differences]

not perfectly corrected: in figure 6 (b), it can be observed a small dark border in the
upper part of the contour area. Moreover, several importantinner differences remain in
the corrected image pair.

However, most of these inner differences can be removed by applying the algorithm
of model 2. Indeed, comparing the imagesI0� in figures 6 (c) and figure 6 (f) and look-
ing at figure 7 (c), it can be seen that this algorithm compensates for many important
asymmetries which are due to the shape and location differences of the bright regions in
both images. Looking at figures 1 (e) and 7 (c), it can also be noticed that model 2 gives
a better registration than model 1, particularly near the contours. However, several dif-
ferences still remain in the pair of images corrected by model 2. Since they are caused
by breast tissue disparities, some of these differences cannot be corrected by any geo-
metric deformation (see for instance, the tissue brightness disparity in the bottom left
part of the images).

However, this registration can be improved. In particular,in the corrected image
pair (figure 7 (c)), we still observe the contour differenceswhich remained after the
initialization. These differences cannot be compensated for by model 2 due to the fixed
boundary conditions. Besides, an important difference remains near the nipple position.
The algorithm of model 2 is unable to correct it: the difference increases the intensity-
based matching term constraint in a way that is opposite to the boundary constraints.
As can be noticed in figure 8 (b), the conflict of constraints generates a strong compres-
sion in the difference area. Further difference corrections are not possible because they
would increase the compression and the regularity term value (equation (1)).

These results are in sharp contrast with those of model 3. We recall that, in this
model, the boundary conditions are free. Consequently, thecontour constraint of model
2 is less stringent. This relaxation permits a better registration of the images near the
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(a) (b) (c) (d)

Fig. 8. (a) The tessellated breast domain
1 in I1, the image�(
1) of 
1 by the map� obtained
with (b) the application of model 2, (c) the application of model 3 with 
2 equal to0, (d) the
application of model 3 with
2 equal to1000.

breast contours. Looking at figures 6 (d) and (e) and figures 7 (d) and (e), it can be
observed that the algorithm (with different segmentation term weights
2) succeeds
in compensating completely for the differences near the nipples. Moreover, as can be
observed in figures 8 (c) and (d), the deformations are less compressed and smoother
than the ones obtained with model 2. As can be observed on figures 7 (d) and (e),
the algorithm maps without the segmentation term (
2 = 0) some parts of the breast
in I1 into some parts of the background inI0 whereas the algorithm with a strong
segmentation constraint keeps the mapping inside the breast region ofI0.

5 Conclusion.

It was presented a new variational model for the mammogram registration. An energy
minimization problem was formulated. A multigrid gradientdescent algorithm was de-
signed for the numerical resolution of the problem. As in [11, 12], the model focuses on
the matching of regions of interest. It also combines segmentation-based and intensity-
based constraints. However, the energy minimization problem is not posed with fixed
boundary conditions but with free boundary conditions. Moreover, the energy has a new
registration constraint. The performances of both models were compared on a simulated
mammogram pair. It was shown that the new model is more robustto the initialization
inaccuracies than the previous one. It was also illustratedthe ability of the new model
to compensate for these inaccuracies during the matching process. Both models were
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applied to a real mammogram pair in order to illustrate the interest of the new model
in this application context. Although it was designed for the mammogram registration,
the model is generic: it can be applied whenever the images have single regions of in-
terest. We believe that, in these common cases, the new modelis better suited for image
registration than the usual intensity-based models.
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