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Abstract. We introduce a novel implicit approach for single object segmenta-
tion in 3D images. The boundary surface of this object is assumed to contain
two known curves (the constraining curves), given by an expert. The aim of our
method is to find this surface by exploiting as much as possible the informa-
tion given in the supplied curves. As for active surfaces, we use a cost potential
which penalizes image regions of low interest (most likely areas of low gradient
or away from the surface to be extracted). In order to avoid local minima, we in-
troduce a new partial differential equation and use its solution for segmentation.
We show that the zero level set of this solution contains the constraining curves
as well as a set of paths joining them. These paths globally minimize an energy
which is defined from the cost potential. Our approach is in fact an elegant, im-
plicit extension to surfaces of the minimal path framework already known for 2D
image segmentation. As for this previous approach, and unlike other variational
methods, our method is not prone to local minima traps of the energy. We present
a fast implementation which has been successfully applied to 3D medical and
synthetic images.

Keywords: Image segmentation, Active contours, Minimal Paths, Level Set
method, Object Extraction, Stationary Transport Equation.

1 Introduction

Since their introduction by Kass et al. [15], deformable models have been extensively
used to find single and multiple objects in 2D and 3D images. The common use of these
models consists in introducing an initial object in the image and deforming it until it
reaches a desired target. In most applications, the evolution of the object is chosen
in order to most rapidly reduce an energy involving the image data, until a steady
state is reached. One of the main drawbacks of this approach is that it suffers from local
minima ‘traps’. This is the case when the steady state, reached by the active object, does
not correspond to the target but to another local minimum of the energy. An immediate
consequence of this behavior is that the active object’s initialization is a crucial step,
since the final result depends strongly upon it. Since the publication of [15], much
work has been done in order to free active models from the problem of local minima.
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Fig. 1. 3D ultrasound volume of a left ventricle: (a) and (b) show the two parallel slices where
the user given curves Γ1 and Γ2 are drawn. (c) shows a slice perpendicular to the curves in order
to show their position with respect to the ventricle. Finally (d) shows the surface containing the
constraint curves obtained with our approach. In the upper position we have shown the intersec-
tion of the zero level set of Ψ with a vertical plane. In the lower position we have traced some
minimal paths between the two constraining curves and a 3D representation of the zero level set,
the minimal paths are traced on this surface.

A balloon force was early proposed in [8] to make the model more active and to cope
with the shrinking problem, but this force assumes a known direction in the evolution.
The introduction of region dependent energies [9, 27, 19] and the use of shape priors
approaches [26], contributed to create a more robust framework. In order to avoid local
minima of the active contours, [10] proposed an approach to find a global minimum of
the energy. However their approach cannot be extended to find the global minimum for
an active surface in a 3D image.

In this work, we focus on a novel approach for 3D single object segmentation where
the resulting surface globally minimizes a given energy. Our aim is to generate a sur-
face that contains a couple of ‘constraining’ curves (Γ1 and Γ2) and which is also a
segmentation of an object. Γ1 and Γ2 are supposed to be traced by an expert1 on the
surface to be segmented. Our approach is based on implicitly generating a surface that
contains the set of paths globally minimizing an image energy and connecting Γ1 and
Γ2. Moreover, the constraining curves are the only input for the initialization of our
model. The paths linking Γ1 and Γ2 are globally minimal with respect to an energy of
the form

∫
Γ

P̃ . If the incremental cost P̃ is chosen to take lower values on the contours
of the 3D image, in particular on the surface of the object to be extracted, global min-

1 Notice that the expert may obtain these curves with a 2D active contour or interactive tool like
with the minimal path approach in [13].
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imal paths will help finding the boundary of the object (see section 2 and [10]). This
fact has been exploited in previous work [2, 3], where a network of a finite number of
minimal paths was computed between the two constraining curves and then extended,
by means of interpolation, to a segmentation surface of the object.
Although this approach gave good results, particularly in ultrasound 3D images, the
topology of the network was often problematic (paths tend to merge and only few points
of Γ1 are to be reached, see figure 1.d) considerably complicating the generation of the
segmenting surface and, in the worst cases, leading to bad segmentations (figure 3.b).

Our work presented herein, although based on similar ideas, is much more than an
implicit extension of the network approach. The surface generated by our algorithm
is completely composed of globally minimal paths, and in particular, it contains all the
minimal paths of the network introduced in [3]. Indeed, by solving a stationary transport
equation of the form: ∇Ψ.∇U = 0, where U is the action map (defined in section 3)
and Ψ is the unknown, we show in section 4 that Ψ is such that: any minimal path
between the constraining curves is contained in its zero level set Ψ−1({0}). We also
prove that for almost any point of this level set, the minimal path between this point
and Γ1 is contained as well in Ψ−1({0}). This property is the key point explaining the
good performance of our algorithm. In section 5 we give some results obtained by our
method on synthetic and real data.

As an illustration of our problem, we give in figures 1.a, 1.b and 1.c an example
of the user input to our algorithm. We perform the segmentation of a 3D ultrasound
volume of the left ventricle. In figure 1.d we show the output of our method, which is
the zero level set of function Ψ . We have also traced, for demonstration purposes, some
minimal paths joining points of Γ2 to Γ1, which are clearly displayed on the segmented
surface.

2 Minimal Paths in 2D Images

2.1 Active Contour Model

The first active contour model was introduced by Kass et al. in the seminal paper [15].
Their model, the well known ’snakes’, consists in finding a curve C (parametrized on
interval [0, 1] and traced on the image) that minimizes the energy,

Es(C) =
∫ 1

0

{
α ‖C′(x)‖2 + β ‖C′′(x)‖2 + P(C(x))dx

}
, (1)

where α and β are positive constants. The minimization of the first two terms of Es

induces the curve C to have a relatively high regularity, while the minimization of the
latter is intended to drive the curve toward significant edges of the image. In fact, Find-
ing a curve that minimizes energy E is not a simple task; this functional is defined on
the infinitely dimensioned space of regular curves and, generally, it is non-convex. The
potential function P usually represents an edge detector that has lower values along
edges. A common choice for this function is P = (1 + |∇I |2)−1, if I is the image.
Finding a curve that minimizes the energy Es is not a simple task; this functional is
defined on an infinite dimensional space and, generally, it is non-convex. The usual
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approach is based on finding a local minimum of Esnake by evolving an initial curve

C0 under the time dependent equation:
∂C(x, t)

∂t
− α

∂2C(x, t)
∂x2 + β

∂4C(x, t)
∂x4 = −∇P(C),

with C(·, 0) = C0. By this approach, the final curve C is strongly dependent on the
initialization C0. Since the method was originally intended to interactively segment a
single object in the image, this behavior is rather natural. Nonetheless, if C0 is too far
from the object to extract, the evolving curve can be trapped in another local minimum,
thus giving an unsatisfactory result.

2.2 Active Contours and Minimal Paths

In order to obtain global minimization in the active contours framework, Cohen and
Kimmel [10] simplified the energy by choosing β = 0 in the expression (1) of Es.
Additionally, they propose to use arclength parameterization (here noted s). Thus, they
look for the curve minimizing energy

E(C) =
∫ L

0

{
α + P

(
C(s)

)}
ds (2)

where L is the length of curve C and s its arclength parameterization (in the rest of this
paper we shall note P̃ = α + P). Even though this is the same energy proposed by
Caselles et al.[6] and Yezzi et al. [24], used in the well-known geodesic active contour
model, Cohen and Kimmel choose a completely different approach for the minimization
of E. Instead of using an evolution equation as in [6, 15, 24], they exploit a method
capable of building a curve between two points (p1 and p2) which is the global minimum
of E among all the curves joining these points. This minimum is called a minimal
path. Their approach is based on the fact that a minimal path between p2 and p1 can
be obtained by ‘back propagation’, solving : dC

dx
(x) = −∇Up1

(
C(x)

)
with C(0) = p2.

Where the real function Up1 , called the minimal action map, is defined at each point

q of the image domain by: Up1(q) = inf
{∫ L

0 P̃
(
C(s)

)
ds

}
. Where the inf is taken

among all curves such that C(0) = p1 and C(L) = q. In order to compute Up1 , Cohen
and Kimmel [10] use the fact (a proof of this fact can be found in [5]) that this map is
solution to the well known Eikonal equation :

‖∇Up1‖ = P̃ and Up1(p1) = 0. (3)

This equation is numerically solved by Cohen and Kimmel using the ‘Fast marching’
algorithm in order to compute a minimal path ([10]).

3 From Global Minimal Paths to 3D Surface Extraction

The method introduced in [10] can easily be extended for the construction of minimal
paths between two points in a 3D image [12]. In that case, the formalism given in the
previous section is unchanged, except for the fact that the functions P̃, Up1 are defined
(and C takes its values) on a 3D domain. The authors of [12] used it to find centerlines
in 3D tubular structures. As in the previous section, the cost function P̃ is supposed to
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have lower values on a surface to be extracted from the 3D image. Before reviewing
ideas in [2, 3], where the minimal path framework was extended to the extraction of
surfaces between two given curves Γ1 and Γ2, we give for comparison purposes a brief
description of the (now classical) geodesic active surface approach.

3.1 Background on Active Surfaces

The active surface model, introduced in [7], is a variational approach for the segmenta-
tion of objects in 3D images. In the same spirit as geodesic active contours, it is based
on finding a surface which minimizes an energy of the form:

ES(S) =
∫

O

P(S)
∥
∥
∥
∥

∂S

∂u
∧ ∂S

∂v

∥
∥
∥
∥ dudv, (4)

where (u, v) are the parameters of S, defined on the open set O ⊂ IR2. The most
common procedure for finding a local minimum of this energy is to deform, until con-
vergence, an initial surface S0, according to the evolution equation:

∂S

∂t
= PHNS − (∇P .NS)NS with S(·, ·, 0) = S0, (5)

H being the mean curvature of S and NS its normal. This implies that the final surface
is the local minimum of ES which is ”closest” to S0. As with geodesic active contours,
this method lacks robustness with respect to S0. In [2] a method was suggested, based
on minimal paths, that provided this model with a convenient initialization. This was
done by incorporating the information given by the user through the two constraining
curves, Γ1, Γ2. We give a description of this approach in the next section since our
algorithm, further proposed, elaborates on ideas that are related.

3.2 Minimal Path Set Between Two Curves

Active surfaces are usually initialized with simple geometric structures like ellipsoids or
cylinders which do not always lead to a good segmentation after evolution to a steady
state. Here, instead, the user is asked to introduce into the 3D image a couple of curves
(not necessarily planar) drawn on the surface to be extracted. These curves, Γ1 and Γ2,
are exploited as the initialization of the model and as incorporated user information. The
approach is based on considering a network of paths that globally minimizes an energy
associated to the image. This network is used to generate a surface that contains the con-
straining curves and which provides a segmentation of the object lying between them.

We say that a curve γq
Γ1

is a path between a point q and curve Γ1 if γq
Γ1

(0) = q and

γq
Γ1

(L) ∈ Γ1. A path network N Γ2
Γ1

, between the points of Γ2 and curve Γ1, is the set

N Γ2
Γ1

=
{
γq

Γ1

}
q∈Γ2

,

where it is supposed that every point q of Γ2 is visited only once. Using the geodesic
energy of each path composing the network, we define the following energy on the set
of all possibles networks:
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ENet

(
N Γ2

Γ1

)
=

∫

q∈Γ2

∫ L(q)

0
P̃

(
γΓ1

q (s)
)
dsdq. (6)

Since the potential function P̃ is positive, the minimization of ENet can be obtained by
finding every globally minimal path between the points of Γ2 and curve Γ1. Moreover,
these minimal paths are easily found. Indeed, similar to section 2.2, the minimal path
between Γ1 and a point q (further noted Cq

Γ1
), with respect to the energy E (defined by

(2)), is solution of the ordinary differential equation:

dCq
Γ1

dx
(x) = −∇UΓ1

(
Cq

Γ1
(x)

)
with Cq

Γ1
(0) = q. (7)

UΓ1 is the action map defined on each point q ∈ Ω by :

UΓ1(q) = inf

{∫ L

0
P̃(C(s))ds

}

,

where the inf is taken among all curves such that C(0) = q and C(L) ∈ Γ1. Fur-
thermore, it follows that UΓ1(q) = inf

p∈Γ1
{Up(q)} . This implies, as a consequence of

relation (3), that UΓ1 is also a solution to the Eikonal equation but with a different
initial condition :

‖∇UΓ1‖ = P̃, and ∀p ∈ Γ1, UΓ1(p) = 0. (8)

By solving equation (7), using each point of Γ2 as part of the initial condition, we
globally minimize the energy ENet, producing the minimal energy network:

SΓ2
Γ1

=
⋃

q∈Γ2

{
Cq

Γ1

}
.

The minimal network is thus the set of all solutions of the ordinary differential equation
(7) when varying its initial condition along Γ2. Up to a reparameterization, assume ev-
ery minimal path (respectively curve Γ2) is parameterized on an interval J (respectively
I). SΓ2

Γ1
can then be considered as a mapping (since minimal paths cannot cross without

merging) from I × J to Ω, such that for all pair (u, v) ∈ I × J SΓ2
Γ1

(u, v) = CΓ2(u)
Γ1

(v).
Using this map for segmentation follows the same intuition as in [2, 3], where the hy-
pothesis is made that each path of SΓ2

Γ1
is within a small distance from the surface to

extract. Unfortunately, as can be understood from [18], in the general case the map
SΓ2

Γ1
(·, ·) lacks the fundamental property of continuity. For that reason, it is insufficient

for segmentation. In order to cope with this difficulty, Ardon and Cohen [2, 3], proposed
two different solutions :

– An analytical interpolation method was used to generate a surface from a finite
number of paths belonging to SΓ2

Γ1
. This approach gave satisfactory segmentation

results only in very particular cases (the topology of the surface being such that the
gaps created by the discontinuities uncover relatively small areas of the surface),
and was thus preferred as an initialization of other active object methods [2].



526 R. Ardon, L.D. Cohen, and A. Yezzi

– A different network was generated by solving a projected version of the ordinary
differential equation (7) [3]. The projection was made on planes whose definition
depended on Γ1 and Γ2. Even though satisfactory results were obtained in medical
images under some restrictions applied to the two constraining curves (they should
neither intersect nor be open), with this approach the network is no longer minimal
for energy ENet. Furthermore, paths can cross without merging thus no mapping
can be defined. Last but not least, this approach can only extract surfaces of objects
whose topology is cylindrical.

In order to solve the problems mentioned above, we introduce in the next section
a novel approach for the generation of a surface using the minimal path network. This
surface shall be defined as the zero level set of a function Ψ which solves a certain
transport equation.

4 Implicit Definition of a Surface Containing the Minimal Paths Set

In order to simplify our description, Γ1 and Γ2 are assumed to be two non-intersecting
planar, closed curves. We look for a real function Ψ , defined on the image domain
Ω, such that SΓ2

Γ1
is contained in its zero level set (further noted Ψ−1({0})). Having

no a priori knowledge on the properties Ψ should satisfy, we shall suppose that Ψ is
continuously differentiable and we first look for a necessary condition based on our
knowledge of the minimal path network. Further, this condition is exploited to formulate
a sufficient condition and finally give a consistent description of function Ψ .

4.1 Searching for an Implicit Function

As in section 3.2, we denote by Cq
Γ1

a minimal path from a point q ∈ Ω to curve Γ1,

and we suppose that J is its parameterization interval. The minimal paths set SΓ2
Γ1

can

also be considered as a subset of Ω, p ∈ SΓ2
Γ1

means that p is a point belonging to a
minimal path. Let us first assume that a continuously differentiable function Ψ , defined
in Ω is such that SΓ2

Γ1
⊂ Ψ−1({0}). This means that for all minimal path Cq

Γ1
we have

∀x ∈ J, Ψ
(
Cq

Γ1
(x)

)
= 0. From the derivative with respect to x of this relation we obtain

∀x ∈ J, ∇Ψ
(
Cq

Γ1
(x)

)
.
dCq

Γ1

dx
(x) = 0.

Using relation (7) we deduce the following proposition:

Proposition 4.11 (Necessary condition). For any real differential function Ψ defined
on Ω such that SΓ2

Γ1
⊂ Ψ−1({0}), we have for every point p of SΓ2

Γ1
:

∇Ψ(p).∇UΓ1 (p) = 0. (9)

The perpendicularity of the two gradient vector fields is only necessary on the points
of the minimal path network. Hardening this condition and demanding that Ψ satisfies
relation (9) everywhere in Ω, should lead to a sufficient relation for the minimal paths
to be contained in Ψ−1({0}).
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Proposition 4.12 (Sufficient condition). If Ψ is a C1 function satisfying :
⎧
⎨

⎩

(C1) ∀p ∈ Ω, ∇Ψ(p).∇UΓ1 (p) = 0

(C2) ∀q ∈ Γ2, Ψ(q) = 0
then SΓ2

Γ1
⊂ Ψ−1({0}).

Proof: for every point q ∈ Γ2, the values taken by function Ψ along the minimal path
Cq

Γ1
are given by function fq = Ψ ◦ Cq

Γ1
. The derivative of fq, for all x ∈ J , gives:

dfq

dx
(x) = ∇Ψ

(
Cq

Γ1
(x)

)
.
dCq

Γ1

dx
(x)

=︸︷︷︸
from (7)

−∇Ψ
(
Cq

Γ1
(x)

)
.∇UΓ1

(
Cq

Γ1
(x)

)
=︸︷︷︸

from (C1)

0.

Thus, function fq is constant on J . Furthermore, recall that Cq
Γ1

(0) = q and q ∈ Γ2.
Condition (C2) establishes then that fq(0) = 0 and finally that fq is zero on J , which
means that Ψ is zero along any minimal path.
In the previous reasoning, the fact that point q belongs to Γ2 is not relevant for estab-
lishing that fq is a constant function. As a matter of fact, for every point p ∈ Ψ−1({0})
(not necessary on Γ2), along the minimal path between this point and curve Γ1, function
Ψ also has zero values (since fp = 0). This means that the set Ψ−1({0}) contains a set
of minimal paths which is much larger than SΓ2

Γ1
. More interestingly, we have:

Proposition 4.13 (Ψ−1({0}) structure). If Ψ satisfies the same conditions as in prop-
erty 4.12, then for all p ∈ Ψ−1({0}), the minimal path Cp

Γ1
joining p to Γ1 satisfies

Cp
Γ1

⊂ Ψ−1({0}).

This establishes that the zero level set of the function Ψ is in fact a set of minimal paths
joining Γ1. Being minimal with respect to the geodesic energy E (see section 2.2), these
paths tend to be traced on the object to extract (as Γ1 and Γ2). This explains the better
results, compared to [3], obtained with our method, more information is injected into the
model. A good example is given in figure 3, which demonstrates, on a synthetic image,
how this approach gives good results where clearly SΓ2

Γ1
is insufficient for segmentation.

In the next sections we outline two different manners to derive advantages from these
propositions. The first one, is a direct implementation of the transport problem, the
second is a combination with other active object approaches such as the active surface
model.

4.2 Segmenting with the Transport Equation

We further denote by Π1, Π2 the intersection of the planes containing Γ1 and Γ2 with
the image domain. The functions d1, d2 are the signed distance functions to these
curves, positive in their interior and defined on Π1 and Π2 respectively. Notice that
at each point q ∈ Γ2, d2(q) = 0.
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ΠΠ
Γ

Γ₁

ν²η

Fig. 2. Boundary conditions for the transport
problem

Consider now the closed set

V2
η = {p ∈ Π2 such that |d2(p)| � η} ,

where η is a real positive value (see fig-
ure 2). Inspired by proposition 4.12, we
consider the open set O = int(Ω) − V2

η ,
where int(Ω) is the interior of the image
domain, and search for Ψ as the solution
to the Cauchy problem defined on Ω:

⎧
⎪⎨

⎪⎩

∇Ψ(p).∇UΓ1(p) = 0 if p ∈ O,
Ψ(p) = d2(p) if p ∈ V2

η ,
Ψ(p) = min

p∈Π2

(
d2(p)

)
if p ∈ δΩ.

(10)
δΩ is the boundary of the image domain
Ω. Problem (10) is known as a stationary

transport problem: its solution Ψ , being constant along minimal path, ”transports” the
values taken along the boundary V2

η ∪ δΩ.
The transport problem (10) has been studied from a theoretical point of view (see

for example [1] and references within), and results of existence and uniqueness have
been given by Bouchut et. al. in [4] and L. Ambrosio in [1]. It is beyond the scope of
this paper to present the theoretical details. As a matter of fact, numerical approaches
(see section 4.4) that take in consideration the presence of possible discontinuities of
the function Ψ were proposed before a theoretical framework was established. Section
4.4 describes a fast algorithm for solving this problem.

4.3 A New Force for Active Models

Another approach for solving the stationary transport problem is to look for the steady
state of the time dependent equation: ∂Ψ

∂t = ∇Ψ.∇UΓ1 . In the level set formulation
of the active surface model (see section 3.1 and [7]), the time dependent equation to
solve, in the Level Set formulation [21], is: ∂Φ

∂t
= ∇Φ.∇P̃ + P̃ ‖∇Φ‖ div

(
∇Φ

‖∇Φ‖

)
. The

first term of the right hand side is a transport term that drives the level sets of Φ to the
minima of P̃. The second induces a regularization of Φ, which is dominant in areas
where P̃ is strong. It is thus natural to introduce the same regularization in our problem
and solve

∂Ψ

∂t
= ∇Ψ.∇UΓ1 + UΓ1 ‖∇Ψ‖ div

(
∇Ψ

‖∇Ψ‖

)

(because Ψ would minimize a geodesic energy where UΓ1 plays the role of the poten-
tial). A small inconvenience arises near Γ2 since UΓ1 can be strong in that area, thereby
enforcing too much smoothing. The final surface may not strictly contain the constrain-
ing curves.

A different option is to consider our transport term as a new external force that drives
the model toward the minimal path network, thus introducing the information given by
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the user through the constraining curves as well as the global information contained in
the function U . The dynamic equation to solve is then of the form:

∂Ψ

∂t
= ∇Ψ.∇P̃ + P̃ ‖∇Ψ‖ div

(
∇Ψ

‖∇Ψ‖

)

+ ∇Ψ.
∇UΓ1

‖∇UΓ1‖︸ ︷︷ ︸
normalized force

.

We have here considered the active surface model but our ‘minimal path’ force can be
added to other active surface models as well. Of course, unlike the direct segmenta-
tion with the transport equation, while this new force contributes to avoiding unwanted
local minima of the energy, it does not ensure the reaching of a global minimum. In
what follows we will concentrate on the numerical solution to the transport problem
and will leave further development of the method presented in this section to future
papers.

4.4 Implementation of the Transport Problem

We now describe an efficient algorithm for the numerical implementation of the trans-
port problem (10). Unlike [3], minimal paths are not to be computed directly in this
implicit approach. We only numerically calculate solutions to the Eikonal and to the
stationary transport equations.

To numerically solve the Eikonal equation (8) classic finite difference schemes tend
to be unstable. Generally it is preferable to use consistent algorithms using upwind
differences (derivative approximations are chosen looking in the direction from which
the information is flowing) as fast marching [23, 20] or fast sweeping [14]. Numerical
complexity of O(N) (N being the number of grid points) can then be achieved and only
one grid pass is needed to obtain a first order approximation of the solution UΓ1 .

The stationary transport equation, as with most first order partial differential equa-
tions whose characteristics intersect, is difficult to solve numerically. In fact, in the gen-
eral case (P̃ is supposed to be a bounded and continuous function), there is no classical
solution defined in all Ω, and the weak solution Ψ can present discontinuities. Many im-
plementations of the transport equation in its non-static expression have been proposed
in the modeling of geophysical phenomena. In 1964, Lax and Wendorff proposed in
[16] a scheme using centered finite differences for the approximation of derivatives.
Then, in 1968, Crowley suggested in [11] a scheme that achieved second order preci-
sion in time and space, and which inspired other numerous publications. In particular,
a generalization to multiple dimensions was proposed by Smolarkiewicz in [22]. These
are only some early publications from a long list of papers treating this topic. Here we
will concentrate on a first order, fast algorithm which is less constrained since only the
zero level set of the solution matters in our approach.

In order to simplify notation, the symbol V shall be used to refer to the gradi-
ent ∇UΓ1 . One of the first numerical approaches for solving the transport equation
proposes a first order approximation of the gradient ∇Ψ that follows the direction
in which information propagates. This discretization is the upwind approach and
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consists in choosing the approximation of ∂Ψ
∂α following the sign of the components Vα

(where α = x, y ou z) of V . Recently, A. Yezzi and J. L. Prince used this scheme in [25]
for the numerical solution of equation ∇Ψ.T = 1 (where T was a known vector field).
Lastly, although this scheme is of relatively low precision and dissipative [17], it gives
satisfactory results in our experiments with an acceptable convergence speed.

If Ψ i,j,k is the value of the numerical approximation of Ψ at point [i; j; k] of the
discrete square grid, we shall denote the left and right approximations of the partial
derivatives by:

D−xΨ = Ψ i,j,k−Ψ i−1,j,k

h , D+xΨ = Ψ i+1,j,k−Ψ i,j,k

h

(similarly in the y and z directions) where h is the discretization step, identical in
all three spatial directions. Our scheme for solving the stationary transport problem
V.∇Ψ = 0 is then

V i,j,k
x .

(
D−xΨ i,j,k or D+xΨ i,j,k

)
+ V i,j,k

y .
(
D−yΨ i,j,k or D+yΨ i,j,k

)
+

V i,j,k
z .

(
D−zΨ i,j,k or D+zΨ i,j,k

)
= 0.

In our problem, the direction in which information propagates is given by the vector

−V . Therefore, denoting by H the heaviside function defined by H(x)=
{

1, if x � 0
0, else.

,

ΓΓ

Γ₂
Γ₂

Γ₁

(a) (b)

SΓ
Γ

Γ Γ

(c) (d)

Fig. 3. (a) represents a half-sphere blended with a plane (transparent visualization) and Γ1 and

Γ2 (black segments). (b) shows some minimal paths of SΓ2
Γ1

taking a short cut around the sphere.
(c) shows the values taken by Ψ on three perpendicular planes. (d) shows the superposition of
Ψ−1(0) and the set SΓ2

Γ1
(see please the electronic color version).



A New Implicit Method for Surface Segmentation by Minimal Paths 531

the upwind approximation is:

V i,j,k
x .

(
D−xΨ i,j,kH(−V i,j,k

x ) + D+xΨ i,j,kH(V i,j,k
x )

)
+

V i,j,k
y .

(
D−yΨ i,j,kH(−V i,j,k

y ) + D+yΨ i,j,kH(V i,j,k
y )

)
+

V i,j,k
z .

(
D−zΨ i,j,kH(−V i,j,k

z ) + D+zΨ i,j,kH(V i,j,k
z )

)
= 0.

Then, if I = (i + 1) if Vx > 0, i − 1 otherwise, and similarly for J and K , we have
∣
∣V i,j,k

x

∣
∣
[
Ψ I,j,k − Ψ i,j,k

]
+

∣
∣V i,j,k

y

∣
∣
[
Ψ i,J,k − Ψ i,j,k

]

+
∣
∣V i,j,k

z

∣
∣[Ψ i,j,K − Ψ i,j,k

]
= 0,

which, by grouping terms with Ψ i,j,k, finally leads to the update expression of our
algorithm:

Ψ i,j,k =
|V i,j,k

x |Ψ I,j,k + |V i,j,k
y |Ψ i,J,k + |V i,j,k

z |Ψ i,j,K

|V i,j,k
x | + |V i,j,k

y | + |V i,j,k
z |

. (11)

This equality can be exploited, as presented in [25], in a fast marching type scheme
that achieves a first order approximation of the solution to our problem in only one grid

Γ

Γ

(a) (b)

(c) (d)

Fig. 4. (a) shows the intersection of a plain with a binary image where three ‘S’ shaped tubes
are one inside the other, Γ1 and Γ2 are shown in red. (b) shows the values taken by Ψ on three
perpendicular planes (see please the electronic color version). (c) shows the superposition of
Ψ−1(0) and the original image and (d) the intersection of this surface with a plane of the image.
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pass and with a N log(N) complexity. In the end, our algorithm consists in solving the
Eikonal equation first, then the transport equation by means of the same implementa-
tion. We thus can achieve very rapid computing times. In the next section we give some
results.

5 Applications

We apply our method to some synthetic and real 3D images. In all our examples we
used a potential of the form: P̃ = α.h(|∇Iσ|) + (1 − α).hgap(∆Iσ), where h and hgap

are two functions bounded between 0 and 1 and where Iσ is the convolution of the given
image with a Gaussian kernel of variance σ. Typically, h(x) = 1

1+x2/λ2 , where λ is a
user defined contrast factor that can be computed as an average gradient value, and hgap

is chosen to be a zero crossing detector.
Figure 3 represents a sphere blended with a plane. This surface is to be extracted

between two curves which are parallel lines (see figure 3.a). This configuration does
not exactly satisfy the hypothesis taken in section 3 (we are not dealing with closed
curves) but the extension is straightforward (the boundary conditions have to be slightly
modified). The set of minimal paths SΓ2

Γ1
is unable to provide enough information for
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(a) (b) (c)

Γ

Γ

Ψ-¹({0})

Γ

Γ

Ψ-¹({0})

SΓ

Γ

(d) (e)

Fig. 5. Left ventricle segmentation : (a),(b) and (c) display some level sets of our solution Ψ
on three orthogonal planes. (d) shows the intersection of the zero level set of Ψ with a slice of
the image and (e) shows a volume representation of Ψ−1({0}) (see please the electronic color
version).
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the extraction of the surface, since no minimal path ‘climbs’ on the sphere surface.
Nonetheless, the zero level set of the corresponding Ψ function reconstructs perfectly
the surface. Our implicit method recovers more information than the minimal paths and
we obtain the complete surface.

Figure 4 illustrates with a synthetic binary volume the behavior of our algorithm
when various local minima of energy ES (4) are present. In this volume three ‘S’ shaped
tubes are displayed one inside the other. The constraining curves are traced on the sec-
ond tube, without the information they bring, segmenting this tube is a hard task.

In figure 5 we show the extraction of the surface of the left ventricle from the 3D
ultrasound image shown in figure 1. For this ultrasound image of size 256 × 256 ×

Γ

Γ

(a) (b)

Ψ-¹({0})

(c)

Fig. 6. (a) shows a plane of a 3D ultrasound volume obtained from a patient whose echogenicity is
low. This image is difficult to segment. (b) shows some level sets of our solution Ψ and a volume
representation of the zero level set. (c) displays the segmentation obtained with our method(see
please the electronic color version).
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256 we used a personal computer with a 1.4Ghz processor and 512 Mb of RAM. The
segmentation is obtained in less than 15 seconds.

In our last example, shown in figure 6, we display the segmentation of a left ven-
tricle. In this case the information given by the two constraining curves is crucially
important, since the echogenicity of the patient generates a very low visibility.

6 Conclusion

In this paper we have presented a method that generalizes globally minimal paths for
curve segmentation in 2D to surface segmentation in 3D. Our model is initialized by
two user-supplied curves which we maximally exploit partly by the fact that the sur-
face we generate is constrained to contain them. We have developed a novel implicit
approach that, through a linear partial differential equation, exploits the solution to the
Eikonal equation and generates a function whose zero level set contains all the globally
minimal paths between the constraining curves. Hence, our approach is not prone to
local minima traps as are other active surface approaches. It is especially well suited
for medical image segmentation, in particular for ultrasound images segmentation. In
cases where the image quality is very poor, our approach handles the introduction of
additional information coming from the practitioner in a very natural manner: a few 2D
segmentations can be enough to generate a coherent, complete surface.
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