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Abstract. In this paper, a new image-matching mathematical modekisgmted
for the mammogram registration. In a variational framewak energy mini-
mization problem is formulated and a multigrid resolutidgasithm is designed.
The model focuses on the matching of regions of interestsét @mbines sev-
eral constraints which are both intensity and segmentdtésed. A new feature
of our model is combining region matching and segmentatiofotmulation of
the energy minimization problem with free boundary comdis. Moreover, the
energy has a new registration constraint. The performaatesodels with and
without free boundary are compared on a simulated mammopearit is shown
that the new model with free boundary is more robust to iliizion inaccura-
cies than the one without. The interest of the new model fer¢fal mammogram
registration is also illustrated.

1 Introduction.

In this paper, we deal with the well-known problem of ImageyR&ation. Our mo-
tivation is the registration of bilateral or temporal mangnam pairs. As can be seen
though the complete survey in [9], a lot of work has been donenage Registration
since the early 80's. However, the mammogram registratitinreamains a challeng-
ing problem. Indeed, most of the mammogram registratiohrtiegies have been only
based on breast contours and for that reason have not secteecdegistering accu-
rately breast interiors [6, 7, 16, 17]. In [10, 13—-15], sel@uthors attempted to register
breast interiors using the Bookstein warping techniqué witernal control points [2].
However, these authors faced with the difficult problem difi#e internal breast con-
trol point extraction and matching.

In arecentwork [11, 12], F. Richard and C. Graffigne propceeimage-matching
approach for the registration of mammogram pairs. This @ggh is not based on inter-
nal control points but instead on image grey-level valugs.rhore akin to the intensity-
based approaches in [1, 3, 8,19] than to the Bookstein tguknHowever, it differs
significantly from these usual intensity-based approadbashe one hand, it focuses
on the mapping of regions of interest (the breast in the magnam application) rather



than the whole image matching. On the other hand, it comldnase matching con-
straints which are intensity-based and segmentationebigere precisely, it consists in
minimizing an intensity-based energy with some boundangddions (Dirichlet) which
are derived from a preliminary breast contour match (set®se2.2).

In [11, 12], it was shown that thanks to these combined caimt the computa-
tion time and the mammogram registration accuracy are irgatoHowever, the model
performance depends on the quality of the preprocessipg $tke mammogram seg-
mentations and the breast contour match). Indeed, sincbahedary conditions are
fixed, the preprocessing inaccuracies cannot be compehfatduring the matching
process. Hence these inaccuracies may decrease the nggpeinformances. Besides,
the Dirichlet boundary conditions constrain too stronglg problem and may some-
times disrupt the breast registration near the contours.

In this paper, we propose a model which fixes the drawbacksithesl above. As
in [11, 12], the model enables the matching of regions ofreste But, contrarily to the
previous model, the minimization problem is defined withefteoundary conditions.
Consequently, the boundary conditions are relaxed ansattzdcomes possible to com-
pensate for the preprocessing inaccuracies during thehingtprocess. Furthermore,
some constraints are proposed in order to compensate efficfer the preprocessing
inaccuracies and increase the model robustness.
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Fig. 1. (a) The source imagé®, (b) the geometric deformatioff) of I° after the application of
model 1, (c) the target image.

In section 2, the new image-matching approach is presehtesgction 3, a multi-
grid algorithm is proposed for the numerical resolutiontod problem. In section 4, it



is given some preliminary illustrations and validationgtoé algorithm application to
mammograms.

2 Mathematical Problem Formulation.

In this section, three differentimage-matching problenesfarmulated. In section 2.1,
the formulation of the usual intensity-based problem isinefed. Sections 2.2 and 2.3
are both devoted to the matching of regions of interest. ttice 2.2, we recall the

formulation of our previous model. In section 2.3, the newdelas presented.

2.1 TheClassical Model.

The classical variational framework for Image-Matchinghs following [1, 3, 8, 19].
Let 2 be a connected and open setR¥f and I° and I' be two images defined on
12 using interpolation. LetV, be a space composed of smooth functions mapgping
onto itself. Let us denote bpg the geometric deformation df that is induced by the
elementp of W,:

Vel Ig(:z:) =1%0 ¢(x).
MatchingI® andI' consists in finding an elememtwhich is as smooth as possible
and such that the deformed ima@bis “similar” to I'. This is expressed in terms of an
inverse problem[1, 3,8, 19]:

Model 1 Find in W, a minimum for an energy, which is of the following form:
1 gl
Jalw) = 5 Ag(u,u) + %ug 1'%,

with some boundary conditions on the boundaryfin this energy definitiony is
equal top —Id and| - | 4 is the usual quadratic norm ob?(A; R): |I|% = [, I*(x)dz.

This energy is composed of two terms. The second term deperttie images. Itis
the matching term: the more similar the imaggsmdl1 are, the lower this termis. The
first term is a smoothing term which ensures that the problagahsolution in a space
of homeomorphisms. Its design is usually based on a stramggrof the continuum
media mechanics. In this paper, we choose the energy oftbarlzed elasticity [5]. Its
definition can be based on following bilinear form:

Ap(u,v) =< Lu,v >p= / Lu(z) - v(z) dz. 1)
2
Let us denote by -, - > the usual scalar product di¥ (12; R?) and byL the follow-
ing operatort
Lu = —div{\ tr(e(u))Id + 2 pe(u)}. (2

where)\ andy are two positive values aru) is the linearized strain tensby2(Vu!+
Vu). In figure 1, it is shown an application of model 1 to a mammoygair; this
example will be commented further in section 4.

LIf M is a2 x 2-matrix, thentr( M) is equal toM, 1 + Mo ». If m is a smooth function mapping

2 into the2 x 2-matrix set, then the value dfiv{m} at a pointz of {2 is the bidimensional
vector having theé!" component equal t8,, m(z):,1 + dzym(z);,2.



2.2 Region-Matching With Fixed Boundary Conditions.

Unlike the previous model, the model presented in this sadbcuses on the matching
of regions of interest. The framework is the following. Let assume that imagd$
andI* have single regions of interest that are respectively ktan the connected and
open subsetg, and(?, of (2. Let us denote by (2, anddf?, the respective boundaries
of 2 and(?;. Let us assume that the contod®, ando(?2; were previously segmented
and matched. Let us denote by (or Id + u¢) the function mapping the coordinates of
012, onto those oD (2. In order to focus on the regions of interest, the minimizati
problem is not defined oW, (see section 2.1) but on a spadg which is composed
of smooth functions mapping; onto(2,. The inverse problem is stated as follows [11,
12]:

Model 2 Find in W, a minimum for an energy, which is of the following form:
1
(W) = 5 Ag, (u,u) + T~ 1",
with the following non-homogeneous Dirichlet boundaryditons:
Va eo, ulx) =uo(x) = ¢o(z) — x.

The terms of energy, have the same definitions and play the same roles as those of
energy.J, in model 1. However, they are not defined on the whole domabut only

on the region of interes?; . Besides, the boundary conditions are specific to the region
of interest and based on a known matching of their contounsapplication of model

2 is shown on figure 2.

2.3 Region-Matching With Free Boundary Conditions.

The model presented in this section focuses on the regiomgerest. But, unlike the

previous model, the problem is defined with free boundargdwmns. Hence, the prob-

lem is not defined oV, (see section 2.2) but on a spadé which is composed of

smooth functions mappin@; ontoR?. The inverse problem is defined as follows:
Find in YW a minimum for an energy. which is of the following form:

Jew) = 5 Aoy () o - P+ [ (@),
2-¢(21)

with free boundary conditions a2, .

As in models 1 and 2, the energy has a matching and a regularity. It has also a
term which depends on the grey level values/df This term is defined on a region
2 — ¢(£21) which is expected to be the backgroundl8f(see figure 3). It constrains
pixels of the sety(£2;) not to be located on the background8f For reasons that will
appear next, it will be refered as the segmentation term. gplieation of model 3 is
shown on figure 2.

Design of S. Assume that the imagl can be robustly segmented using a threshold;
that is to say there exists a valysuch that/°(z)|> < # if and only if z belongs to the
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Fig. 2. (a) The source imagé®, the geometric deformatioff} of I° after the application of (b)
model 2 and (c) model 3, (d) the target imale

background of the imagE. Then,S can be defined as a smooth distribution function
approximating on a bounded interval the function that issé¢o 0 on] — oo, 5[ and

1 on [y, +oo[. The value ofS at pointr of R may be interpreted as the conditional
probability for a pixelz not to be on the image background knowing th&{(z)|? is
equal tor. In the case where the segmentation is not reliable, thgdediS can be
based on an empirical estimation of these probabilitiethérmammogram application,
these probabilities are estimated using imaféor which segmentation is known. The
value ofS atr is defined as the frequency of pixels @f for which |I(z)|? is equal
tor.

Segmentation of 1°. Contrary to model 2, a preliminary segmentation of the regio
of interest inI° is not needed for the problem formulation. A segmentatiof®afay
be obtained after the problem resolution: the contour ismyivy the image(9(2;) of
02, by a functiong which minimizes the energy.

An equivalent problem. Assuming some regularity conditions (the elemenhtsf
W belong to the Sobolev spa®&!-2(12;; R?) [5] and are such thatet(V ¢) > 0 on
£21), it can be seen that

/ S(I°@))dx = / S(I@)P)dz — [ S(I8(@)]?) det(V ) da.
Q—¢(21) 2

(021

Thus, the previous minimization problem can be expresséuHmquivalent way:



Model 3 Find in YV a minimum for an energy which is of the following form:
1 . .
T = 5 Ay lu) + =1, = [ SQI@P) det(Vo) o, (3

with free boundary conditions a2, .

Y
Unknown ’ —
boundary of B
the region |~ ’>
of interest :
Background
lo 0-¢(Q) ly ’

Fig. 3. A schematic picture of region-matching with free boundampditions.

3 Problem Resolution.

In this section, a gradient descent algorithm is designedh® numerical resolution
of the problem of model 3. In section 3.1, the energy is derigad the algorithm
is expressed in terms of an ODE (Ordinary Differential E¢qprat In section 3.2, we
propose a spatial discretization of the ODE using the Galeriethod. In section 3.3,
an ODE initialization method is described. In section 3.Mutigrid implementation
of the algorithm is designed.

3.1 Gradient Descent Algorithm.

The Frechet derivative of the enerdgy(equation (3)) at point of WV is as follows: for
allvin W

dJ,(v) = Ag,(u, v) + 1 < (Ig -1 Vlg , U >
—272/ det(Vo) S'(|Ig|2) Vlg -vdxr — 72/ S(|Ig|2)tr(c0f(v¢)t - Vo) dz,
.Ql -Ql

wherecof (M) denotes the cofactor matrix of a mattiX. But, by a Green formula [5],

S(|Ig|2) tr(cof (Vo)! - Vo) dx = —/ div{S(|Ig|2) cof(Vo)} - v du,
2 951

the gradient of the energy with respect to the inner produgty,, (-, -) is given by:

Vi, =u— L7 F((1), (4)



whereL is the operator defined by equation (2) afds the following mapping:
F(¢) =-m (I3 -I") VI3
+2 9 det(V6) S'(IY)?) VIS — 72 div{S(II9P) cof (V)'}. 5)

Thus, the gradient descent of the enefggan be expressed in terms of the following
ODE:

Algorithm 1 (gradient descent)
@
dt
where the initial deformatiod/, will be defined in section 3.3, and at each tim#t)
is the solution of the following PDE (Partial Derivative Eafion):

L= F(¢(t)), (7)
whereg(t) = Id + u(t) and F is defined in equation (5).

Vit>0, (t) = —u(t) + 6(t) and wu(0) = Mo, (6)

3.2 Algorithm Discretization.

For the implementation of algorithm 1, equation (7) is diized using the Galerkin
method [4]. First, it can be noticed that equation (7) is fallpnequivalent to the varia-
tional equation:

VoeWw, Ag,(6,v) = < F(o(t)),v >, ©)

where F' is defined in equation (5). We choose a spaté of dimensionh which

is included in)V and spanned by a finite family of functions with compact suppo
(denoted by{v/"};c1,). In order to approximate the solution of equation (8), wel fim
WP the solution of the approximate variational equation:

VoeWh, Ag (6,0) = < F(¢()),0 > .
The solution of this equation is the following:
=" Byt €)
J€In

where the coefficientﬁj’.’ are the solution of the linear system:

Vie I Y B Aa, (4l =< F(o(1), 4! > . (10)

jEIh

In order to design the approximation spat4, the set?; is decomposed inth/2
fixed-size non-overlapping squares. We defivié as the space formed by the maps that
areC! on (2, and polynomial on each of these squares. The design of tistdarfamily
{¥"};c1, is based on spline functions.

When decomposed, the domdih may be slightly approximated near the bound-
aries. This may cause segmentation inaccuracies. Hovihese inaccuracies are taken
into account in model 3 via the estimation®{see section 2.3).



3.3 Initialization Step.

Unlike model 2, the contour match is not used for the desigmofélel 3. However,

it is worth using it to have a better initialization of the ODHence we define the
displacementd/, in equation (6) as the solution of the problem in model 2 when

is equal to zero. The displacemeritf are the same as those which are obtained at
the initialization step of the algorithm of model 2 [11, 12kt us denote byV, the
space composed of the functions)df, (see section 2.2) and equal to 0 @f?;. The
displacementd/, are equal taiy + d9, Whereu is defined in section 2.2 any is the
solution inW, of the following variational equation:

Vv e Wy, Ap, (0,v) = —Ag, (ug,v). Using the Galerkin method (see section 3d3),
can be approximated by the displaceme¥jtsvhich are found as follows:

5o =" Byt e Wy, (11)

JEIn

where the Coefficiem;@j’{0 are the solution of the linear system

Vie Ih: Z B;L,O AQl(w;lvw:l) = _Aﬂl(uoawlh)' (12)

JEIn

3.4 Multigrid Implementation.

In order to lower computation times and obtain better mizitibn results, we adopt a
multigrid implementation approach together with a codrséine strategy. We define a
series{ W"¥)1, .\, of embedded subspaces having the properties describedtiarse
3.2:

Wh(l) C --- th(k) Cc---CW.

The ODE is descritized with respect to time using the Euletho@. We obtain the
following resolution scheme:

Algorithm 2 (Multigrid | mplementation)

Initialization: u(0) = ug + 61", whereu, is defined in section 2.2 an§}“’ is the
solution in a spacwg(K) of equations (11) and (12).

k*® Iteration (k > 0) : u(k + 1) = u(k) + € 6(k), wheree is a small positive value
andé (k) is the solution inV"(*) of equations (9) and (10) withequal tok.

4 Application to mammogram pairs.

The local comparison of bilateral or temporal mammogramspaian usual approach
for the automatic detection of abnormalities [6, 7, 16]. fis approach to be efficient,
the mammogram couples have to be registered. Indeed, stesgi mammograms
have a lot of normal differences which can be taken as abrliesaand generate high
false positive rates. At the finest scale, mammograms ardiffsoent to be matched by



homeomorphisms. Thus, a reasonable registration goalrsmove the image differ-
ences which are present at a coarse scale (differencestwiizsmnd of bright and dark
regions). In what follows, we only register coarse appraadions of mammograms.

In this section, we apply the different models describecition 2 to mammogram
pairs. In section 4.1, it is given some preliminary evalolsi and comparisons of the
algorithm performances based on a simulated mammogramIpasection 4.2, we
illustrate the algorithm applications to real mammograrngpa

@) (b) (© (d)

Fig. 4. Figures (a) and (b) shows the imagé;) of the tessellated breast domai in I' by
the solution¢ obtained with the algorithm of model 2 (figure (a)) and modéh3 = 1000)

(figure (b)). Figures (c) and (d) shows the absolute diffeesnbetween imagel andI° o ¢

where¢ are the solutions found using the algorithm of model 3 with= 0 (figure (c)) and with
~2 = 1000 (figure (d)).[black=high differences, white=low differences)

4.1 A simulated case.

In figures 2 (a) and (c), it is shown a simulated mammogram @dir/') wherel' is

a geometric deformation dP: I* = I° o ¢*. The functionp* is known. It results from

the application of model 2 to the real mammogram p&ir1’); I} is shown on figure

6 (f). The algorithm of model 2 was applied to the simulatedgm pair with the exact
initialization derived fromp*. A solution denoted by,.r was obtained. As can be seen
on figure 2 (c), the images are almost perfectly registerettisyalgorithm. The image
difference was lowered b§0.8 percent and the mean distance between the algorithm
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solution ¢,«¢ and the exact mapping* is 3.8 pixels. The image registration benefits
from the region-specific constraints: the algorithm of middéwered the image dif-
ference by only68 percent. In this case, model 2 is the most relevant amonditke t
models described above since the boundary conditions a.ex

Fig. 5. Correction effect of the segmentation term of model 3. Inriégua) and (b), the yellow
line is the correct segmentation of the breast and the piekotine segmentation which is induced
by the wrong initialization mapy. The blue and red lines are the segmentations that are idduce
by the solutions of the algorithm of model 3 with equal to0 and1000 respectively.

Based ong,, we designed five wrong initialization functiong defined on the
breast contour of! (see sections 2.2 and 3.3). Comparing the yellow and pirgslin
in figures 5 (a) and (b), it can be seen that these functionsoticarrectly map into
the breast contour ii°. The algorithms of models 2 and 3 were appliedtcand I'*
with the wrong initializations functions. The mean resate shown in table 1. It can
be observed that the registration performance of model 2astitally reduced due to
the initialization errors. Indeed, the image differencéoisered by only69.9 percent
on average with wrong initializations. Moreover, the smatregularity is decreased:
the regularity term reaches the mean vab4d.5 with wrong initializations whereas
it was only 117 with the exact initialization. This regularity decreasealigse to some
compressions which can be observed in figure 4 (a) near trestoentours. These
compressions are caused by the opposition of the two ragj@mtrcontraints (the fixed
and wrong boundary conditions and the intensity-basedgrierm).
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Initialization|| Algorithm Algorithm of Model 3
Step of Model 2 72 =0 v2 =500 | y2 =1000 |~2 = 10000

Regis|Regul||Regis{Regul||Regis|Regul{Regis|Regul{Regis|Regul|Regis|Regul
Mean | 19.7 | 295.5|| 69.9|344.2|| 74.1| 301 | 75.5|298.6| 76.9| 300 | 76.1|313.8
Std Dev 18.4124.1|| 2.4 |139.2|| 3.9 |129.8| 3.2 |130.0] 1.8 |129.1] 1.1 |128.2
Table 1. Comparison of the applications of models 2 and 3 with wrongaizations. The

columns “Regis.” give the image registration scores (incpetage of the initial quadratic dif-
ference betweed® and’"): 100 - (|1° — I'|* — |1 — I'[*)/|I° — I'|*. The columns “Regul.”
give the values of the regularity term (equation (1)). The fdlean” gives the means of the
registration and regularity scores of the algorithms witte filifferent wrong initializations and
the row “Std Dev" the standard deviations of these scores.

Model 3 is more robust than model 2 to the initialization esrdndeed, the regis-
tration score is higher (more thad.1 percent in mean) and the solution are smoother.
Comparing 4 (a) and (b), it can also observed that the corsjmes near the contours
are less important in the solution of model 3 than in that oflei@. The robustness of
model 3 is further attested by the comparisons of the algorisolutions and the ref-
erence solutiom,.¢: the mean and the standard deviation of the distances betivee
solutions obtained with model 2 ang.s are9.6 and7.1 pixels respectively whereas
they are only7.1 and3.2 between the solutions of model 3,(= 0) and ¢, and6.1
and 3.1 between the solutions of model 32(= 1000) and ¢..¢. Besides, it can be
noticed that the performance of model 3 improves as the weigbf the segmentation
term increases. Whep, is equal to1000, the algorithm of model 3 not only obtains the
registration score that is the closest to that of the satutig; but also the results with
the lowest standard deviations. This shows that the se@memterm in model 3 is a
factor of robustness.

Comparing the image differences in figures 4 (c) and (d) fitlmaobserved that the
mammograms are much better registered near the contours+whs high. In figures
5 (a) and (b), it is shown the segmentationg®fvhich are induced by the algorithm
solutions. It can be seen that the segmentation obtainédmddel 3 wheny, is high
is close to the right segmentation whereas the segmentabitained with model 3
when~, is low remains close to the wrong initialization segmeiotatin model 3, the
segmentation term is necessary for the initializationmsrto be compensated for.

4.2 Application to areal mammogram pair.

The bilateral mammogram pair shown in figures 6 (a) and (f) e@ifnom the MIAS
database [18]. Comparing both images and observing thetlate differences (figure
7 (a)), it can be noticed that they have a lot of important asgtnies, due in partic-
ular to differences in breast shape. Next, looking at thegen® in figure 6 (a) and
the geometric deformatiofg in figure 6 (b), it can be seen that the initialization step
changes the breast shape and the nipple positidh ids observed on figure 7 (b), these
changes significantly compensate not only for the asymewsetear the breast contours
but also for some inner differences. However, due to pregssing step inaccuracies
and to the algorithm discretization (see section 3.2), thadt contour asymmetries are
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(d) (e) (®

Fig. 6. (a) The source imagé’, the geometric deformatiofi} of 1° (b) after the initialization
step, (c) after the application of model 2, (d) after the &gapion of model 3 withy, equal to0,
(e) after the application of model 3 with equal to1000, (f) the target imagd*.
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@ (b) (© (d) (e)

Fig. 7. The absolute differences between imdgend (a)l°, (b) the deformed imagk) after the
initialization step, (c) the deformed imag§ after the application of model 2, (d) the deformed
imagelg after the application of model 3 with, equal to0, (e) the deformed imag@ after the
application of model 3 with» equal to1000 [black=high differences, white=low differences]

not perfectly corrected: in figure 6 (b), it can be observednalsdark border in the
upper part of the contour area. Moreover, several impoitarér differences remain in
the corrected image pair.

However, most of these inner differences can be removed plyiag the algorithm
of model 2. Indeed, comparing the imag'@s’n figures 6 (c) and figure 6 (f) and look-
ing at figure 7 (c), it can be seen that this algorithm comptessior many important
asymmetries which are due to the shape and location diffeseof the bright regions in
both images. Looking at figures 1 (e) and 7 (c), it can also tieedthat model 2 gives
a better registration than model 1, particularly near theteors. However, several dif-
ferences still remain in the pair of images corrected by rh@d8ince they are caused
by breast tissue disparities, some of these differencasatdre corrected by any geo-
metric deformation (see for instance, the tissue brightrksparity in the bottom left
part of the images).

However, this registration can be improved. In particularthe corrected image
pair (figure 7 (c)), we still observe the contour differenedsich remained after the
initialization. These differences cannot be compensatelyf model 2 due to the fixed
boundary conditions. Besides, an important differenceaieenear the nipple position.
The algorithm of model 2 is unable to correct it: the differerincreases the intensity-
based matching term constraint in a way that is oppositegdtundary constraints.
As can be noticed in figure 8 (b), the conflict of constraintsegates a strong compres-
sion in the difference area. Further difference correctiare not possible because they
would increase the compression and the regularity termev@guation (1)).

These results are in sharp contrast with those of model 3.a&b8allrthat, in this
model, the boundary conditions are free. Consequenthgdhéour constraint of model
2 is less stringent. This relaxation permits a better regfisin of the images near the
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Fig. 8. (@) The tessellated breast dom#&nin I*, the images(£2;) of £2; by the mapp obtained
with (b) the application of model 2, (c) the application of aeb 3 with~y, equal to0, (d) the
application of model 3 withy, equal to1000.

breast contours. Looking at figures 6 (d) and (e) and figured) ard (e), it can be
observed that the algorithm (with different segmentatiemmt weightsy,) succeeds
in compensating completely for the differences near theleg Moreover, as can be
observed in figures 8 (c) and (d), the deformations are lesgpoessed and smoother
than the ones obtained with model 2. As can be observed orefigind) and (e),
the algorithm maps without the segmentation tesm £ 0) some parts of the breast
in I' into some parts of the background I8 whereas the algorithm with a strong
segmentation constraint keeps the mapping inside thethregsn of I°.

5 Conclusion.

It was presented a new variational model for the mammograistration. An energy
minimization problem was formulated. A multigrid gradietgiscent algorithm was de-
signed for the numerical resolution of the problem. As in,[14], the model focuses on
the matching of regions of interest. It also combines sedatiem-based and intensity-
based constraints. However, the energy minimization ok not posed with fixed
boundary conditions but with free boundary conditions. Btaer, the energy has a new
registration constraint. The performances of both modelewompared on a simulated
mammogram pair. It was shown that the new model is more rdbuke initialization
inaccuracies than the previous one. It was also illustritedability of the new model
to compensate for these inaccuracies during the matchimeeps. Both models were
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applied to a real mammogram pair in order to illustrate tteriest of the new model
in this application context. Although it was designed far thammogram registration,
the model is generic: it can be applied whenever the images $iagle regions of in-
terest. We believe that, in these common cases, the new nsduigter suited for image
registration than the usual intensity-based models.
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