
Large deviations (Fall 2024)

Course instructor: B. Dagallier, dagallier@ceremade.dauphine.fr

Draft date: 27/11/24

These notes closely follow notes from previous versions of the course taught by F. Huve-
neers and S. Olla.

For accessible large deviations courses that go well beyond the scope of these notes, we
refer to Varadhan's Saint Flour lecture notes. For further content one may look at the lecture
notes by Jan Swart, available on his webpage, as well as the book �Large deviations" by A.
Dembo and O. Zeitouni provides an extremely thorough course.

1 Large deviations for sums of independent, identically

distributed random variables

1.1 Introduction

Let (Xn)n≥1 be a sequence of i.i.d. random variables with law µ. Let (Sn)n≥1 denote the
sequence of their sum:

Sn :=
n∑

k=1

Xk, n ≥ 1. (1.1)

If E[|X1|] < ∞, then the law of large number says:

lim
n→∞

Sn

n
= m := E[X1] µ− a.s. (1.2)

At this level of generality we cannot say anything about how this limit is approached, meaning
about how Sn/n −m looks like when n is large. However, if we assume better tail bounds
on X1 in the form:

E[X2
1 ] < ∞, (1.3)

then Chebychev inequality gives:

P
(∣∣∣Sn

n
−m

∣∣∣ ≥ ε
)
≤ Var(Sn/n)

ε2
=

Var(X1)

ε2n
. (1.4)

Without further assumptions on X1 the 1/n decay rate cannot be improved to 1/n1+ε for
any ε > 0 (exercise: �nd a counterexample). However, if we assume E[X2k

1 ] < ∞ for k > 1
then the same proof gives:

P
(∣∣∣Sn

n
−m

∣∣∣ ≥ ε
)
≤ E[|X1 −m|2k]

εknk−1
. (1.5)
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Assume now that X1 has moment generating function well-de�ned on the whole line:

M(λ) := E[eλX1 ] < ∞, λ ∈ R. (1.6)

Then:

P
(∣∣∣Sn

n
−m

∣∣∣ ≥ ε
)
≤ P

(Sn

n
−m ≥ ε

)
+ P

(Sn

n
−m ≤ −ε

)
, (1.7)

and one can separately estimate each probability using the exponential Chebychev inequality:
for each λ > 0,

P
(Sn

n
−m ≥ ε

)
≤ e−nλ(ε+m)E

[
eλSn

]
= exp

[
n
(
− λ(ε+m) + logM(λ)

)]
, (1.8)

where we used the independence and identical distributions to get E[eλSn ] = M(λ)n. The
left-hand side does not depend on λ, so we can optimise on λ to get:

P
(Sn

n
−m ≥ ε

)
≤ exp

[
− n sup

λ>0

{
λ(m+ ε)− logM(λ)

}]
(1.9)

Since M(0) = 1, the supremum is always non-negative. We will in fact prove in the next
section that it is strictly positive, and that:

sup
λ>0

{
λ(m+ ε)− logM(λ)

}
= sup

λ∈R

{
λ(m+ ε)− logM(λ)

}
=: I(ε). (1.10)

Similarly, taking λ < 0 and optimising:

P
(∣∣∣Sn

n
−m

∣∣∣ ≥ ε
)
≤ 2 exp

[
− n sup

λ<0

{
λ(−m+ ε)− logM(λ)

}]
= 2 exp

[
− nI(ε)

]
. (1.11)

The function I is the Legendre transform of logM . It enjoys many useful analytical properties
(convexity, lower semi-continuity...) which will be studied in Section 1.3.

Remark 1.1. � We will see with Cramér's theorem that the decay rate e−n is optimal
for i.i.d. variables, and a lower bound in terms of the same function I can be proven.
Studying sequences of measures (here the laws of Sn, n ∈ N) satisfying upper and lower
bounds with a matching function I is the topic of this course. Such measures will be
said to satisfy a large deviation principle with rate function I.

� Although the event {|Sn/n − m| > ε} occurs with very small probability, the function
I encoding such rare events also gives us properties about the typical behaviour of Sn

through {I = 0}. In more complicated examples we will see that functions playing a
role similar to I can give even more information on (Sn), such as how variables should
arrange themselves in order to create a given rare event.

We claim that I(ε) > 0 unless ε = 0, so the right-hand side in (1.11) is exponentially
small in n unless ε = 0. The prefactor 2 is therefore irrelevant. More generally we will be
interested in probabilities up to logarithmic equivalence in the following sense.
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De�nition 1.2. Two sequences (an), (bn) of positive numbers are logarithmically equivalent,
denoted an ≍ bn, if:

lim
n→∞

1

n
log

(an
bn

)
= 0. (1.12)

We will also say that an ≍ 0 if:

lim
n→∞

1

n
log an = −∞. (1.13)

Thus P(|Sn/n −m| > ε) is logarithmically equivalent to e−nI(ε), and the same holds for
n10P(|Sn/n−m| > ε) or e

√
nP(|Sn/n−m| > ε).

1.2 Two explicit examples

Example 1.3. Let ρ ∈ [0, 1] and let (Xk)k be i.i.d random variables with values in {−1, 1},
such that P(X1 = 1) = P(X1 = −1) = 1/2. Then, for each ε ≥ 0:

P
(
Sn > nε

)
≍ e−nI(ε), (1.14)

where:

I(ε) :=

{
1−ε
2

log
(
1−ε
2

)
+ 1+ε

2
log

(
1+ε
2

)
+ log(2) if ε ∈ [0, 1],

+∞ otherwise .
. (1.15)

Proof. Since |X1| = 1 is a fortiori bounded by 1, Sn ≤ n. This implies the claim for ε ≥ 1:
P(Sn > n) = 0 ≍ 0 = e−∞.

Take now ε ∈ [0, 1]. The distribution of Sn is explicit. Indeed, it can take values m ∈
{−n,−n+2, ..., n−2, n} provided exactly (m+n)/2 of the Xi are equal to +1 and (m−n)/2
to −1. Thus:

P(Sn = m) =

(
n

(n+m)/2

)
2−n. (1.16)

Let ε ∈ [0, 1]. Then P(Sn > nε) = P(Sn ≥ mε), with mε the largest integer in {−n,−n +
2, ..., n− 2, n} such that mε ≤ nε; in particular mε ≥ 0. It will in fact be enough to analyse
P(Sn = mε), since on the one hand:

P(Sn ≥ mε) ≥ P(Sn = mε), (1.17)

and on the other handm ≥ 0 7→ P(Sn = m) is decreasing from the explicit formula, therefore:

P(Sn ≥ mε) =
∑

m≥mε

P(Sn = m) ≤ nP(Sn ≥ mε). (1.18)

Thus P(Sn = mε) ≍ P(Sn ≥ mε). Let us compute the former probability. Recall Stirling's
formula:

log p! = p log p− p+ o(p). (1.19)
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The fact that |mε − nε| < 2 and Stirling's formula give:

1

n
logP(Sn = mε) = − log 2 +

1

n
log

(
n

(n+mε)/2

)
= − log 2− n+mε

2n
log

(n+mε

2n

)
− n−mε

2n
log

(n−mε

2n

)
+ on(1)

= −I(ε) + on(1). (1.20)

Although large deviations for a sequence (Xk)k involve rare events, the typical value of
certain functions of the Xk may be determined by a large deviation event.

Example 1.4 (Taken from Varadhan's Saint Flour lecture notes). Let α > 0 and (Xk)k be
an i.i.d. sequence of variables with values in [1, 2] and law µ. Let Pn =

∏n
k=1Xk. Then:

lim
n→∞

1

n
logPn =

∫
log(x)µ(dx) a.s., (1.21)

while:
1

n
logE[Pn] = log

(∫
xµ(dx)

)
>

∫
log(x)µ(dx), (1.22)

with the strict inequality given by Jensen inequality. Thus the typical value of Pn is deter-
mined by rare events for the Xk. In fact,

E[Pn] = E
[
exp

[ n∑
k=1

logXk

]]
, (1.23)

with the argument of order en and probabilities that
∑n

k=1 logXk deviate from their mean of
order e−nI . The mean value is obtained when the two balance each other out:

E[Pn] ≍ exp
[
n sup

x∈R
{x− I(x)}

]
= exp

[
n log

(∫
xµ(dx)

)]
, (1.24)

with I the Legendre transform of ϕ = logMlogX1. The last equality comes from the fact that
the supremum is reached at x = ϕ′(1) (see next section), and I(ϕ′(1)) = ϕ′(1)− ϕ(1), so that
ϕ′(1)− I(ϕ′(1)) = ϕ(1) = log

∫
xµ(dx).

1.3 Properties of Legendre transform

Cramér's theorem, stated in the next section, generalises the argument of the introduction
to prove large deviation for i.i.d real-valued random variables (Xi)i≥1 with a function I given
by the Legendre transform of the log-moment generating function of X1. We �rst study
properties of this Legendre transform.

In the following a random variable X1 with log-moment generating function ϕ(λ) :=
logE[eλX1 ] is �xed, and we set:

Dϕ :=
{
λ ∈ R : ϕ(λ) < ∞

}
. (1.25)

Throughout we assume that there is λ0 > 0 such that [−λ0, λ0] ⊂ Dϕ. The interior of Dϕ

will be denoted by Do
ϕ. In particular 0 ∈ Do

ϕ.
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Proposition 1.5. 1. The function ϕ is convex and Dϕ is an interval.

2. ϕ is C∞ on Do
ϕ, with e.g. for each λ ∈ Do

ϕ:

ϕ′(λ) =
E[X1e

λX1 ]

M(λ)
, ϕ′′(λ) =

E[X2
1e

λX1 ]

M(λ)
− E[X1e

λX1 ]2

M(λ)2
. (1.26)

3. If X1 is not deterministic then ϕ is strictly convex on Do
ϕ.

Proof. Let α ∈ [0, 1] and λ1, λ2 ∈ R. Hölder inequality with exponents 1/α, 1/(1− α) gives:

M(αλ1 + (1− α)λ2) = E
[
eαλ1X1+(1−α)λ2X2

]
≤ E

[
eλ1X1

]αE[eλ2X2
]1−α

= M(λ1)
αM(λ2)

1−α. (1.27)

Thus ϕ = logM is convex and Dϕ is an interval.

For the regularity, let us prove instead that M is C∞ on Do
ϕ. This is enough since

M(λ) ≥ eλE[X1] > 0 by Jensen inequality. E.g. for the �rst derivative, one has:

M ′(λ) = lim
h→0

1

h
E
[
e(λ+h)X1 − eλX1

]
. (1.28)

The di�erence in the expectation reads:

1

h

∣∣∣e(λ+h)X1 − eλX1

∣∣∣ = ∣∣∣X1

∫ 1

0

e(λ+th)X1 dt
∣∣∣ ≤ |X1|eλX1eδ|X1|, |h| ≤ δ. (1.29)

The right-hand side is integrable if δ is small enough as λ ∈ Do
ϕ. The dominated convergence

theorem then implies that M is di�erentiable, with derivative M ′(λ) = E[X1e
λX1 ]. A similar

argument for higher derivatives yields the claim, and:

dk

dλk
M(λ) = E[Xk

1 e
λX1 ], k ≥ 1. (1.30)

For the last point, let λ ∈ Do
ϕ and notice that ϕ′′(λ) = Varµλ

(x) where, if µ denotes the law

of X1, then µλ is the probability measure µλ(dx) = eλx−ϕ(λ)µ(dx). X1 is deterministic if and
only if µ is a Dirac measure if and only if µλ(dx) ≪ µ is a Dirac measure, which is a necessary
and su�cient condition for Varµλ

(x) to vanish.

De�ne the Legendre transform I of ϕ (also called Fenchel-Legendre transform):

I(x) := sup
λ∈R

{
λx− ϕ(λ)

}
∈ R ∪ {+∞}, (1.31)

and let DI denote its domain:

DI :=
{
x ∈ R : I(x) < ∞}. (1.32)

Proposition 1.6. 1. I is a convex, lower semi-continuous function on R with values in
R+ ∪ {+∞}.

5



2. Do
I is contained in Im(ϕ′), DI is an interval and I is C∞ and strictly convex on Do

I .

3. I has compact sub-level sets and satis�es lim|x|→∞ I(x) = ∞.

4. I(x) = 0 if and only if x = E[X1], and I is increasing on [E[X1],+∞), decreasing on
(−∞,E[X1]].

5. If E[X1] ∈ Do
I , then I ′(E[X1]) = 0, I ′′(E[X1]) = 1/Var(X1).

Remark 1.7. � Lower semi-continuity and compact level sets will be important properties
of more general large deviation statements. Indeed, if one has an upper bound of the
form P(Sn/n ∈ [a, b]) ≤ e−n inf[a,b] J for a function J that either does not have compact
sub-level sets or is not lower semi-continuous, then it could be that infA J = 0 on some
set A which does not contain {J = 0}.

� Item 5) allows for a heuristic connection between large deviations and central limit
theorem. Indeed, assume:

P
(Sn

n
− E[X1] ≈ x

)
= enI(E[X1]+x), x ∈ R. (1.33)

The central limit theorem scaling corresponds to x = a/
√
n, and gives convergence of

the probability in the left hand side to the centred normal distribution with variance
Var(X1). On the other hand:

nI(x) = nI
(
E[X1]

)
+
√
naI ′

(
E[X1]

)
+

a2

2
I ′′
(
E[X1]

)
+ on(1)

=
a2

2Var(X1)
, (1.34)

Thus taking the CLT scaling, or taking the large deviation scaling and then expanding
the result around 0 gives the same result.

Proof. 1) I is convex and lower semi-continuous as a supremum of linear, continuous func-
tions. Taking z = 0 gives I ≥ 0. In addition, as ϕ = +∞ outside of Dϕ,

I(x) = sup
λ∈Dϕ

{
λx− ϕ(λ)

}
. (1.35)

2) Note that if x1, x2 ∈ DI then convexity of I implies [x1, x2] ∈ DI , thus DI is an
interval. If X1 is deterministic then DI is reduced to the point X1 and ϕ′ = X1. If X1 is not
deterministic, let us prove that Do

I ⊂ Im(ϕ′).
Let x ∈ Do

ϕ. Convexity of ϕ on Dϕ and strict convexity on Do
ϕ implies that the supremum

de�ning I may be reached at the boundaries of Dϕ (which may be ±∞) and at most one
point in Do

ϕ. As x ∈ Do
I , we claim that only the latter is possible. Indeed, let δ > 0

be such that x ± δ ∈ Do
I . If the supremum de�ning I were reached at +∞, say, then

lim supλ→∞[λx− ϕ(λ)] < ∞ is incompatible with I(x+ δ) > 0 since:

I(x+ δ) ≥ lim sup
λ→∞

{
λδ + (λx− ϕ(λ))

}
= +∞. (1.36)
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There is thus f(x) ∈ Do
ϕ such that I(x) = xf(x) − ϕ(f(x)). As f(x) is a critical point for

λ 7→ λx− ϕ(λ), it satis�es:
x = ϕ′(f(x)). (1.37)

As X1 is not deterministic, then ϕ′′ > 0 by Proposition 1.5, item 2). This means that f(x)
is uniquely de�ned, and smooth by the implicit function theorem. Thus I is smooth on Do

I ,
and:

I ′(x) = f(x) + xf ′(x)− f ′(x)ϕ′(f(x)) = f(x),

I ′′(x) = f ′(x) =
1

ϕ′′(f(x))
> 0. (1.38)

This implies strict convexity and 5). The identity x = ϕ′(f(x)) also gives x ∈ Im(ϕ′), thus
Do

I ⊂ Do
ϕ.

3) If x, λ > 0, then I(x) > λx−ϕ(λ). Thus I(x)/x ≥ λ−ϕ(λ)/x, and the right-hand side
converges to λ when x → ∞. If x < 0 the same reasoning applies for λ < 0. Thus {I ≤ a}
is bounded for each a ≥ 0, and since it is closed by lower semi-continuity it is in fact compact.

4) We have already seen I(x) = 0 if x = E[X1]. As I is convex on DI , it is constant on
[x, y] for any y with I(y) = 0. If such an y exists, then (x, y) ⊂ Do

I on which set I is strictly
convex, which is absurd. The convexity and the fact that E[X1] is the only minimum of I
implies that it is increasing on [E[X1],∞) and decreasing on (−∞,E[X1]].

Exercise 1.8. 1. Consider the Gaussian distribution with mean m ∈ R and variance σ2.
Show that I(x) = (x−m)2/2σ2

2. Let p(dx) = λe−λx1x>0 be the exponential distribution of parameter λ. Show that I(x) =
λx− 1− log(λx) if x > 0 and I(x) = +∞ if x ≤ 0.

3. Let I(x) = supλ∈R{λx− f(λ)} be the Legendre transform of a convex function f : R →
R. Show that the Legendre transform of I is f :

f(λ) = sup
x∈R

{
xλ− I(x)

}
. (1.39)

This is a special case of the more general Fenchel-Moreau theorem. What happens if f
is not convex?
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1.4 Cramér's theorem

We now state a general large deviation result for sequences (Xk)k of i.i.d. real random
variables known as Cramér's theorem.

Theorem 1.9. Let (Xk)k be a sequence of i.i.d random variables with values in R. Assume
that the moment generating function M(λ) = E[eλX1 ] of X1 is �nite on R:

∀λ ∈ R, M(λ) < ∞. (1.40)

Then, for any a ≤ b ∈ R ∪ {−∞,∞}:

lim sup
n→∞

1

n
logP

(Sn

n
∈ [a, b]

)
≤ − inf

[a,b]
I, (1.41)

and:

lim inf
n→∞

1

n
logP

(Sn

n
∈ (a, b)

)
≥ − inf

(a,b)
I. (1.42)

where I is the Legendre transform of ϕ = logM :

I(x) := sup
λ∈R

{
λx− ϕ(λ)

}
, x ∈ R. (1.43)

Remark 1.10. The assumptions of Theorem 1.9 can be relaxed considerably: it is not even
needed that the X1 have �nite mean, much less that M be �nite on the real line. See Section
2.2 in the book by Dembo and Zeitouni for generalisations.

Proof. Consider the upper bound. If the mean E[X1] is in [a, b], then inf [a,b] I = 0 and the
law of large numbers gives the claim. We henceforth assume E[X1] /∈ [a, b], say a > m. Then
inf [a,b] I = I(a) as I is increasing on [a,+∞), and the exponential Chebychev inequality gives
as before:

P
(Sn

n
∈ [a, b]

)
≤ P

(Sn

n
≥ a

)
≤ exp

[
− nI(a)

]
= exp

[
− n inf

[a,b]
I
]
. (1.44)

The argument if b < m is similar.

Consider now the lower bound. The proof involves one of the key principles in large
deviation theory: to estimate the cost of a rare event, tilt the measure so that the rare event
becomes typical under the tilted measure, and estimate the cost of the tilt.

We �rst prove a weaker lower bound as follows:

lim inf
n→∞

1

n
logP

(Sn

n
∈ (a, b)

)
≥ − inf

(a,b)∩DI
o

I. (1.45)

The point of this reduction is that, for an element c ∈ Do
I , we know exactly how to tilt the

measure so that Sn/n converges to c as we now explain.
Fix c ∈ Do

I and δ > 0 such that [c−δ, c+δ] ∈ [a, b]. Let f(c) be the unique point such that
ϕ′(f(c)) = c, which exists by the proof of Proposition 1.6. If µ denotes the law of X1, recall
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that ϕ′(f(c)) = c is the average value of X1 under the tilted measure µf(c) = ef(c)X1−ϕ(f(c))µ.
Thus, for each ε ∈ (0, δ]

P
(Sn

n
∈ [a, b]

)
≥ P

(Sn

n
∈ [c− ε, c+ ε]

)
=

∫
Rn

1Sn/n∈[c−ε,c+ε]

n∏
i=1

µ(dxi)

=

∫
Rn

exp
[
− f(c)Sn + nϕ(f(c))

]
1Sn/n∈[c−ε,c+ε]

n∏
i=1

µf(c)(dxi)

≥ exp
[
− n[I(c)− ε]

] ∫
Rn

1Sn/n∈[c−ε,c+ε]

n∏
i=1

µf(c)(dxi). (1.46)

The probability in the right-hand side converges to 1 when n is large, thus:

lim inf
n→∞

1

n
logP

(Sn

n
∈ [a, b]

)
≥ −I(c) + ε. (1.47)

Since this is true for any ε ∈ (0, δ], any c ∈ Do
I ∩ [a, b] and the left-hand side is independent

of c, ε, we have proven the lower bound restricted to Do
I .

We now improve the lower bound to inf(a,b) I. If m ∈ (a, b) then the law of large numbers
gives the claim. Otherwise assume e.g. a > m. Note �rst:

inf
(a,b)

I = inf
(a,b)∩DI

I. (1.48)

Recall that DI is an interval. If DI is reduced to {m}, then a > m implies inf(a,b) I = +∞ =
infDo

I∩(a,b) I using inf ∅ = +∞. Otherwise, as Do
I is an open set by de�nition, Do

I ∩ (a, b) =
DI ∩ (a, b) which concludes the proof.

In more general situations than large deviations for sums of i.i.d. real random variables,
the upper bound for closed sets/lower bound for open sets in Theorem 1.9 is the best one can
hope for. In the sums of i.i.d. situation, however, the lower bound can actually be improved
as stated next.

Proposition 1.11. Let a < b ∈ R ∪ {±∞}. Then:

lim inf
n→∞

1

n
logP

(Sn

n
∈ [a, b]

)
≥ − inf

[a,b]
I. (1.49)

Thus P(Sn/n ∈ [a, b]) and e−n inf[a,b] I are logarithmically equivalent.

Proof. If m = E[X1] ∈ (a, b), there is nothing to prove. Assume otherwise that a ≥ m, the
argument for n ≤ m being identical. We would like to use the same tilt argument that in
the proof of Theorem 1.9. There are two points to check:

� The existence of a tilt f(a) so that the tilted measure has mean a.

� A lower bound on the probability Sn ∈ [a, a+ ε] for each small ε > 0 even for a /∈ Do
I .

9



Case 1: X1 < a a.s. In this case P(Sn/n ∈ [a, b]) = 0 and I(a) = supλ∈R{λa − ϕ(λ)} is
shown to diverge by taking λ → +∞.

Case 2: X1 ≤ a a.s. with P(X1 = a) = p > 0. Then:

P
(Sn

n
∈ [a, b]

)
= P

(
Xi = a, i ∈ {1, ..., n}

)
= pn. (1.50)

On the other hand,
lim
λ→∞

{
aλ− ϕ(λ)

}
= − log p. (1.51)

Thus the claim also holds in that case.

Case 3: P(X1 > a) > 0. In this case we can check items (i) and (ii) above and conclude on
the lower bound as in Theorem 1.9 as explained next. For item (i), we want to �nd λ such
that ϕ′(λ) = a. Let Ma(λ) := e−λaM(λ). Notice:

ϕ′(λ)− a =
M ′

a(λ)

Ma(λ)
, (1.52)

thus it is enough to prove that M ′
a vanishes at some λ. By assumption on X1, M1 is C

∞ on
the real line. We know M ′

a(0) = m− a < 0 and:

M ′′
a (λ) = E[(X1 − a)2eλ(X1−a)] ≥ E[(X1 − a)21X1≥a] > 0, λ ∈ R. (1.53)

Thus M ′′
a is uniformly convex and therefore M ′

a vanishes at a value f(a) > 0.

We now explain item (ii). The tilted measure µf(a) admits moments of order 2 since ϕ is
�nite on the real line. In particular the central limit theorem applies and:

lim inf
n→∞

µ⊗n
f(a)

( 1
n

n∑
i=1

(xi − a) ∈ [0, ε]
)
= lim inf

n→∞
µ⊗n
f(a)

( 1√
n

n∑
i=1

(xi − a) ∈ [0, ε
√
n]
)

≥ lim inf
n→∞

µ⊗n
f(a)

( 1√
n

n∑
i=1

(xi − a) ∈ [0, 1]
)
> 0. (1.54)

This concludes the proof.

2 The Curie-Weiss model

2.1 Introduction

In this section we discuss constructions from statistical mechanics, the Curie-Weiss and Ising
models, intended to describe magnetism in solids at a qualitative level. In statistical mechan-
ics one considers a large number n of components, represented by a variable σi in a space S
(1 ≤ i ≤ n) which can for instance be a position in Rd, a colour, a charge, a combination of
all that, etc.
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The goal is then to describe the large n behaviour of the collection (σi)1≤i≤n assuming
that any particular value of the σ′s occurs with a probability proportional to e−βH(σ)µ⊗n(dσ),
where µ is some base measure on S, H : Sn → R is referred to as the energy and β ∈ [0,∞]
represents the inverse of a temperature.

In the simplest case,

H(σ) =
∑
i

h(σi), (2.1)

which means that all components are independent and have the same distribution ∝ e−h(σ)dµ.
This corresponds to the i.i.d. situation treated in Section 1, and we now already know how
to answer questions about the large n behaviour of the law of

∑
i σi if they are real valued.

It is however much more interesting and realistic to consider interacting components, i.e.
H cannot be written as a sum of functions of one component only. There are a myriad
model and questions one can consider in this context, but we will focus on just one: phase
transitions in the Ising model, a simple model for magnetism.

In the Ising model components are called spins and take values in {−1, 1} = {↓, ↑}. The
space of all spins is {−1, 1}Λ, where Λ is a lattice (e.g. Zd or a �nite portion). The lattice
is an ideal representation of the crystalline structure of a solid, with point of the lattice
(�sites") representing atoms in the solid. Each spin is located at a site; can be thought of as
an arrow, here only pointing up or down; and represents an elementary chunk of magnetism.
If all spins/arrows point in the same direction, then the model is magnetic. If no direction
is preferred, then the model is not magnetic. Spins interact, i.e. the spins are not i.i.d. The
interaction induces a phase transition in the limt |Λ| → ∞ as β is varied: the model will or
will not be magnetic depending on β.

2.2 The Ising model

Let d ≥ 1 and L ∈ N. Write ΛL = Zd ∩ [−L,L]d and let β ∈≥ 0. The Ising model in
dimension d at inverse temperature β on {−1, 1}ΛL is the probability measure:

µβ,L(σ) =
1

Zβ,L

exp
[
β

∑
i,j∈ΛL
|i−j|=1

σiσj

]
, σ ∈ {−1, 1}ΛL . (2.2)

Above, Zβ,L is a normalisation factor called the partition function. This is of the form
described in the last section with µ = δ−1 + δ1 and βH the argument of the exponential. If
β = 0 all spins are independent: µ0,L is the product Bernoulli measure with parameter 1/2.
If β > 0 spins are not independent and alignment with neighbouring spins is favoured. Note
that µβ,L(σ) = µβ,L(−σ) for each σ, so that the average magnetisation |ΛL|−1

∑
i σi has mean

0:

Eµβ,L

[ 1

|ΛL|
∑
i∈ΛL

σi

]
= 0. (2.3)

One can however ask about how the mean magnetisation concentrates around 0. For instance,
is it true that, whatever ε > 0:

lim
L→∞

µL,β

(∣∣∣ 1

|ΛL|
∑
i∈ΛL

σi

∣∣∣ > ε
)
= 0? (2.4)
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It turns out that, when d ≥ 2, the answer depends on the value of β; this is the phase
transition alluded to above. More precisely, if d ≥ 2, there is βc = βc(d) ∈ (0,∞) such that:

∀ε > 0, lim
L→∞

µL,β

(∣∣∣ 1

|ΛL|
∑
i∈ΛL

σi

∣∣∣ > ε
)
= 0 if β < βc

∃ε > 0, lim inf
L→∞

µL,β

(∣∣∣ 1

|ΛL|
∑
i∈ΛL

σi

∣∣∣ > ε
)
> 0 if β > βc. (2.5)

Establishing this claim is beyond the scope of this lecture. We will however prove it for a
simpli�ed model known as the Curie-Weiss model.

2.3 The Curie-Weiss model

In the Curie-Weiss model, every spin has a weak interaction with every other spin (not just
nearest neighbours). The lattice therefore plays no role any more and the state space is
{−1, 1}n (n ≥ 1). The model is de�ned as:

µCW
β,n (σ) =

1

ZCW
β,n

exp
[
β

n∑
i=1

σi

( 1
n

n∑
j=1

σj

)]
, σ ∈ Σn := {−1, 1}n (2.6)

This model is called a mean-�eld approximation of the Ising model, as spins only interact
with their empirical mean mn(σ) =

1
n

∑
i σi, and we can write:

µCW
β,n (σ) =

1

ZCW
β,n

exp
[
nβmn(σ)

2
]
. (2.7)

In the Curie-Weiss model (2.5) can be established rigorously, by proving a large deviation
principle for the magnetisation. To state it, de�ne the energy density e, entropy density s
and free energy density fβ as the following functions of m ∈ [−1, 1]:

e(m) := −m2,

s(m) := −1 +m

2
log

(1 +m

2

)
− 1−m

2
log

(1−m

2

)
,

fβ := βe− s. (2.8)

Theorem 2.1. Let β ≥ 0. For any interval J ⊂ [−1, 1] not reduced to a point,

µCW
n,β (mn ∈ J) ≍ e−n infJ Iβ , Iβ := fβ − inf

[−1,1]
fβ (2.9)

Before we prove the theorem, let us explain why it proves (2.5).

Proposition 2.2. The rate function Iβ is convex and has a unique minimiser at m = 0 when
β ≤ 1/2.

For β > 1/2, there are two distinct minimisers at ±mβ, with mβ > 0 converging to 1
when β → 0. In particular Iβ is not convex, in stark contrast with the i.i.d case.
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Proof. The proof is an elementary computation. Let m ∈ (−1, 1) and notice:

f ′′
β (m) = −2β +

1

2(1 +m)
+

1

2(1−m)
=

1− 2β(1−m)2

(1−m)2
. (2.10)

In particular f ′′
β > 0 for β < 1/2, and for β = 1/2 if m ̸= 0. Conversely, if β > 1/2, fβ is not

strictly convex and vanishes at m solution of:

2βm− 1

2
log

(1 +m

1−m

)
= 0 ⇔ m = tanh(2βm). (2.11)

m = 0 is always a solution, unstable as f ′′
β (0) < 0. As m−tanh(2βm) vanishes at 0, is strictly

positive at 1 (tanh(1) ≤ 0.77) and its derivative changes sign exactly once on (0, 1), there is
exactly one solution mβ on (0, 1), so exactly two solutions on (−1, 1) by symmetry.

Proof of Theorem 2.1. Notice �rst that mn takes values in An := {−1,−1 + 2/n, ..., 1 −
2/n, 1}. Then:

µCW
β,n (mn ∈ J) =

1

ZCW
β,n

∑
m∈J∩An

|{σ : mn(σ) = m}|eβnm2

. (2.12)

Let N± denote the number of ± spins respectively. The averaged magnetisation is m =
(N+ −N−)/n and N+ +N− = n always. Thus:

µCW
β,n (mn ∈ J) =

1

ZCW
β,n

∑
m∈J∩An

(
n

n(m+1)
2

)
eβnm

2

=

[ ∑
m∈An

(
n

n(m+1)
2

)
eβnm

2

]−1 ∑
m∈J∩An

(
n

n(m+1)
2

)
eβnm

2

. (2.13)

Note that the sums contains at most n terms. Taking 1
n
log, we therefore get:

1

n
log µCW

β,n (mn ∈ J) = max
m∈An∩J

{ 1

n
log

(
n

n(m+1)
2

)
+ βm2

}
− max

m∈An

{ 1

n
log

(
n

n(m+1)
2

)
+ βm2

}
+O(log n/n). (2.14)

The binomial coe�cient was computed in Example 1.3:

1

n
log

(
n

n(m+1)
2

)
= s(m) + on(1). (2.15)

Since m2 = −e(m), we get:

1

n
log µCW

β,n (mn ∈ J) = max
m∈An∩J

(−fβ(m))− max
m∈An

(−fβ(m))

= − min
m∈An∩J

[
fβ(m)− min

m∈An

fβ(m)
]
. (2.16)

It remains to check that An can be replaced by [−1, 1] in each minima, which follows from
the uniform continuity of fβ.
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3 Sanov's theorem

3.1 Statement

So far we have looked, somewhat arbitrarily, at deviations of the sum Sn =
∑n

i=1Xi of i.i.d.
random variables. Cramér's theorem and its proof then show that the best way to see a
deviation {Sn ≈ nm′} for m′ ∈ Rd is to tilt the law of X1 in such a way that the resulting
law has mean m′.

In this section we will re�ne the above pictures in two directions:

� by considering deviations of much more general functions of the (Xi) than their sum,
for instance deviations of the typical number of Xi that take a prescribed value.

� By obtaining bounds on the probability of such deviations in terms of more general
tilts of the law of X1.

An object that captures the full distribution of (Xi)1≤i≤n is the empirical measure:

πn(dx) = π(Xi)
n (dx) :=

1

n

n∑
i=1

δXi
(dx). (3.1)

This is a random probability measure on Rd. The normalised sum Sn/n is related to the
average value of a certain test function under this measure:

Sn

n
= ⟨πn, id⟩ :=

∫
x dπn(x). (3.2)

We can also ask for much more detailed information on the law of the Xi. For instance,
assuming that the Xi take discrete values {x1, ..., xp}, we can ask for the typical frequency
at which Xi = a for a ∈ Rd:

1

n

n∑
i=1

1a(Xi) =
1

n

n∑
i=1

δXi
({a}) = πn({a}). (3.3)

Notice that we know what πn typically looks like in the large n limit. Indeed, the law of large
number for the (Xi) and the dominated convergence theorem give that, for any continuous
and bounded function f : Rd → R

lim
n→∞

⟨πn, f⟩ = ⟨α, f⟩ a.s., α := law(X1). (3.4)

In other words (πn)n converges weakly to α for almost every realisation of the sequence (Xn)n.
What about deviations? A theorem by Sanov, stated next, provides a counterpart to

Cramér's theorem at the level of the empirical measure. To state it we need some more
notations. For two probability measures µ, ν on Rd, write µ ≪ ν if µ is absolutely continuous
with respect to ν:

µ ≪ ν ⇔ there is f ≥ 0 and in L1(ν) such that µ = fν. (3.5)
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The relative entropy H(µ|ν) (also: Kullback-Leibler divergence) reads:

H(µ|ν) :=


∫

f log f dν if µ ≪ ν,
dµ

dν
= f,

+∞ otherwise.
(3.6)

Proposition 3.1 (Properties of relative entropy). The relative entropy on E = Rd admits
the following characterisation:

H(µ|π) := sup
G:E→R

G bounded measurable

{
Eµ[G]− logEπ[e

G]
}
. (3.7)

In addition H(·|π) ≥ 0, is convex, lower semi-continuous with respect to weak convergence
and has compact sub-level sets.

Proof. For simplicity we will restrict to the case where the Xi take values in a �nite set E.
We leave the proof of the general claim as an exercise, see Lemmas 5.9-5.11 in Jan Swart's
lecture notes on large deviations, available on his webpage.

Weak convergence of a measure µ = (µ(i))i∈E is then equivalent to convergence on Rp,
and the supremum (3.7) reads:

H̃(µ|π) := sup
h∈R|E|

{∑
i∈E

µ(i)h(i)− log
∑
i∈E

π(i)eh(i)
}
. (3.8)

This is a lower semi-continuous, convex function of µ = (µ(i))i∈E as a supremum of linear
functions, equal to 0 if h = 0. Moreover, if π(i) = 0 while µ(i) > 0 for some i then the
supremum blows up, thus H̃(µ|π) = +∞ unless µ ≪ π. Write for short Sν for the support
of a probability measure ν. When µ ≪ π, the supremum reads:

H̃(µ|π) = sup
h∈RSπ

{∑
i∈Sµ

µ(i)h(i)− log
∑
i∈E

π(i)eh(i)
}

= sup
g∈RSµ

sup
h∈RSπ\Sµ

{∑
i∈Sµ

µ(i)h(i)− log
(∑

i∈Sµ

π(i)eh(i) +
∑

i∈Sπ\Sµ

π(i)eg(i)
)}

. (3.9)

Fix g ∈ RSµ . As log is increasing, the supremum on h is reached when g(i) = −∞ for each
i ∈ Sπ \ Sµ. Thus:

H̃(µ|π) = sup
h∈RSµ

{∑
i∈Sµ

µ(i)h(i)− log
∑
i∈Sµ

π(i)eh(i)
}
. (3.10)

The fonction in the supremum is strictly concave. If it admits a critical point then it must
be unique and give the location of the global maximum. Critical points solve:

µ(i) =
eh(i)π(i)∑

j∈E π(j)eh(j)
, i ∈ Sµ. (3.11)

This is equivalent to:

h(i) = log
(µ(i)
π(i)

)
, i ∈ Sµ. (3.12)
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As a result H̃(µ|π) satis�es:

H̃(µ|π) =
∑

i∈supp(π)

µ(i) log
(µ(i)
π(i)

)
= H(µ|π). (3.13)

We henceforth restrict to the case where theXi take values in a �nite set E. In this setting
weak convergence of probability measures is equivalent to convergence in total variation
distance, i.e. convergence for the metric:

d(µ, ν) =
1

2

∑
a∈E

|µ(a)− ν(a)|. (3.14)

In addition, we can assume without loss of generality that αk = P(X1 = k) > 0 for each
k ∈ E. Thus every probability measure on E is absolutely continuous with respect to α, so
that the relative entropy reads:

H(µ|α) =
∑
k∈E

µk log
(µk

αk

)
, µ probability measure on E. (3.15)

Theorem 3.2 (due to Sanov if the state space is R). For a probability measure µ on E and
ε > 0, let B(µ, ε) denote the open ball of radius ε around µ for the distance d and B̄(µ, ε)
denote its closure. Then:

P
(
πn ∈ B̄(µ, ε)

)
≍ exp

[
− inf

ν∈B̄(µ,ε)
H(ν|α)

]
. (3.16)

Remark 3.3. � Contrary to the variable Sn/n which can only deviate from its typical
value by a real number, there are many ways in which πn can di�er from α. Corre-
spondingly, the rate function now takes as argument a measure rather than a scalar.

This is re�ected in the characterisation of H(·|α) as a generalised Legendre transform:

sup
λ∈R

→ sup
G:Rd→R

G bounded measurable

, λx →
∫

Gdµ, ϕ(λ) → logEα[e
G]. (3.17)

� The theorem is valid on general spaces, for instance any separable metric space, with
the following modi�cations. 1) One should take balls with respect to weak convergence
rather than than total variation distance. 2) The lower bound on the probability is given
in terms of infB(µ,ε) H(·|α), rather than infB̄(µ,ε) H(·|α). This di�erence between upper
and lower bound is a general fact of large deviations to which we will come back later.

Proof of Theorem 3.2. As we only prove the theorem for empirical measures of random vari-
ables taking values in a discrete space E, we can perform explicit computations. Write
E = {1, ..., p} with minE α > 0 without loss of generality, and note that probability measures
on E are elements of the simplex Sp:

Sp :=
{
(s1, ..., sp) ∈ [0, 1]p :

p∑
i=1

si = 1
}
. (3.18)
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The empirical measure πn is an element of a subset of the simplex:

πn ∈ Sn
p := Sp ∩

1

n
Np =

{
(a1, ..., ap) ∈ Np :

p∑
i=1

ai = n
}
. (3.19)

Then, for any a ∈ Sn
p , one can compute explicitly:

P
(
πn =

a

n

)
= P

(
|{i : Xi = 1}| = a1, ... , |{i : Xi = p}| = ap

)
=

(
n

a1

)
P(X1 = 1)a1

(
n− a1
a2

)
P(X1 = 2)a2 ...

(
n− a1 − ...− ap−1

ap

)
P(X1 = p)ap

=

p∏
k=1

αak
k (n−

∑k−1
ℓ=1 aℓ)!

(n−
∑k

ℓ=1 aℓ)!ak!
= n!

p∏
k=1

αak
k

ak!
, (3.20)

where we recall that α is the law of X1. One can easily check by recursion that qqe−q ≤ q! ≤
eqqqe−q. As a result,

1

n
logP

(
πn =

a

n

)
= log(n/e) +

1

n

p∑
k=1

ak log
(αke

ak

)
+O(log n/n)

= log(n) +
1

n

p∑
k=1

ak log
(αk

ak

)
+O(log n/n), (3.21)

where all error terms are uniform in a. Rewriting the right-hand side in terms of a/n makes
the relative entropy appear:

1

n
logP

(
πn =

a

n

)
= −

p∑
k=1

ak
n

log
(ak/n

αk

)
+O(log n/n)

= −H
(a
n

∣∣∣α)+O(log n/n). (3.22)

The fact that the number of elements in Sn
p is bounded by np gives us a �rst bound:

1

n
logP

(
πn ∈ B̄(µ, ε)

)
≤ max

a
n
∈B̄(µ,ε)

[
−H

(a
n

∣∣∣α)+O(log n/n)
]
. (3.23)

The lower bound is more direct:

1

n
logP

(
πn ∈ B̄(µ, ε)

)
≥ max

a
n
∈B̄(µ,ε)

1

n
logP

(
πn = a/n

)
= − min

a
n
∈B̄(µ,ε)

H
(a
n

∣∣∣α)+O(log n/n). (3.24)

We have thus shown that P(πn ∈ B̄(µ, ε)) ≍ exp[−nminν∈Sn
p ∩B̄(µ,ε) H(ν|α)]. It remains to

replace this minimum with an in�mum over all probability measures ν on E up to an on(1)
error, i.e. to prove:

lim
n→∞

min
Sn
p ∩B̄(µ,ε)

H(·|α) = inf
B̄(µ,ε)

H(·|α). (3.25)
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Suppose �rst that infB̄(µ,ε) H(·|α) = +∞. Then infB̄(µ,ε)∩Sn
p
H(·|α) = +∞ and the claim

holds in this case. Suppose now that infB̄(µ,ε)H(·|α) < ∞, and let δ > 0 and ν be such that:

inf
B̄(µ,ε)

H(·|α) ≥ H(ν|α)− δ. (3.26)

If we prove that one can �nd a sequence (an/n) with an ∈ Sn
p such that limn→∞ d(an/n, ν) = 0

and limn→∞H(an/n|α) = H(ν|α), then for large enough n we will have:

inf
B̄(µ,ε)

H(·|α) ≥ H(an/n|α)− δ/2 ≥ min
Sn
p ∩B̄(µ,ε)

H(·|α)− δ/2, (3.27)

which is the claim since δ > 0 is arbitrary. It is easy to �nd a sequence (an/n) approximating
ν. Indeed, set an(k) = ⌊nν(k)⌋/Zn for k ∈ E with Zn a normalisation:

Zn =
∑
k∈E

⌊nν(k)⌋. (3.28)

We assume n is large enough to have Zn > 0 so that an is a well de�ned element of Sn
p . By

construction it satis�es limn→∞ d(an/n, ν) = 0, and an ≪ α is always true since α has full
support. The relative entropy therefore reads:

H
(an
n

∣∣∣α) =
∑
k∈E

an(k)

n
log

(an(k)
n

1

αk

)
. (3.29)

The above expression converges to H(ν|α), which concludes the proof.

3.2 Around Sanov's theorem

We have proven Sanov's theorem by explicit computations. Let us see how to prove it using
the same kind of idea as in Cramér's theorem: to observe a given deviation of πn, one should
tilt the law of πn so that this deviation becomes typical and estimate the cost of tilting.

Proposition 3.4 (Sanov's theorem by tilting). Let µ be a probability measure on E. Then:

lim
ε→0

lim
n→∞

1

n
logP

(
πn ∈ B̄(µ, ε)

)
= −H(µ|α). (3.30)

Proof. Assume for the moment that mink∈E µk > 0 and let ε ∈ (0,minE µ/2). Then:

P
(
πn ∈ B̄(µ, ε)

)
=

∫
En

1πn∈B̄(µ,ε)α
⊗n(dx) =

∫
En

1πn∈B̄(µ,ε)

n∏
i=1

α(xi)

µ(xi)
µ⊗n(dx)

=

∫
En

1πn∈B̄(µ,ε)

p∏
k=1

(αk

µk

)nk(x)

µ⊗n(dx). (3.31)

where nk(x) = nπn(k) is the number of variables equal to k. If πn ∈ B̄(µ, ε), one must have:

∀k ∈ E, |πn(k)− µ(k)| ≤ ε, (3.32)
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so that:

P
(
πn ∈ B̄(µ, ε)

)
≥ exp

[
n

p∑
k=1

µk log
(αk

µk

)
− nε

p∑
k=1

∣∣∣ log (αk

µk

)∣∣∣]Pµ⊗n

(
πn ∈ B̄(µ, ε)

)
P
(
πn ∈ B̄(µ, ε)

)
≤ exp

[
n

p∑
k=1

µk log
(αk

µk

)
+ nε

p∑
k=1

∣∣∣ log (αk

µk

)∣∣∣]Pµ⊗n

(
πn ∈ B̄(µ, ε)

)
. (3.33)

Note that the �rst sum in the exponential is precisely −H(µ|α).
We know that the event πn ∈ B̄(µ, ε) is typical under µ⊗n:

lim
n→∞

1

n
logPµ⊗n

(
πn ∈ B̄(µ, ε)

)
= 0. (3.34)

Taking 1
n
log and the large n limit, we thus get, for some C > 0:

−H(µ|α)− Cε ≤ lim inf
n→∞

1

n
logP

(
πn ∈ B̄(µ, ε)

)
≤ lim sup

n→∞

1

n
logP

(
πn ∈ B̄(µ, ε)

)
≤ −H(µ|α) + Cε. (3.35)

Taking ε → 0 thus gives the claim in the case where minE µ > 0.
If minE µ = 0, let µ∗ = min{µ(k) : µ(k) ̸= 0} and, for ε ∈ (0, 1), approximate µ by µε ∈

B̄(µ, ε) with µε(k) = µ∗ε/(p−|supp(µ)|) whenever µk = 0, and µε(k) = µ(k)−µ∗ε/|supp(µ)|
otherwise (recall p = |E|). Then minE µε > 0, µε is a probability measure on E and by
continuity of the entropy:

lim
ε→0

µε = µ, lim
ε→0

H(µε|α) = H(µ|α). (3.36)

This concludes the proof.

As observed above,

Sn

n
:=

1

n

n∑
i=1

Xi = ⟨πn, id⟩ =
∫

x dπn(x). (3.37)

It therefore looks like Sanov's theorem is more general than Cramér's and should imply it.
This is indeed the case, through what is known as a contraction principle. Contraction
principles are a general way to obtain new large deviation principles from existing ones that
we will later describe in an abstract way. Let us prove Sanov ⇒ Cramér when random
variables only take a �nite number of values; the proof is similar in the general case.

Proposition 3.5 (Contraction principle, �rst example). Let ε > 0. Then:

P
(
|Sn/n− E[X1]| ≥ ε

)
≍ exp

[
− n inf

(E[X1]−ε,E[X1]+ε)c
I
]
, (3.38)

with:
I : y ∈ R 7→ inf

ν:⟨ν,x⟩=y
H(ν|α). (3.39)
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Proof. For a probability measure ν, mν :=
∫
x dν(x) for its mean. In particular E[X1] = mα.

Since Sn/n = mπn , we have:{∣∣∣Sn

n
− E[X1]

∣∣∣ ≥ ε
}
=

{
πn /∈ C(ε)

}
, C(ε) := {ν : |mν −mα| < ε}. (3.40)

Since C(ε)c is a closed set for the total variation distance, we can apply Sanov's theorem to
�nd:

P
(
|Sn/n− E[X1]| ≥ ε

)
≍ exp

[
− n inf

C(ε)c
H(ν|α)

]
. (3.41)

As infC(ε)c H(ν|α) = inf(mα−ε,mα+ε) I by de�nition, the lemma is proven.

Exercise 3.6. Check that the rate function I in Proposition 3.5 indeed corresponds to the
one obtained in Cramér's theorem.

Proof. By de�nition the relative entropy reads:

H(ν|α) = sup
h∈RE

{
(ν, h)− log

∑
e∈E

α(e)ehe

}
≥ sup

λ∈R

{
λ
∑
e∈E

ν(e)e− ϕ(λ)
}
, (3.42)

where ϕ(λ) = logE[eλX1 ] = log
∑

e∈E α(e)eλe and we chose speci�c vectors h = (λe)e∈E
(λ ∈ R). Thus:

inf
ν:mν=y

H(ν|α) ≥ sup
λ∈R

{
λy − ϕ(λ)

}
= ICramer(y). (3.43)

It is therefore enough to prove that there is equality for a good choice of measure, or that
both sides are equal to −∞.

Write E = {e1, ..., ep} with e1 ≤ ... ≤ ep. If my /∈ [e1, ep], then ϕ(λ) ∈ [λe1, λep] (the
boundaries are not necessarily ordered) implies ICramer(y) = +∞, therefore there is equality
in this case.

Assume nowmy ∈ [e1, ep]. Then we claim that the supremum de�ning ICramer(y) is reached
(possibly at ±∞) as we already saw in the Cramér case. Indeed, My(λ) := e−λyE[eλX1 ]
satis�es (recall α has full support):

M ′
y(λ) = E[(X1 − y)eλ(X1−y)], M ′′

y (λ) = E[(X1 − y)2eλ(X1−y)] > 0, (3.44)

thus M ′′
y is strictly convex and:

lim
λ→±∞

M ′
y(λ) = ±∞ if y ∈ (e1, ep). (3.45)

This implies that for y ∈ (e1, ep) My admits a unique global minimiser, therefore λ 7→
λy − ϕ(λ) has a unique global maximiser, call it λy ∈ R, and:

ICramer(y) = λyy − ϕ(λy). (3.46)

On the other hand if y ∈ {e1, ep} then − logMy(λ) is maximal at λ = −∞ for e1, +∞ for e2:

ICramer(e1) = lim
λ→−∞

{
λy − ϕ(λ)

}
, ICramer(ep) = lim

λ→∞

{
λy − ϕ(λ)

}
. (3.47)
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Write by extension λe1 = −∞, λep = +∞. By de�nition, as α has full support:

H(ν|α) =
∑
i∈E

ν(i) log
(ν(i)
α(i)

)
∈ [0,∞). (3.48)

Let αλ denote the tilted probability measure ∝ eλyeα(de) if y ∈ (e1, ep). If y ∈ {e1, ep} this
is by extension the Dirac measure on e1, ep respectively. Then:

H(αλy |α) =


λyy − log

∑
e∈E α(e)eλye = ICramer(y) if y ∈ (e1, ep),

− log(α(e1)) = ICramer(y) if y = e1,

− log(α(ep)) = ICramer(y) if y = ep.

(3.49)

4 Abstract large deviation theory

In this section we give an abstract de�nition of large deviation principles and establish general
properties. We work throughout with a polish space E, i.e. a complete and separable metric
space, which we equip with its Borel σ-algebra B. For a set B ⊂ X, its closure is denoted B̄
and its interior Bo.

4.1 Large deviation principle

De�nition 4.1 (Rate function). A mapping I : E → [0,∞] is said to be a rate function if
I is lower semi-continuous, i.e. I has closed sub-level sets: {I ≤ α} is closed in E for each
α ≥ 0.

I is said to be a good rate function if I has compact sub-level sets.

De�nition 4.2 (Large deviation principle). Let an > 0 (n ∈ N) be a diverging sequence. A
sequence (µn)n∈N of probability measures on E is said to satisfy a large deviation principle
with speed an and rate function I if I is a rate function in the sense of De�nition 4.1 and
the following holds. For every closed set C and every open set O,

lim sup
n→∞

1

an
log µn(C) ≤ − inf

C
I,

lim inf
n→∞

1

an
log µn(O) ≥ − inf

O
I. (4.1)

Remark 4.3. � One obtains an equivalent de�nition by asking that, for any Borel set B:

− inf
Bo

I ≤ lim inf
n→∞

1

an
log µn(B) ≤ lim sup

n→∞

1

an
log µn(B) ≤ − inf

B̄
I. (4.2)

� Since µn(E) = 1 for each n ∈ N, it must be that inf I = 0. In particular, a rate function
cannot be identically equal to +∞. If I is a good rate function, then this implies that
there is x ∈ E with I(x) = 0. Without the goodness assumption this may not be true.
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� For a measurable set B, in general:

lim
n→∞

1

n
log µn(B) ̸= − inf

B
I. (4.3)

This is true for any set such that infB̄ I = infBo I (in which case both in�ma are equal
to infB I).

In particular, if C is not open, one cannot have the lower bound with infC I instead of
infCo I in general. Any sequence of non-atomic measures gives a counterexample: as
µn({x}) = 0 for each x ∈ E, one would have I(x) = +∞ for each x ∈ E which is
impossible by the �rst item.

� So far, all large deviation principles we have encountered had speed n, the number
of variables under consideration. This is always the case in i.i.d settings (with suit-
able exponential moments assumption), but may fail for independent, non-identically
distributed random variables or in the presence of interaction. For instance the mag-
netisation 1

nd

∑
i∈{0,...,n}d σi of the d ≥ 2 Ising model at low temperature has deviations

of order e−cnd−1
in a certain range of values.

Lemma 4.4. If (µn) satis�es two large deviation principles with the same speed an and rate
functions I1, I2, then I1 = I2.

Proof. Let x ∈ E, ε > 0 and consider the open ball B(x, ε) around x. Then:

−I1(x) ≤ − inf
B(x,ε)

I1 ≤ lim inf
n→∞

1

an
log µn(B(x, ε))

≤ lim sup
n→∞

1

an
log µn

(
B(x, ε)

)
≤ − inf

B(x,ε)
I2. (4.4)

The lower semi-continuity implies (exercise) that lim infε→0 infB̄(x,ε) Ii ≥ Ii(x) for i ∈ {1, 2}
(in fact equality holds). Thus I1(x) ≥ I2(x) for all x ∈ E. Exchanging the roles of I1, I2
concludes the proof.

4.2 Varadhan's lemma

Under suitable conditions, there is an equivalence between large deviation principles and
control of exponential moments of a su�ciently large class of functions on E. Here, we will
only state one direction, known as Varadhan's lemma (or the Laplace-Varadhan lemma).

Proposition 4.5. Suppose µn satis�es a large deviation principle with speed an and rate
function I (not necessarily good). Then, for every continuous function F : X → R that is
bounded from above,

lim
n→∞

1

an
logEµn

[
eanF

]
= sup

E

{
F − I

}
. (4.5)

Remark 4.6. � If we imagine that µn is a measure on R, say, with distribution given by
e−anI(·), then the above lemma turns into a generalisation of the Laplace principle:

lim
n→∞

1

an
log

∫
R
ean(F−I)(x) dx = sup

R
{F − I}. (4.6)
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� To prove Cramér's theorem we deduced large deviations from a bound on all E[enλ(Sn/n)],
λ ∈ R. Writing Sn/n = ⟨πn, x⟩ with πn the empirical measure, this corresponds to
F (π) = ⟨π, x⟩, which is not bounded above on the space of probability measures on
R. Varadhan's lemma can in fact be stated with much less stringent conditions on F
than being bounded above, such as suitable exponential moment bounds. See the book
by Dembo and Zeitouni, Theorem 4.3.1 for more on this topic.

Proof. Consider �rst the lower bound. Let x ∈ E and de�ne Ix(ε) := (F (x) − ε, F (x) + ε).
The set F−1(Ix(ε)) is open by continuity of F . The continuity of F implies that there is
ωx(·) ≥ 0 with limε→0 ωx(ε) = 0 such that, on F−1(Ix(ε)), it holds that F ≥ F (x) − ωx(ε).
The large deviation lower bound then gives:

lim inf
n→∞

1

an
logEµn

[
eanF

]
≥ lim inf

n→∞

1

an
logEµn

[
1F−1(Ix(ε))e

anF
]

≥ F (x)− ωx(ε)− inf
F−1(Ix(ε))

I ≥ F (x)− ωx(ε)− I(x). (4.7)

As ε was arbitrary, we obtain the lower bound by taking ε to 0, then the supremum in x.
Consider next the upper bound. We decompose E into sets where F is approximately

constant and use the large deviation upper bound on all these sets. Write s = supE F and
S = supE{F − I}. As F is bounded above and I ≥ 0, we have −∞ < S ≤ s < ∞, so we
only need to care about the set F−1([S, s]):

lim sup
n→∞

1

an
logEµn

[
eanF

]
≤ max

{
S, lim sup

n→∞

1

an
logEµn

[
1F−1([S,s])e

anF
]}

. (4.8)

Let p ∈ N \ {0} and de�ne:

xk := S +
k(s− S)

p
, k ∈ {0, ..., p}. (4.9)

De�ne Jk = F−1([xk, xk+1]). Then F−1([S, s]) =
⋃p−1

k=0 Jk, and:

lim sup
n→∞

1

an
logEµn

[
1F−1([S,s])e

anF
]
≤ max

0≤k≤p−1
lim sup
n→∞

1

an
logEµn

[
1Jke

anF
]

≤ max
0≤k≤p−1

{
xk+1 + lim sup

n→∞

1

an
log µn(Jk)

}
≤ max

0≤k≤p−1

{
xk+1 − inf

Jk
I
}
, (4.10)

since Jk is a closed set for each k. By de�nition of Jk, xk+1 ≤ infJk F + (s− S)/p, thus:

lim sup
n→∞

1

an
logEµn

[
1F−1([S,s])e

anF
]
≤ max

0≤k≤p−1

{
inf
Jk

F − inf
Jk

I
}
+

s− S

p
. (4.11)

It remains to notice that infJk F − infJk I ≤ supJk
(F − I). Indeed, if yε ∈ Jk satis�es

I(yε) ≤ infJk I + ε, then:

inf
Jk

F − inf
Jk

I ≤ F (yε)− inf
Jk

I ≤ F (yε)− I(yε) + ε ≤ sup
Jk

{F − I}+ ε, (4.12)
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and ε was arbitrary. At this point we have proven:

lim sup
n→∞

1

an
logEµn

[
eanF

]
≤ max

{
S, max

0≤k≤p−1
sup
Jk

{I − F}+ s− S

p

}
≤ S +

s− S

p
. (4.13)

Since p was arbitrary, this gives the desired upper bound and the claim.

4.3 Generating new large deviation principles from known ones

4.3.1 Exponential tilts

Varadhan's lemma gives us a way to obtain new large deviation principles from existing ones
as follows.

Proposition 4.7. Suppose (µn) satis�es a large deviation principle with speed an and rate
function I, and let F be a continuous function that is bounded from above. De�ne:

µF
n :=

(
Eµn

[
eanF

])−1

eanFµn. (4.14)

Then (µF
n ) satis�es a large deviation principle with speed an and rate function I−F+sup{F−

I}

Proof. The proof is directly adapted from the proof of Varadhan's lemma: one needs to
compute

∫
B
eanFdµn for suitable Borel sets B. It is left as an exercise.

Proposition 4.7 gives access to large deviations of variables beyond the i.i.d setting. In
particular one can use it to reprove Theorem 2.1 on the Curie-Weiss model, as well as the
following generalisation to particles in Rd with mean-�eld interactions.

Exercise 4.8. Let V : Rd → R be such that e−V is Lebesgue-integrable, and let W : (Rd)2 →
R be bounded. Consider the following probability measures on (Rd)n:

µn(dx) ∝ exp
[
− 1

2n

n∑
i,j=1

W (xi, xj)−
n∑

i=1

V (xi)
] n∏

i=1

dxi. (4.15)

Prove that µn satis�es a large deviation principle with rate function:

I(µ) = F(µ)− inf
M1(Rd)

F , (4.16)

where M1(Rd) is the set of probability measures on Rd and the free energy F satis�es:

F(µ) :=

∫
Rd

f(x) log f(x) dx+

∫
Rd

V (x)µ(dx) +
1

2

∫
(Rd)2

W (x, y)µ⊗2(dx, dy),

if µ ≪ dx has density f, (4.17)

and F(µ) = +∞ otherwise. You may admit that Sanov's theorem holds on Rd.
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4.3.2 Contraction principle

Another way of generating new large deviation principles from existing ones are contraction
principles, which we have already encountered in Proposition 3.5.

Proposition 4.9. Let (µn) satisfy a large deviation principle with speed an and good rate
function I. Let E ′ be a Polish space equipped with its Borel σ-algebra, and let T : E → E ′

be a continuous mapping. Then the sequence of push-forwards (µ′
n) := (µn ◦ T−1) satis�es a

large deviation principle with speed an and good rate function:

I ′(y) := inf
x∈E:T (x)=y

I(x), y ∈ E ′. (4.18)

Proof. Let C,O be closed, open sets in E ′ respectively. By de�nition,

µ′
n(C) = µn(T

−1(C)), µ′
n(O) = µn(T

−1(O)). (4.19)

Since T is continuous, T−1(C) is closed, T−1(O) is open and both are measurable sets in E.
The large deviation principle for µn then gives:

lim sup
n→∞

1

an
log µ′

n(C) ≤ − inf
T−1(C)

I = −
{
I(x) : x ∈ E, T (x) ∈ C

}
= − inf

⋃
y∈C

{
I(x) : x ∈ E, T (x) = y

}
= − inf

y∈C
inf

{
I(x) : x ∈ E, T (x) = y

}
= − inf

C
I ′. (4.20)

The same argument gives the lower bound.
Let us now check that I ′ is a good rate function. As I ≥ 0 the same is true for I ′. It

is therefore enough to check that I ′ has compact sub-level sets. Let a ≥ 0 and n ≥ 1. If
y ∈ {I ′ ≤ a}, then infT−1(y) I ≤ a < ∞. Take then xy

n ∈ T−1({y}) such that:

I(xy
n) ≤ inf

T−1(y)
I +

1

n
≤ a+

1

n
. (4.21)

As I is a good rate function xy
n converges in E to some xy, and xy ∈ T−1({y}) because this

set is closed. lower semi-continuity of I. The in�mum of I on T−1({y}) is thus reached at
xy, and:{

y ∈ E ′ : I ′(y) ≤ a
}
=

{
y ∈ E ′ : there is xy ∈ E with T (xy) = y and I(xy) ≤ a

}
=

{
y ∈ E ′ : there is x ∈ {I ≤ a} with y = T (x)

}
= T (

{
I ≤ a}). (4.22)

Since {I ≤ a} is compact and T is continuous, {I ′ ≤ a} is also compact.

Remark 4.10. If I is a rate function but not a good rate function, then it may be that I ′ is
not even a rate function. Consider e.g. E = E ′ = R, I = 0 and T (x) = ex. Then I ′ = +∞
on (−∞, 0] and I ′ = 0 on (0,∞). In particular {I ′ = 0} is not closed.
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5 Gärtner-Ellis theorem

We now consider large deviations of sequences (Sn) ∈ (Rd)N of variables without any struc-
tural assumption, i.e. we do not assume Sn ∝

∑n
i=1Xi with the Xi i.i.d. In that setting, as

the Curie-Weiss example shows, properties of a rate function (such as convexity) depend on
the particulars of the model, the existence of a large deviation principle is not guaranteed,
and we brie�y mentioned that the speed of a large deviation principle may not be given by
the number of variables even if Sn =

∑n
i=1Xi when the Xi are not independent. It is however

possible to give a general su�cient condition under which a large deviation principle with
convex rate function must hold, through a construction mirroring what we did for Cramér's
theorem.

De�ne:
Φn(λ) := logE[e(λ,Sn)], λ ∈ Rd. (5.1)

We make the following assumption throughout.

Assumption 5.1. For some sequence an > 0 (n ∈ N) with limn→∞ an = ∞,

Φ(λ) := lim
n→∞

1

an
log Φn(anλ) exists in [−∞,∞]d for each λ ∈ Rd, (5.2)

and the set DΦ := {λ : Φ(λ) < ∞} contains 0 in its interior, i.e. 0 ∈ Do
ϕ.

Remark 5.2. In the case Sn = 1
n

∑n
i=1Xi with the Xi i.i.d and an = n, the Φ above is the

moment generating function of X1, called ϕ in Section 1.

5.1 Properties of Φ and its Legendre transform

Lemma 5.3. The function Φ is convex on Rd and DΦ is a convex set. Moreover, Φ > −∞
everywhere and Φ is continuous on Do

Φ.

Proof. As a pointwise limit of convex functions, Φ is convex on Rd which implies that Dϕ

is a convex set. Convexity also implies continuity of Φ on the interior of {|Φ| < ∞}. Let
us conclude by showing that {|Φ| < ∞} coincides with the domain DΦ of Φ. As 0 is an
interior point, there is δ > 0 such that B(0, δ) ⊂ DΦ. Since Φ(0) = 0 > −∞, it must be that
Φ(λ) > −∞ for any λ ∈ Rd \ {0}. Indeed, if not convexity of Φ on the segment [−δλ/|λ|, λ]
gives a contradiction. Thus DΦ = {|Φ| < ∞}.

Remark 5.4. Contrary to the i.i.d. case, Φ need not be smooth on the interior of its domain.

De�ne the Legendre transform I of Φ:

I(x) := sup
λ∈Rd

{
(λ, x)− Φ(λ)

}
, x ∈ Rd. (5.3)

Lemma 5.5. The function I is convex and a good rate function.
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Proof. From the de�nition I ≥ 0, and I is convex and lower semi-continuous as a supremum
of linear functions.

Let us prove that I has bounded sub-level sets. Recall that 0 ∈ D0
Φ and let ε > 0 be such

that B(0, 2ε) ⊂ Do
Φ. Then Φ is continuous on B̄(0, ε), thus bounded. Moreover,

I(x) ≥ sup
u:|u|=1

{
ε(u, x)− Φ(εu)

}
≥ sup

u:|u|=1

{
ε(u, x)− sup

u:|u|=1

Φ(εu)
}

= ε|x| − sup
u:|u|=1

Φ(εu). (5.4)

This gives lim|x|→∞ I(x) = +∞ and the boundedness of sub-level sets.

De�nition 5.6 (Exposed point). We say that x ∈ Rd is an exposed point if, for some λ ∈ Rd

and all y ̸= x:
I(y) > I(x) + (λ, y − x). (5.5)

In other words I is above the a�ne hyperplane of normal λ containing (x, I(x)). This hy-
perplane is called the exposing hyperplane. The set of exposed points with normal λ ∈ Do

Φ is
denoted by E.

One can check that if x is an exposed point, then the rate function I satis�es:

(λ, x)− I(x) = sup
y∈Rd

{
(λ, y)− I(y)

}
= Φ(λ). (5.6)

5.2 The theorem

Theorem 5.7. Let Sn ∈ Rd (n ∈ N) be a sequence of random variables for which Assump-
tion 5.1 holds. Let µn denote the law of Sn and I denote the good convex rate function
in (5.3). Then, for any closed set C:

lim sup
n→∞

1

an
log µn(C) ≤ − inf

C
I, (5.7)

and for any open set O:

lim inf
n→∞

1

an
log µn(O) ≥ − inf

O∩E
I. (5.8)

Remark 5.8. Note that Theorem 5.7 is not a large deviation principle in the sense of De�-
nition 4.2 since the lower bound only holds for exposed points. With additional conditions on
(Sn) the lower bound can be strengthened, see Proposition 5.9.

Proof. The proof resembles that of Cramér's theorem, with some additional ingredients due
to being in Rd rather than R and the lack of a law of large numbers.
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Upper bound. Let x ∈ Rd and δ > 0. We �rst prove an upper bound for an open ball
B(x, δ). By Chebychev exponential inequality, for each λ ∈ Rd \ {0}:

µn(B(x, δ)) = P
(
|Sn − x| < δ

)
≤ P

(
|(Sn − x, λ)| < δ|λ|

)
≤ P

(
(Sn − x, λ) > −δ|λ|

)
≤ E

[
ean(Sn−x,λ)

]
eδλan . (5.9)

Taking 1
an

log and the large n limit yields:

lim sup
n→∞

1

an
log µn(B(x, δ)) ≤ δ|λ| − (x, λ) + Φ(λ). (5.10)

Note that the bound is also valid for λ = 0.
Now, by de�nition of the rate function I, for every ε ∈ (0, 1) one can �nd λx,ε ∈ Rd such

that:

(x, λx,ε)− Φ(λx,ε) ≥ (I(x)− ε) ∧ 1

ε
, (5.11)

where the 1/ε accounts for the possibility that I(x) = +∞. Then:

lim sup
n→∞

1

an
log µn(B(x, δ)) ≤ δ|λx,ε| − (I(x)− ε) ∧ 1

ε
. (5.12)

From this bound for balls we now deduce a bound for compact sets. For x ∈ K, de�ne
δx,ε := ε/λx,ε ∧ 1. Then

⋃
x∈K B(x, δx,ε) is an open cover of K. Extract a �nite subcover

B(xi, δxi,ε) (1 ≤ i ≤ pε) and abbreviate δxi,ε as δi and λxi,ε as λi. Then:

lim sup
n→∞

1

an
log µn(K) ≤ max

1≤i≤pε
lim sup
n→∞

1

an
log µn(B(xi, δi))

≤ max
1≤i≤pε

{
δi|λi| − (I(xi)− ε) ∧ 1

ε

}
≤ ε− min

1≤i≤pε

{
(I(xi)− ε) ∧ 1

ε

}
= ε− 1

ε
∧ min

1≤i≤pε
(I(xi)− ε). (5.13)

Thus:

lim sup
n→∞

1

an
log µn(K) ≤ ε− 1

ε
∧ (inf

K
I − ε). (5.14)

Taking ε to 0 yields an upper bound for compact sets.
We now strengthen this bound to closed sets. Informally, this is done by showing that

most of the mass of the measures µn is concentrated on compact sets at an exponential scale,
a property known as exponential tightness. This is rigorously formulated as follows:

lim sup
n→∞

1

an
log µn

(
B(0,M)c

)
−→
M→∞

−∞. (5.15)
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To prove (5.15), recall that 0 ∈ Do
I and let δ > 0 be such that B(0, 2δ) ⊂ Do

I . Then, writing
(ei)1≤i≤d for the canonical basis of Rd and using again the exponential Chebychev inequality:

lim sup
n→∞

1

an
log µn

(
B(0,M)c

)
≤ max

1≤i≤d
lim sup
n→∞

1

an
logP

(
|(Sn, ei)| ≥ M/

√
d
)

≤ max
1≤i≤d

s∈{−,+}

{
− δM√

d
+ Φ(δsei)

}
. (5.16)

The right-hand side goes to −∞ when M → ∞ as desired.
Using (5.15), the upper bound for closed sets is proven as follows. Let C be a closed set.

Then, for each M > 0:

lim sup
n→∞

1

an
log µn(C)

≤ max
{
lim sup
n→∞

1

an
log µn(C ∩ B̄(0,M)), lim sup

n→∞

1

an
log µn(B(0,M)c)

}
. (5.17)

The second term goes to−∞ whenM → ∞ by (5.15). On the other hand, the set C∩B̄(0,M)
is compact, thus:

lim sup
n→∞

1

an
log µn(C ∩ B̄(0,M)) ≤ − inf

C∩B̄(0,M)
I. (5.18)

As C ∩ B̄(0,M) increases to C, the in�mum decreases to infC I (check it). This concludes
the proof of the upper bound for compact sets.

Lower bound. It is enough to prove that, for all x in the exposed set E :

lim inf
δ→0

lim inf
n→∞

1

an
log µn(B(x, δ)) ≥ −I(x). (5.19)

Indeed, if so then for any open set O and any x ∈ E , δ > 0 with B(x, δ) ⊂ O,

lim inf
n→∞

1

an
log µn(O) ≥ lim inf

δ→0
lim inf
n→∞

1

an
log µn(B(x, δ)) ≥ −I(x). (5.20)

To prove (5.19), we again proceed as in the case of Cramér's theorem, tilting the measure so
that B(x, δ) becomes typical. The di�erence is that we do not know the law of large numbers
for Sn. We will instead use the large deviation upper bound.

Let x ∈ E and let λ ∈ D0
Φ be normal to an exposed hyperplane for x. Recall from (5.6)

that I and Φ(λ) are then related as:

I(x) = (λ, x)− Φ(λ). (5.21)

Then:

µn(B(x, δ)) ≥ e−anδ|λ|E
[
1|Sn−x|<δe

an(λ,Sn−x)
]
= e−anδ|λ|E

[
ean(λ,Sn−x)

]
µλ
n(B(x, δ)), (5.22)
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with µλ
n the tilted probability measure proportional to ean(λ,y−x)µn(dy). Taking 1

an
log and

the large n limit,

lim inf
n→∞

1

an
log µn(B(x, δ)) ≥ −δ|λ|+ Φ(λ)− (x, λ) + lim inf

n→∞

1

an
log µλ

n(B(x, δ))

= −δ|λ| − I(x) + lim inf
n→∞

1

an
log µλ

n(B(x, δ)). (5.23)

To estimate this last probability, notice that µλ
n satis�es Assumption 5.1. Indeed, for any

τ ∈ Rd:

lim
n→∞

1

an
log

∫
ean(y,τ)µλ

n(dy) = Φ(λ+ τ)− Φ(λ). (5.24)

In addition, 0 is an interior point of the domain of Φ(λ+ ·)−Φ(λ) since λ ∈ Do
Φ by de�nition

of exposed points. In particular upper bound large deviations hold for µλ
n, and:

lim sup
n→∞

1

an
log µλ

n(B(x, δ)c) ≤ − inf
B̄(x,δ)c

Iλ, (5.25)

with the good rate function Iλ given by:

Iλ(y) = sup
τ∈Rd

{
(τ, y)− Φ(λ+ τ)

}
+ Φ(λ), y ∈ Rd. (5.26)

We claim that infB(x,δ)c I
λ > 0. Indeed, Iλ is either identically equal to +∞ on B(x, δ)c, or

it achieves its in�mum at some y ∈ B(x, δ)c due to being a good rate function. In the latter
case, the fact that x is an exposed point gives, using again (5.6):

Iλ(yδ) = sup
τ∈Rd

{
(τ + λ, yδ)− Φ(λ+ τ)

}
+ Φ(λ)− (λ, y) = I(yδ) + Φ(λ)− (λ, y)

= I(yδ)− (λ, y)− (I(x)− (λ, x)) > 0. (5.27)

This implies, for some Cx,δ > 0 and all large enough n in the last inequality:

µn(B(x, δ)) = 1− µn

(
B(x, δ)c

)
≥ 1− Cδ,xe

−anCδ,x ≥ 1

2
, (5.28)

which concludes the proof.

The following proposition gives su�cient conditions on Φ to remove the set E in the lower
bound of Theorem 5.7, turning its statement into a full large deviation principle.

Proposition 5.9. Assume:

1. Φ is lower semi-continuous on Rd.

2. Φ is di�erentiable in D0
Φ.

3. DΦ = Rd, or limλ∈Do
Φ→∂DΦ

|∇Φ(λ)| = +∞.

Then the lower bound in Theorem 5.7 holds without E.

Remark 5.10. If d = 1, the condition on the slope of Φ is the analogue of what we needed
in the proof of Cramér's theorem to de�ne a tilt even at the boundary of a closed interval.
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6 A glance at some topics not seen in the course

6.1 Moderate deviations

Let (Xi) be i.i.d. real random variables with �nite exponential moment in a neighbourhood
of the origin and unit variance. The central limit theorem gives a bound of the form

P
( Sn√

n
∈ [a, b]

)
=

1√
2π

∫
[a,b]

e−
x2

2 dx. (6.1)

On the other hand Cramér's theorem gives:

P
(Sn

n
∈ [a, b]

)
≍ e−n inf[a,b] I . (6.2)

What about Sn/n
α for α ∈ (1/2, 1)? It turns out that the result is a mixture of both central

limit theorem and large deviations:

P
(Sn

nα
∈ [a, b]

)
≍ exp

[
− n2α−1 inf

[a,b]

x2

2

]
. (6.3)

In other words, deviations do hold but the rate function is always the Legendre transform of
the moment generating function of a Gaussian. The proof is very similar to Cramér's theorem.
The idea is that for intermediate scalings of the sums one can do a Taylor expansion of the
moment generating function and terms higher than second order will be negligible. See
Section 3.3.7 in Dembo-Zeitouni for more on this topic.

6.2 Heavy-tailed random variables

Consider i.i.d. Xi (i ∈ N) but suppose that X1 only has a �nite number of moments, or worse,
that X1 ≥ 0 and logX1 only has a �nite number of moments. Can one then say anything
about deviations of Sn? In such a regime deviations are dominated by the behaviour of single
random variables, i.e. Sn ≈ nm if one variable is very large rather than all of them being
close to m. If e.g. P(X1 > t) ∼ |t|−α as |t| → ∞ for some α ∈ (0,∞), one can still prove
deviations of the form:

lim
n→∞

1

log n
logP(Sn > nx) = 1− αx, x > max{1, 1/α}. (6.4)

See e.g. Gantert, N. (2000). A note on logarithmic tail asymptotics and mixing. Stat.
Probab. Lett. 49, 113�118.

6.3 Sample path large deviations

Consider a sequence of i.i.d real random variables (Xi)i≥1. Assume:

∀λ ∈ R, E[eλX1 ] < ∞. (6.5)

31



Consider the function of t ∈ [0, 1] given by:

t ∈ [0, 1] 7→ 1

n

⌊nt⌋∑
i=0

Xi. (6.6)

Let Zn(·) denote the continuous process obtained by linear interpolation of the last object.
The one can look at large deviations for (Zn(t))t∈[0,1], viewed as a random element in the set
C0([0, 1],R) of continuous functions from [0, 1] to R vanishing at 0. To state a result, we need
more notations. Let Cabs denote the subset of absolutely continuous functions:

Cabs =
{
f ∈ C0([0, 1],R)

∣∣ there is ḟ ∈ L1((0, 1)) such that f(t) =

∫ t

0

ḟ(s) ds
}
. (6.7)

Let also µn denote the law of Zn for n ≥ 1, and recall that I denotes the Legendre transform
of the log-moment generating function:

I(x) := sup
λ∈R

{
λx− ϕ(λ)

}
. (6.8)

Theorem 6.1 (Mogulskii). The measures (µn)n≥1 satisfy a large deviation principle on
C0([0, 1],R) with speed n and rate function:

I(f) =

{∫ 1

0
I(ḟ(s)) ds if f ∈ Cabs,

+∞ otherwise.
(6.9)

This theorem in particular provides sample-path large deviations for Brownian motion as
we now explain. Let (Bt)t≥0 denote a real Brownian motion and let Bn (n ≥ 1) be given by:

Bn(t) =
1√
n
B(t), t ∈ [0, 1]. (6.10)

Theorem 6.2 (Schilder). The law νn of Bn (n ≥ 1) satis�es a large deviation principle on
C0([0, 1],R) with speed n and rate function:

I(f) =

{
1
2

∫ 1

0
[ḟ(s))]2 ds if f ∈ Cabs,

+∞ otherwise.
(6.11)

Proof. We prove the theorem by comparing Brownian motion with a random walk and using
Mogulskii's result. Notice that Bn reads:

Bn(t) =
1√
n

⌊nt⌋∑
k=1

∆k +
1√
n

(
B(t)−Bn(t)

)
, (6.12)

where ∆k = n−1/2Xk and Xk =
√
n[B(k/n) − B((k − 1)/n)] is a standard normal random

variables. The (Xk)1≤k≤n are independent. If (Zn(t))t∈[0,1] denotes the continuous process
built from the Xk as in (6.6), then in particular:

Bn(k/n) = Zn(k/n), 0 ≤ k ≤ n, (6.13)
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and Mogulskii's theorem gives large deviations for Zn, with the correct rate function (for
standard normal random variables ones has I(x) = x2/2). It is thus enough to prove that
Bn and Zn remain very close on [0, 1], i.e. to prove:

∀δ > 0, lim sup
n→∞

1

n
logP

(
sup
t∈[0,1]

∣∣Bn(t)− Zn(t)| ≥ δ
)
= −∞. (6.14)

A union bound gives:

P
(
sup
t∈[0,1]

∣∣Bn(t)− Zn(t)| ≥ δ
)
≤

n−1∑
k=0

P
(

sup
k/n≤t≤(k+1)/n

∣∣Bn(t)− Zn(t)| ≥ δ
)
. (6.15)

Since Bn(k/n) = Zn(k/n), it will be enough to prove that both Bn(t)−Bn(k/n) and Zn(t)−
Zn(k/n) satisfy the above bound. For Zn, its linearity on [k/n, (k + 1)/n] gives:

P
(

sup
k/n≤t≤(k+1)/n

∣∣Zn(t)− Zn(k/n)| ≥ δ
)
= P

(
n−1|Xk| ≥ δ

)
≤ e−n2δ2/2. (6.16)

The same bound is true for Brownian motion. Indeed, as (eB(t))t≥0 is a positive submartingale,
Doob's inequality gives

P
(

sup
k/n≤t≤(k+1)/n

∣∣Bn(t)−Bn(k/n)| ≥ δ
)
= P

(
sup
t≤1/n

∣∣B(t)
∣∣ ≥ √

nδ
)
= P

(
sup
t≤1

∣∣B(t)
∣∣ ≥ nδ

)
≤ e−n2δ2/2. (6.17)
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