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Abstract

An exchange economy in which agents have convex incomplete
preferences defined by families of concave utility functions is consid-
ered. Sufficient conditions for the set of efficient allocations and equi-
libria to coincide with the set of efficient allocations and equilibria
that result when each agent has a utility in her family are provided.
Welfare theorems in an incomplete preferences framework therefore
hold under these conditions and efficient allocations and equilibria are
characterized by first order conditions.
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1 Introduction

Since the work of von Neumann and Morgenstern [32], a number of authors
have raised objections about the use of the completeness axiom in utility
theory (for early work, see for example Luce and Raiffa [20], Aumann [3],
Shapley [31]). These objections have on one hand, lead to the development of
axiomatic theories and multi-utility representations of incomplete preferences
(see for example Aumann [3], Dubra et al. [13], Maccheroni [21], Ok [24]).
Incomplete preferences have, on the other hand, been used in a wide vari-
ety of fields, for example, risk theory (Rothschild and Stiglitz [27]), finance
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(for example Dybvig [14], Jouini and Kallal [19], Easley and O’Hara [15]),
noncooperative game theory (Bade [4], Evren [16]), asymmetric information
(no-trade results of Samet [30] and Man-Chung Ng [22]) and equilibrium
theory (Mas-Colell [23], Gale and Mas-Colell [18]). Recently there has been
a renewed interest for incomplete preferences with the work of Bewley [6]
and Rigotti and Shannon [28] as a way to model choices in the presence of
ambiguity and to explain non participation in markets for which there is am-
biguity and more particularly in financial markets (see Dana and Riedel [12]
and Easley and O’Hara [15]).

This paper considers an exchange economy populated by a finite number
I of agents whose preferences are incompletely known. Their utilities may for
example depend on unknown parameters or more generally belong to given
families Ui, i ∈ I of utility functions. For each Ui, the corresponding strict
preference is defined by the unanimity rule: X ∈ E is strictly preferred to
Y ∈ E (which will be denoted X �Ui Y ) if u(X) > u(Y ) for every ui ∈ Ui.
It is worth pointing out that there are two interpretations to this setting.
In the first one, agents may have complete preferences but the analyst does
not know every ranking1. An alternative interpretation is in assuming that
agents do not rank some alternatives and that this is known by the analyst,
it is this interpretation that relates the present paper to the literature on
incomplete preferences.

The purpose of the paper is to identify conditions under which the fol-
lowing two properties are satisfied:

• efficient allocations for the incomplete preferences coincide with the set
of efficient allocations that result for some choice of utilities in the sets
of each agent,

• equilibria for the incomplete preferences coincide with the set of equi-
libria that result for some choice of utilities in the sets of each agent.

A positive answer to the previous questions has numerous implications.
It, in particular, implies that the welfare theorems hold true in an incomplete
preferences framework and that efficient allocations may be characterized by
first order conditions (namely the intersection of normalized supergradients
is non empty for some choice of utilities in the sets of each agent).

The paper considers concave multi-utility representations. This covers
the case of families of linear preferences often used in asymmetric informa-
tion models, of second order stochastic dominance (Rothschild and Stiglitz
[27]), of Bewley’s [6] and Rigotti and Shannon [28] ambiguity models with

1This is actually this interpretation the term incompletely known in the title refers to.
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incomplete preferences. It is based on a definition of efficiency correspond-
ing to the strict preferences defined above and provides sufficient conditions
for obtaining a positive answer to both of the above questions. In particu-
lar compactness conditions on the set of utility functions and on the set of
their super differentials at any point are required. We also show that the
above questions have a positive answer in the case of second order stochastic
dominance for univariate risks although our technical assumptions are not
satisfied in this case.

The next example shows that one must consider convex families of utilities
Ui whatever strict order or definition of efficiency and equilibria is chosen2 .
Indeed, consider the case of two agents sharing risk X, the first agent has the
CARA utility X1 7→ −E(e−X1) and the second one has incomplete preferences
given by the family U2 of CARA utilities X2 7→ −E(e−θX2) where θ ∈ [1/2, 2].
Note that U2 is not a convex family. Efficient risk sharing pairs between the
first agent and any agent with utility in U2 are pairs of affine functions of X,
with slopes ( θ

1+θ
, 1

1+θ
), θ ∈ [1/2, 2]. Consider the following efficient sharing

problem between agent one and an agent with utility−1
5
E(e−2X2)− 4

5
E(e−

X2
2 ),

obtained by mixing two utilities in U2

max
X1+X2=X

−E(e−X1)− 1

5
E(e−2X2)− 4

5
E(e−

1
2
X2). (1.1)

The solution of (1.1) is undominated in the incomplete setting (see definition
3.4 below): there does not exist (X ′1, X

′
2) such that −E(e−X

′
1) > −E(e−X1)

and −E(e−θX
′
2) > −E(e−θX2) for any θ ∈ [1/2, 2]. However X1 which is

implicitely defined by the equation e−X1 + 2
5
e−2(X−X1) + 2

5
e−

1
2

(X−X1) = 0 is
not an affine function of X. Therefore it cannot be obtained as an efficient
allocation that result when each agent has a utility in her family.

The method used is to first establish a no trade principle for families of
linear utilities parametrized by a family of convex compact subsets of a given
hyperplane by using an extension of Samet’s results [30]. From the no-trade
principle, any feasible allocation is efficient if and only if the compact sets
have non-empty intersection. A characterization of efficient allocations for
families of concave utilities is, then obtained by local linearization of utili-
ties. Thus the paper connects results that have been proven in the no trade
literature (Samet [30], Man-Chung Ng [22]) mainly for linear utilities and in-
finite dimensional generalizations of results proven in the general equilibrium
literature for concave utilities (Rigotti and Shannon’s [28] ambiguity model
with incomplete preferences).

2In a linear framework, the crucial role played by the convexity of the multi-utility sets
was already emphasized in Carroll [9].
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The paper is organized as follows. The framework and general assump-
tions and examples are presented in section 2. Section 3 provides an abstract
no-trade principle which nests most of the ex-ante no-trade theorems exist-
ing in the literature. Efficiency is then characterized and efficient allocations
for the incomplete preferences are shown to coincide with the set of efficient
allocations that result when each agent has a utility in her family of concave
utility functions. A characterization by first order condition is provided. Sec-
tion 4 is devoted to equilibria and welfare theorems. Section 5 discusses some
concepts used in the paper and dicusses relations to the literature.

2 Framework, assumptions and examples

2.1 Incomplete preferences framework

Let E and F be two real vector spaces, and (P,X) ∈ F ×E 7→ P ·X ∈ R be
some separating duality mapping which means that this map is bilinear and

• if X ∈ E is such that P ·X = 0 for all P ∈ F then X = 0,

• if P ∈ F is such that P ·X = 0 for all X ∈ E then P = 0.

We endow F (respectively E) with the locally convex Hausdorff topology
σ(F,E) (resp. σ(E,F )) which is the coarsest topology on F (resp. on E) for
which P ∈ F 7→ P ·X is continuous for every X ∈ E (resp. X ∈ E 7→ P ·X is
continuous for every P ∈ F ). With this choice of topologies, the topological
dual of F may be identified to E and vice versa (see for instance Aliprantis
and Border [1], Theorem 5.83). We shall therefore in the sequel interpret E
as the space of goods and F as the space of prices.

Two polar special cases will mainly be considered. In the first, E is a
Banach space, F = E ′ and σ(F,E) is the weak star topology on F = E ′

(examples are (E,F ) = (L1, L∞) or E is a space of continuous functions and
F a space of Radon measures). In the polar case, F is a Banach space, E = F ′

and σ(F,E) is the weak topology on F (a typical example being E = L∞ and
F = L1). An example covered by our framework but not by the previous two
cases is E = B(Ω,F) the space of real-valued bounded measurable functions
on (Ω,F), a measurable space, E ′ =ba(Ω,F) the space of finitely additive
measures on (Ω,F) and F =ca(Ω,F) the subspace of countably additive
measures on (Ω,F).

An exchange economy with consumption space E populated by a finite
set I of agents is considered. Agent i ∈ I has an incomplete strict preference
over E, defined by a family Ui : E → R of utility functions as follows: Xi ∈ E
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is strictly preferred to Yi ∈ E by agent i, which will be denoted Xi �Ui Yi, if
ui(Xi) > ui(Yi) for every ui ∈ Ui.

For X ∈ E (aggregate endowment), the set of allocations of X are defined
as:

A(X) := {(Xi)i∈I ∈ EI :
∑
i∈I

Xi = X}.

An allocation (Xi)i∈I ∈ A(X) is efficient if there is no other allocation
(Yi)i∈I ∈ A(X) fulfilling Yi �Ui Xi for every i ∈ I. 3

For further use, we recall that for u : E → R concave, the superdifferential
of u at X ∈ E, denoted ∂u(X), is defined by

∂u(X) := {P ∈ E ′ = F : u(Y )− u(X) ≤ P · (Y −X), for all Y ∈ E}

and that u is superdifferentiable at X if ∂u(X) is nonempty. We shall also
denote

∂Ui(X) :=
⋃
ui∈Ui

∂ui(X).

Note that as

λ∂ui(X) + (1− λ)∂vi(X) ⊂ ∂(λui + (1− λ)vi)(X), 0 ≤ λ ≤ 1, X ∈ E

∂Ui(X) is convex whenever Ui is convex. In the sequel, unless otherwise
stated, the following assumptions are assumed to hold:

• (H1) For every i ∈ I, utilities in Ui are everywhere finite, concave
superdifferentiable functions defined on E. Furthermore, for every i,
every ui ∈ Ui and every X ∈ E, ∂ui(X) is σ(F,E) compact.

• (H2) For every i ∈ I, the set of utilities Ui is convex and there is a
topology on Ui which makes it compact and such that the evaluation
map ui ∈ Ui 7→ ui(X) is continuous for every X ∈ E.

• (H3) There exists Φ ∈ E such that, for every i ∈ I, every Xi ∈ E,
every ui ∈ Ui and every P ∈ ∂ui(Xi), one has Φ · P > 0 and the set of
normalized marginal utilities

Vi(Xi) :=
{ P

Φ · P
: P ∈ ∂Ui(Xi)

}
is σ(F,E) compact for every i and every Xi ∈ E.

3Other concepts of efficiency will be discussed in section 5.
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Classes of examples where the previous assumptions are satisfied are pro-
vided in the next subsection. Let us make some general comments. Regard-
ing assumption (H1), it always holds true if E is a normed space, F = E ′

and the elements of Ui are Gâteaux-differentiable. More generally, (H1) is
satisfied if E is a Banach space with dual F and the functions in Ui are con-
cave, u.s.c (for the strong topology) and finite everywhere. Indeed, they are
then everywhere continuous and superdifferentiable (see Chapter 1 in [17]).
Moreover, their superdifferential being weakly star closed and bounded in
E ′ is σ(F,E) compact from Banach-Alaoglu’s Theorem. In (H2), the re-
quirement that Ui is convex has already been discussed in the introduction.
Loosely put, the second part of (H2) says that the set of utilities admits
a compact parametrization. To illustrate (H3), let (Ω,F ,P) be given and
assume that there is one good in each state of the world. Let E = L∞ be
the set of contingent claims, F = L1 and Φ = 1. Then

Vi(Xi) =

{
P

E(P )
, P ∈ ∂Ui(Xi)

}
is the familiar set of normalized supergradients (or marginal utilities) of the
ui’s at Xi. If in addition, utilities in Ui are nondecreasing, elements of Vi(Xi)
are probability densities which may therefore be interpreted as subjective
beliefs as in [29].

2.2 Examples

In this subsection, we show that the assumptions above are satisfied in several
quite large classes of examples. For the sake of notational simplicity, we will
drop the subscript i everywhere in these examples.

The case of finite dimensions

Let E = F = Rd and U be a convex set of concave functions: Rd → R. We
claim that (H1) is trivially satisfied. Indeed the elements of U are everywhere
continuous and thus superdifferentiable everywhere with a superdifferential
which is closed and bounded, hence compact at every point.

Let us further assume that for every R > 0

MR := sup{|u(x)|, |x| ≤ R, u ∈ U} < +∞

and that U is closed for the topology of C(Rd) (that is that of uniform
convergence on compact subsets). This implies that (H2) is fulfilled and
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that ∂U(x) is compact. Indeed for every R > 0, every u ∈ U , every (x, h) ∈
Rd × Rd such that |x| ≤ R, |h| ≤ R and every p ∈ ∂u(x), we have

p · h ≤ u(x)− u(x− h) ≤ 2M2R

hence |p| ≤ KR = 2M2R/R which proves that ∂U(x) is included in the ball
of radius KR and also that u is KR Lipschitz on the ball of radius R. From
Ascoli’s theorem, as U is closed, U is compact in C(Rd) and (H2) is fulfilled.
Let us next show that ∂U(x) is closed. Let pn ∈ ∂un(x) converges to some
p. Passing to a subsequence if necessary, we may assume that un converges
uniformly on every compact to some u ∈ U . Since for every y, we have
un(y) − un(x) ≤ pn(x − y), letting n tend to +∞ gives that p ∈ ∂u(x) ⊂
∂U(x).

Finally, let us assume that there is a common increasing direction, i.e.
some e ∈ Rd such that e ·p > 0 for every (x, u) ∈ Rd×U and every p ∈ ∂u(x)
and let V (x) be defined as above by

V (x) := {p/(e · p), p ∈ ∂U(x)}

As V (x) is the image of the compact set ∂U(x) by p 7→ p/(e · p) which is
continuous on ∂U(x), it is compact and (H3) holds true.

This example shows that the assumptions made in the paper are rather
harmless in finite dimensions.

Linear utilities and expectations with respect to a family of priors

Let Φ ∈ E and K be a convex σ(F,E) compact subset of F such that
K ⊂ {P ∈ F : P · Φ = 1}. Consider the family of linear utilities:

ua(X) = a ·X, a ∈ K, X ∈ E and U := {ua, a ∈ K}

Identifying U to K (endowed with σ(F,E)), as ∂U(X) = K ⊂ {P ∈ F :
P · Φ = 1}; V (X) = K and it is immediate to check that (H1), (H2) and
(H3) are fulfilled.

Let us now consider an example. Let A be a compact subset of R, E =
C(A,R) and F = E ′ = M(A). One may interpret A as the set of states
of the world and E as the set of contingent claims. Let K be a convex and
weakly-star closed subset of the set of probability measures on A. Let

uµ(X) :=

∫
A

X(x)dµ(x), X ∈ E, µ ∈ K

be the expectation of X with respect to the family K of probabilities and let

U := {uµ, µ ∈ K}
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(H1) is trivially fulfilled. Identifying U to K endowed with the weak-star
topology, (H2) is fulfilled. Finally, choosing Φ = 1, as ∂uµ(X) = {µ},
V (X) = K for all X and (H3) is in turn fulfilled.

A nonlinear variant of this model satisfying our assumptions as well, is
obtained by considering families of utilities of the form

vµ(X) :=

∫
A

V (X(x))dµ(x), X ∈ E, µ ∈ K

where V is a given concave differentiable utility index and µ ranges over
a convex and weakly-star closed set of probability measures K. As vµ is
differentiable (∂vµ(X) = {V ′(X)µ}), (H1) is trivially fulfilled. Identifying U
to K endowed with the weak-star topology, (H2) is fulfilled. Let Φ = 1, then

V (X) = { V ′(X)µ
Eµ(V ′(X))

, µ ∈ K} is σ(F,E) compact and (H3) is fulfilled. This

incomplete preference may be viewed as an infinite dimensional extension of
Bewley’s [6] and Rigotti and Shannon’s [28] ambiguity incomplete preference.

Other families of linear or non linear utilities may be interpreted as ex-
pectations with respect to a family of priors. For example, one may consider
E = B(Ω,F) and F =ba(Ω,F) and K a weak-star compact subset of proba-
bility measures. Fixing a probability P , one may also consider pairs such as
(E,F ) = (Lp, Lp

′
) (with p ∈ (1,∞)), (E,F ) = (L1, L∞), (E,F ) = (L∞, L1)

and K a σ(F,E) compact subset of probability densities. Nonlinear variants
of these models also provide infinite dimensional extensions of Bewley’s [6]
and Rigotti and Shannon [28]’s ambiguity models (see Dana and Riedel [12]
for a dynamic example).

Incomplete preferences on random vectors

Let (Ω,F ,P) be a probability space. We now consider strict orders on random
vectors defined by families of expected utilities. More precisely, let p ∈
(1,∞) with conjugate exponent p′ = p/(p − 1) and E = Lp((Ω,F ,P),Rd)
and E ′ = F = Lp

′
((Ω,F ,P),Rd) with the usual duality map between these

spaces. As the class of concave functions does not satisfy our assumptions,
let us consider a class V of concave and C1 functions Rd → R such that:

1. V is convex and closed for the topology of C(Rd) (i.e. uniform conver-
gence on compact sets),

2. The utilities and their gradients fulfill a uniform growth conditions:
there is a constant C such that

|v(x)| ≤ C(|x|p + 1), |∇v(x)| ≤ C(|x|p−1 + 1), ∀(x, v) ∈ Rd × V ,
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3. The utilities and their gradients are equicontinuous on compact sets:
for every compact subset of Rd, K, one has

lim
ε→0+

sup
(v,x,y)∈V×K2, |x−y|≤ε

{
|v(x)− v(y)|+ |∇v(x)−∇v(y)|

}
= 0.

4. there exists a unit vector e ∈ Rd such that e · ∇v(x) > 0, ∀(v, x) ∈
V × Rd.

Note that from Ascoli’s theorem, assumptions 1 and 3 guarantee that V is
compact for the topology of C1(Rd).

Let U be the set of expected utilities generated by V i.e.

U := {uv := E(v(.)), v ∈ V}

Assumption 2 insures that uv and ∇uv are well defined. Let U be endowed
with the topology induced by the topology of C(Rd) on V . From assumption
2 and Lebesgue dominated convergence theorem, the evaluation maps v 7→
E(v(X)) are continuous and the elements of U are continuous for the strong
topology of E. Hence (H1) and (H2) are fulfilled. Let us check that (H3)
is satisfied when one takes P · Φ := E(e · P ). For X ∈ E, let

V (X) :=
{ ∇v(X)

E(e · ∇v(X))
, v ∈ V

}
Note that V (X) is convex. We claim that V (X) is strongly compact in F .
Indeed, let

Yn = λn∇vn(X), λn :=
1

E(e · ∇vn(X))

be some sequence in V (X). From assumption 3 and Ascoli’s theorem, a
subsequence (vn,∇vn) converges in C(Rd) to some (v,∇v) with v ∈ V . Us-
ing again assumption 3 and Lebesgue’s dominated theorem, we deduce that
∇vn(X) − ∇v(X) converges to 0 strongly in F . This implies that λn also
converges and that Yn converges strongly in F to

∇v(X)

E(e · ∇v(X))
.

Since V (X) is convex, we thus have (H3).

Families of state dependent, additively separable utilities on random vec-
tors

uv(X) :=

∫
Ω

v(ω,X(ω))dP(ω).
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may as well be considered (H1), (H2) and (H3) are fulfilled under similar
assumptions as above, uniform in ω.

In the previous examples, except in the finite dimensional case, utilities
were assumed differentiable. Let us now consider an example of families of
superdifferentiable utilities.

Families of Rank-linear Utilities

Let (Ω,F ,P) be a non-atomic probability space, E = L∞((Ω,F ,P),R) and
F = L1((Ω,F ,P),R). Rank-linear-utilities both generalize expected utilities
and Choquet’s integrals with respect to a distortion and are of the form

X ∈ E 7→ ul(X) :=

∫ 1

0

l(t, F−1
X (t))dt

where F−1
X = inf{z ∈ R : FX(z) > t} denotes the quantile of X and l is a

smooth function, concave nondecreasing in its second argument and submod-
ular (i.e. ∂2

txl ≥ 0). The expected utility is obtained for l(t, x) = v(x) and
v : R → R concave nondecreasing, the Choquet expectation with respect to
a convex C1 distortion f for l(t, x) = f ′(1− t)x and the risk averse RDU for
l(t, x) = f ′(1− t)v(x) with f convex and v concave nondecreasing.

Let us consider the family of utilities

U := {ul, l ∈ L}

where L is a convex and compact (for the C([0, 1] × R) topology) set of
C1 concave and nondecreasing in their second argument functions fulfilling
∂2
txl > 0. We identify U with L. From a supermodular version of Hardy-

Littlewood’s theorem, one has for every l ∈ L

ul(X) = min{E(l(U,X)), U uniform}

The superdifferentiability properties of such utilities have been studied in [8]
where it is proved that

∂ul(X) = co{∂xl(U,X), U ∈ VX}

where co denotes closed convex hull operation for the L1(Ω,F ,P) topology
and VX denotes the set of uniformly distributed random variables such that
ul(X) = E(l(U,X)). Note that since ∂ul(X) is a bounded subset of L∞, it is
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σ(L1, L∞)- compact. The class U therefore satisfies (H1) and (H2). If we
further assume that for every compact K of R, one has

inf
(t,x)∈[0,1]×K, l∈L

∂xl(t, x) > 0

then taking again Φ = 1, we claim that (H3) is also satisfied. Indeed, let
X ∈ E and consider the set

V (X) :=
{ Z

E(Z)
, Z ∈

⋃
l∈L

∂ul(X)
}
.

This set is bounded in L∞ and thus σ(L1, L∞) relatively compact in L1. To
show that V (X) is σ(L1, L∞) closed, since it is convex, it suffices to prove
that it is strongly closed. Let us then suppose that Yn = Zn/E(Zn) with
Zn ∈ ∂uln(X) for some ln ∈ L converges in L1 to some Y . Since E(Zn) is
bounded and bounded away from 0, up to a subsequence, we may assume
that Zn converges in L1 to some Z and that ln converges to l. Passing to the
limit in the inequality

uln(Y )− uln(X) ≤ Zn · (Y −X), for allY ∈ E

and using the continuity of the evaluation maps, we obtain that Z ∈ ∂ul(X).
Hence Y = Z/E(Z) ∈ V (X) which proves (H3).

3 No-trade principle and efficient allocations

3.1 No-trade principle for sets of linear utilities

We first consider families of linear utilities on E. Agent i’s set of utilities is
parametrized by Ki, a convex and σ(F,E) compact subset of F . It is further
assumed that the family (Ki)i∈I lies in a common hyperplane of F : there
exists Φ ∈ E such that ai · Φ = 1 for all ai ∈ Ki and all i. We show that no
subset of agents can make a profitable trade if and only if

⋂
i∈I Ki 6= ∅. The

main part of the proof of the theorem that follows (that is the equivalence
between 1 and 2), is an infinite dimensional version of Samet’s results [30].

Theorem 3.1. The following assertions are equivalent:

1. There exists no (Xi)i∈I ∈ EI with
∑

i∈I Xi = 0 such that ai · Xi > 0
for all ai ∈ Ki and all i ∈ I,

2.
⋂
i∈I Ki 6= ∅,
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3. There exists P ∈ F such that for all i ∈ I, ai ·Xi > 0 for all ai ∈ Ki

implies P ·Xi > 0.

Proof. • 1. implies 2. Assume 1. and that
⋂
i∈I Ki = ∅. Let K =

K1 ×K2 . . .×KI and L = {(P, P, . . . , P ), P ∈ F} be the diagonal of
F I . We then have K∩L = ∅. Since K is σ(F I , EI) compact and convex
and L is σ(F I , EI)-closed convex, from Hahn-Banach’s theorem, there
exists (Xi)i∈I ∈ EI and c ∈ R such that∑

i

ai ·Xi > c ≥ P · (
∑
i

Xi), for all P ∈ F, ai ∈ Ki, i ∈ I

From the right-hand side, we obtain that
∑

i∈I Xi = 0 and c ≥ 0.
Let ai ∈ argminai∈Kiai · Xi and ci = ai · Xi. We claim that there
exists ci < ci for all i ∈ I with

∑
i ci = 0. If not

∑
i ci would have a

constant sign (strictly negative) on {(ci) ∈ RI | ci − ci > 0, ∀ i ∈ I}
contradicting

∑
i∈I ci > 0. Let X̃i = Xi− ciΦ. We have

∑
i X̃i = 0 and

ai · X̃i = ai · Xi − ciai · Φ = ai · Xi − ci > 0 for every ai ∈ Ki, i ∈ I
contradicting 1. Therefore

⋂
i=I Ki 6= ∅.

• 2 implies 3. Indeed, any P ∈
⋂
i∈I Ki fulfills 3.

• 3. implies 1. If
∑

i∈I Xi = 0 and ai · Xi > 0 for all ai ∈ Ki and all
i ∈ I, then P ·Xi > 0 for all i ∈ I contradicting

∑
i∈I Xi = 0.

The hypothesis that there exists Φ ∈ E such that ai · Φ = 1 for all
ai ∈ Ki and all i is in particular verified for Φ = 1 when (Ki)i∈I are subsets
of probabilities or densities interpreted as sets of possible priors of the agents.
The equivalence between assertions 1 and 2 of theorem 3.1 provides an ex-
ante no-trade principle. By applying theorem 3.1 to various pairs (E,F ), one
recovers most of the no-trade results in the literature. Samet [30] considers
the case of E = Rm, F = E ′ and of a collection of non-empty convex closed
subsets of probabilities (Ki)i∈I . Man-Chung Ng [22] considers E = C(A)
the set of continuous functions on a compact set A endowed with the sup-
norm and F = E ′ the set of finite Borel measures on A and a collection
(Ki)i∈I ⊂ F of non-empty convex weak star compact subsets of probability
measures. For a given probability space (Ω,F , P ), Dana and Riedel [12]
consider E = L∞(Ω,R), F = L1(Ω,R) and (Ki)i∈I a collection of non-
empty convex σ(L∞, L1) compact subsets of densities. Finally Billot et al [5]
consider E = B(Ω,F) the space of real-valued bounded measurable functions
on Ω, F = E ′ =ba(Ω,F) the space of finitely additive measures on (Ω,F)
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and (Ki)i∈I a collection of non-empty weak star (σ(F,E)) closed, convex
subsets of countably additive probability measures on (Ω,F).

3.2 No-trade principle for sets of concave utilities and
efficiency

We next consider the case where agents’ preferences are given by families of
concave utilities Ui. We recall that Xi ∈ E is strictly preferred to Yi ∈ E
by agent i, which will be denoted Xi �Ui Yi, if ui(Xi) > ui(Yi) for every
ui ∈ Ui. The next lemma characterizes the directions in which preferences
are increasing in a neighborhood of Xi and shows that locally these directions
coincide with the directions in which the linear utilities associated to the
family of compact sets (Vi(Xi))i∈I are increasing.

Lemma 3.2. Let Xi ∈ E and Yi ∈ E be given. The following are equivalent:

1. There exists t0 > 0 such that for all t ∈ (0, t0], Xi + tYi �Ui Xi,

2. there exists t0 > 0 such that Xi + t0Yi �Ui Xi,

3. for any P ∈ Vi(Xi), P · Yi > 0 (or equivalently P · Yi > 0 for all
P ∈ ∂ui(Xi) and ui ∈ Ui).

Proof. Let us first remark that since ui is concave, the map t→ t−1(ui(Xi +
tYi) − ui(Xi)) is nonincreasing on (0,∞). Hence ui(Xi + t0Yi) − ui(Xi) > 0
implies that ui(Xi + tYi)− ui(Xi) > 0 for all t ≤ t0. Therefore, assertions 1
and 2 are equivalent. Let us prove that 2 and 3 are equivalent. Let Yi fulfill 3
and ui ∈ Ui be fixed. From (H1) ∂ui(Xi) is σ(F,E) compact. As P · Yi > 0
for all P ∈ ∂ui(Xi), there exists m > 0 such that min{P∈∂ui(Xi)} P · Yi ≥ m.
Since ui is concave, it is well-known (see e.g. [33], Theorem 2.4.9) that for
every (Xi, Yi) ∈ E2,

lim
t→0+

t−1[ui(Xi + tYi)− ui(Xi)] = min
{P∈∂ui(Xi)}

P · Yi,

hence for every ui ∈ Ui, there exists tui > 0 such that if t ≤ tui , ui(X+ tY )−
ui(X) > 0. Let t > 0 be given and let

Wi(t) = {ui ∈ Ui | ui(Xi + tYi)− ui(Xi) > 0}.

From what preceeds, Ui = ∪t>0Wi(t). From (H2), the evaluation maps being
continuous, Wi(t) is open. From (H2), Ui is compact, hence there exists a
finite subcovering of Ui, Wi(t1), ...,Wi(tk). Let t0 = minj tj. We then have
that Xi + t0Yi �Ui Xi.
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Conversely, let Yi fulfill 2. Then that there exists t0 > 0 such that Xi +
t0Yi �Ui Xi. For any ui ∈ Ui, we have

0 > ui(Xi)− ui(Xi + t0Yi) ≥ −t0P · Yi, for any Yi ∈ ∂ui(Xi)

Hence P · Yi > 0 for any ui ∈ Ui and P ∈ ∂ui(Xi), equivalently P · Yi > 0 for
any P ∈ Vi(Xi) proving that 2 implies 3.

A non linear no-trade principle now follows:

Theorem 3.3. The following assertions are equivalent:

1. There exists no (Yi)i∈I ∈ EI with
∑

i∈I Yi = 0 such that Xi +Yi �Ui Xi

for all i ∈ I,

2.
⋂
i∈I Vi(Xi) 6= ∅,

3. there exists P ∈ F such that for all i ∈ I, Xi + tiYi �Ui Xi for some
ti > 0 implies P · Yi > 0.

Proof. Let us show that 1 implies 2. From lemma 3.2, if assertion 1 holds
true, there exists no (Yi)i∈I ∈ EI with

∑
i∈I Yi = 0 such that P · Yi > 0

for all P ∈ Vi(Xi) and all i ∈ I. From theorem 3.1 and (H3), we have⋂
i∈I Vi(Xi) 6= ∅.

2 implies 3. Assume 2, then from theorem 3.1, there exists P ∈ F such that
for all i, Q · Yi > 0 for all Q ∈ Vi(Xi) implies P · Yi > 0. From lemma 3.2,
there exists P ∈ F such that for all i Xi+ tiYi �Ui Xi for some ti > 0 implies
P · Yi > 0. Finally, the fact that 3 implies 1 is obvious.

Let us remark that the condition
⋂
i∈I Vi(Xi) 6= ∅ in the previous theorem

is similar to the condition that appears in proposition 7 of Rigotti, Shannon
and Strzalecki [29]. However, the framework of proposition 7 in [29] is finite-
dimensional (the analysis is then extended to the duality between real-valued
bounded functions and finitely additive measures but this is still a special
case of our paper) and preferences are assumed to be complete.

Setting U := Πi∈IUi, we may now define U -efficient allocations.

Definition 3.4. Let (Xi)i∈I ∈ A(X), then (Xi)i∈I is U-efficient if there is
no (Yi)i∈I ∈ A(X) such that Yi �Ui Xi for every i ∈ I .

Let us first remark that if for each i, there exists ui ∈ Ui such that (Xi)i∈I
is efficient for the economy with complete preferences represented by the
(ui)i∈I , then (Xi)i∈I is U - efficient. If not there would exist (Yi)i∈I ∈ A(X)
such that, for all i Yi �Ui Xi and in particular ui(Yi) > ui(Xi) contradicting
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the efficiency of (Xi)i∈I for the (ui)i∈I .

We next characterize U -efficiency and state our first main result that provides
a positive answer to the first question adressed by the paper.

Theorem 3.5. The following assertions are equivalent:

1. The allocation (Xi)i∈I ∈ A(X) is U-efficient,

2. there exists no trade (Yi)i∈I ∈ EI with
∑

i∈I Yi = 0 such that Xi+Yi �Ui
Xi for all i ∈ I,

3.
⋂
i∈I Vi(Xi) 6= ∅ ,

4. there exists (ui)i∈I ∈ U for each i such that (Xi)i∈I is efficient for the
economy with complete preferences represented by the (ui)i∈I .

Proof. The fact that 1. implies 2. follows directly from the definition of
efficiency. The implication 2. ⇒ 3. follows from Theorem 3.3. Assertion
3. implies assertion 4. since

⋂
i∈I Vi(Xi) 6= ∅ implies that for each i, there

exists ui ∈ Ui and λi > 0 such that
⋂
i∈I λi∂ui(Xi) 6= ∅ which implies 4. The

implication 4.⇒ 1. is straightforward and was already discussed.

Corollary 3.6. Let utilities be linear and fulfill the hypotheses of subsection
3.1. Then the following assertions are equivalent:

1. Any allocation (Xi)i∈I ∈ A(X) is U-efficient,

2. there exists no (Xi)i∈I ∈ EI with
∑

i∈I Xi = 0 such that ai ·Xi > 0 for
all ai ∈ Ki and all i ∈ I,

3.
⋂
i∈I Ki 6= ∅.

Let agents have endowments Wi ∈ E, i ∈ I with X =
∑

iWi. When
is no-trade efficient, in other words when is (W1, . . . ,WI) efficient? The
following corollary follows directly from theorem 3.5.

Corollary 3.7. The following assertions are equivalent:

1. No-trade is U-efficient,

2.
⋂
i∈I Vi(Wi) 6= ∅

3. there exists (ui)i∈I ∈ U such that no-trade is efficient for the economy
with complete preferences represented by the (ui)i∈I .
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Remark 3.8. A further assumption that can be made is that E is ordered
by a closed convex cone E+ in E with non nonempty interior, polar to a
convex cone F+ in F (the cone of nonnegative prices). Adding nonnegativity
constraints in the model, agents choose consumptions in E+ and their utility
functions defined on E+, are assumed to be concave, super differentiable on
the interior of E+ and monotone with respect to the order associated to E+.
Let A+(X) := {(Xi)i ∈ I ∈ A(X) Xi ∈ E+, ∀i ∈ I}. Assuming (H2)
and ∂ui(X) ∈ F and σ(F,E) compact and Vi(X)σ(F,E) compact at any
interior point X of E+ and any i, theorem 3.5 can be stated as: an interior
allocation (Xi)i∈I is U -efficient if and only if there exists (ui)i∈I , ui ∈ Ui for
each i such that(Xi)i∈I is efficient for the economy with complete preferences
represented by the (ui)i∈I .

4 Equilibria and welfare theorems

A price P ∈ F supports the preferred set to Xi if Yi �Ui Xi implies P · Yi >
P · Xi. Supporting prices to a preferred set have appeared in the previous
section in theorem 3.1 and lemma 3.2. The next lemma characterizes them.

Lemma 4.1. For P ∈ F , the following are equivalent

1. Yi �Ui Xi implies P · Yi > P ·Xi,

2. λP ∈ Vi(Xi) for some λ > 0,

3. there exists ui ∈ Ui such that Xi maximizes ui(Y ) s.t. P · Y ≤ P ·Xi.

Proof. To show that 1 implies 2, let P ∈ F be such that Yi �Ui Xi implies P ·
Yi > P ·Xi. Assume that λP 6∈ Vi(Xi) for all λ > 0. Since from (H3), Vi(Xi)
is σ(F,E) compact, from Hahn-Banach’s theorem there exists Zi ∈ E such
that

λP · Zi ≤ 0 < min
H∈Vi(Xi)

H · Zi

Since H · Zi > 0, for all H ∈ Vi(Xi), from lemma 3.2, for t > 0 sufficiently
small Xi + tZi �Ui Xi while P · Zi < 0 contradicting assertion 1.
2 implies 3, since if λP ∈ Vi(Xi) for some λ > 0, there exists ui ∈ Ui such
that λP ∈ ∂ui(Xi). Hence Xi maximizes ui(Y ) subject to P · Y ≤ P · Xi.
Finally to show that 3 implies 1, if 3 holds true, then there exists ui ∈ Ui
and λ > 0 such that λP ∈ ∂ui(Xi). Let Y �Ui Xi, we then have

0 > ui(Xi)− ui(Y ) ≥ P · (Xi − Y )

and therefore P · Y > P ·Xi proving 1.
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The second main result of the paper, the characterization of equilibria for
the incomplete preferences follows directly from the previous lemma as well
as the characterisation of the demand correspondence. We now turn to the
definition of concepts of equilibria and their characterization.

Definition 4.2. An allocation X ∗ = (X∗i )i∈I ∈ A(X) with a price P ∗ ∈ F,
is a U-equilibrium with transfer payments if for every i, Xi �Ui X∗i implies
P ∗ ·Xi > P ∗ ·X∗i . An allocation (X∗i )i∈I ∈ A(X) with a price P ∗ ∈ F, is a
U-equilibrium if for every i, P ∗ · X∗i = P ∗ ·Wi and for every i, Xi �Ui X∗i
implies P ∗ ·Xi > P ∗ ·Wi.

Theorem 4.3. The following are equivalent

1. (X ∗, P ∗) is a U-equilibrium with transfer payments,

2. λP ∗ ∈
⋂d
i∈I Vi(X

∗
i ) for some λ > 0,

3. there exists (ui) ∈ U such that (X ∗, P ∗) is an equilibrium with transfer
payment of the economy with utilities (ui).

The following are equivalent:

1. (X ∗, P ∗) is a U-equilibrium,

2. λP ∗ ∈
⋂d
i∈I Vi(X

∗
i ) for some λ > 0 and for every i, P ∗ ·X∗i = P ∗ ·Wi,

3. there exists (ui) ∈ U such that (X ∗, P ∗) is an equilibrium of the economy
with utilities (ui).

The proof of Theorem 4.3 follows directly from lemma 4.1.

Remark 4.4. As in remark 3.8, the case of consumptions in E+ may be
considered. Under the same assumptions as those of remark 3.8), one can
state the second part of theorem 4.3 as interior U -equilibria coincide with
interior equilibria of the economies with utilities (ui) for some (ui) ∈ U .

We may now prove the welfare theorems for incomplete preferences.

Theorem 4.5. The following assertions hold:

1. Any U-equilibrium is U-efficient.

2. Any U-efficient allocation is a U-equilibrium with transfer payments for
some P ∈ F .
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Proof. Proof of assertion 1. From theorem 4.3, any U -equilibrium (X ∗, P ∗)
is an equilibrium for the some economy with complete preferences ui, i ∈ I,
hence is efficient in that economy. From theorem 3.5, (X∗i )i∈I is U -efficient.
Let us now prove assertion 2: if (X∗i )i∈I is U -efficient, from theorem 3.5,
it is efficient for the some economy with complete preferences ui, i ∈ I,
hence there exists P ∗, such that ((X∗i )i∈I , P

∗) is an equilibrium with transfer
payments ui, i ∈ I. From 4.3, ((X∗i )i∈I , P

∗) is a U -equilibrium with transfer
payments.

5 Discussions of concepts

5.1 Other strict preferences

Given the family of utilities Ui, we have considered the strict incomplete
preference defined by: Yi �Ui Xi if and only if ui(Yi) > ui(Xi) for all ui ∈ Ui.

Given Ui, another preference may be considered : Yi �eUi Xi if and only if
ui(Yi) ≥ ui(Xi) for all ui ∈ Ui. The strict associated preference is Yi �eUi Xi

if and only if ui(Yi) ≥ ui(Xi) for all ui ∈ Ui with a strict inequality for some
ui ∈ Ui. Clearly Yi �Ui Xi implies that Yi �eUi Xi.

Two concepts of efficiency may be associated to the order Yi �eUi Xi :

1. (Xi)i∈I is strongly-Ũ -efficient if there does not exist (Yi)i∈I ∈ A(X)
such that Yi �eUi Xi for all i, strictly for some i,

2. (Xi)i∈I is weakly-Ũ efficient if there does not exist (Yi)i∈I ∈ A(X) such
that Yi �Ũi Xi for all i ∈ I.

Let us now discuss the relations between the different concepts. By defini-
tion, strong-Ũ -efficiency implies weak-Ũ -efficiency which implies U efficiency.

Proposition 5.1. Assume (H1-H3) If the ui are strictly concave, U effi-

ciency , strong-Ũ-efficiency and weak-Ũ-efficiency are equivalent.

Proof. It remains to show that U -efficiency implies strong-Ũ -efficiency. Let
(Xi)i∈I be U -efficient and assume that there exists (Yi)i∈I ∈ A(X) such that
ui(Yi) ≥ ui(Xi) for all i with a strict inequality for some i and some ui. Let
(Zi = (Yi +Xi)/2) ∈ A(X), ui(Zi) ≥ ui(Xi) for all i, and for all i such that
Zi 6= Xi, ui(Zi) > ui(Xi) for all ui ∈ Ui. From remark ??, this contradicts
Ui-efficiency.
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A counterexample Let us now give a counterexample where the set of
strong-Ũ -efficient allocations is strictly smaller than the set of U efficient
allocations. Assume that there are k states of the world with probabilities
πi, i = 1, . . . , k and one good in each state of the world. A contingent claim
X = (x1, . . . , xk) where xj is the amount to be received in state j is identified
to an element of Rk. Hence E = F = Rk. Let (Pi)i∈I be a family of compact
convex subsets of the probability simplex and denote by ri Pi the relative
interior of Pi. Let

Ui = {ui : Rk → R s.t. ui(X) = Eπ(X) =
∑

πixi, π ∈ Pi, X ∈ Rk}

Let Yi �eUi Xi if and only if Eπ(Yi) ≥ Eπ(Xi) for all π ∈ Pi and Yi �eUi Xi if
and only if Eπ(Yi) ≥ Eπ(Xi) for all π ∈ Pi with a strict inequality for some
π ∈ Pi. Let X ∈ Rk be the aggregate endowment. When utilities are linear,
either all feasible allocations are efficient or there is no efficient allocation.
From Dana and Le Van [11], any feasible allocation is Ũ -efficient if and only
if ∩iri Pi 6= ∅, while from section 3, any feasible allocation is U -efficient if
and only if ∩iPi 6= ∅. It is easy to construct examples where ∩iriPi = ∅ and
∩iPi 6= ∅.

An allocation (X∗i )i∈I ∈ A(X) with a price P ∗ ∈ F, is a Ũ -equilibrium if
for every i, P ∗ · X∗i = P ∗ ·Wi and Xi �Ũi X

∗
i implies P ∗ · Xi > P ∗ ·Wi.

Note that any Ũ -equilibrium is a U -equilibrium since Xi �Ui X∗i implies
Xi �Ũi X

∗
i .

Proposition 5.2. If the ui are strictly concave, an allocation (X∗i )i∈I ∈
A(X) with a price P ∗ ∈ F, is a Ũ-equilibrium if an only if it is a U-equilibrium

Proof. It remains to show that if (X ∗, P ∗) is a U -equilibrium, then it is a Ũ -
equilibrium. Let (X ∗, P ∗) be a U -equilibrium and assume that there exists for
some i, Xi such that ui(Xi) ≥ ui(X

∗
i ) for all i with a strict inequality for some

ui and P ∗·Xi ≤ P ∗·X∗i = P ∗·Wi. Let Zi = (Xi+X
∗
i )/2. Then P ∗·Zi ≤ P ∗·Wi

and Zi �Ui X∗i . Indeed, since Xi 6= X∗i , ui(Zi) = ui((Xi + X∗i )/2) > ui(X
∗
i )

for all ui, contradicting the assumption that (X ∗, P ∗) is a U -equilibrium of
the economy with utilities (ui).

5.2 The case of second order stochastic dominance

The aim of this paragraph is to extend theorems 3.5 and 4.3 to the case of the
concave order in one dimension, a case in which neither (H2) nor (H3) are
fulfilled. Let (Ω,F ,P) be a non-atomic probability space and consider the
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set of bounded real-valued random variables, L∞ = L∞((Ω,F ,P),R). Let U
be the set of strictly concave increasing utilities on R. For X and Y in L∞,
let us denote X � Y if and only if E(v(X)) > E(v(Y )), for all v ∈ U . As is
well-know, the corresponding large preference, X � Y , is defined by X � Y
if and only if E(v(X)) ≥ E(v(Y )), for all v concave nondecreasing. Let
Φ = 1, and V (X) = {Y/E(Y ) : Y ∈ ∂u(X), u ∈ U} be the set of normalized
supergradients at X ∈ L∞.

Proposition 5.3. Let (Xi)i∈I ∈ A(X). Then the following statements are
equivalent:

1. (Xi)i∈I is strongly-Ũ efficient,

2. (Xi)i∈I is U-efficient,

3. (Xi)i∈I is a comonotone allocation of X,

4. there exist continuous and strictly concave increasing functions (u1, ..., uI)
such that (Xi)i∈I is efficient for the corresponding expected utility econ-
omy,

5.
⋂
i∈I V (Xi) 6= ∅.

Proof. The equivalence between assertions 1 and 2 follow from Proposition
5.1, that between 1, 3 and 4 from Carlier Dana and Galichon [7]. The
equivalence between 4 and 5 follows from standard first order conditions for
strictly concave utilities.

Given individual endowments (Wi)i∈I and defining U -equilibria as previ-
ously, under some technical assumptions on the aggregate risk X =

∑
i∈IWi,

we have the following characterization

Theorem 5.4. Assume that FX , the cumulative distribution function of X
is increasing and continuous, then the following assertions are equivalent:

1. (X ∗, P ∗) is a U-equilibrium,

2. there exists λ > 0 such that λP ∗ ∈
⋂d
i∈I Vi(X

∗
i ) and E(P ∗X∗i ) =

E(P ∗Wi) for every i ∈ I,

3. there exists (ui)i∈I ∈ U I such that (X ∗, P ∗) is an equilibrium of the
economy with utilities (ui)i∈I .
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Proof. Clearly, assertions 2 and 3 are equivalent and assertion 3 implies as-
sertion 1. Let us now assume that (X ∗, P ∗) = ((X∗i )i, P

∗) is a U -equilibrium,
which means that (X∗i )i ∈ A(X) and for every i, one has

Y � X∗i ⇒ E(P ∗Y ) > E(P ∗X∗i ) = E(P ∗Wi). (5.1)

First, we claim that the X∗i ’s are P ∗-measurable, since if not taking Yi :=
E(X∗i |P ∗) � X∗i as E(P ∗Yi) = E(P ∗X∗i ), we would derive a contradiction to
(5.1). Hence X∗i = fi(P

∗) and X = f(P ∗) with f =
∑

i∈I fi. This implies
that P ∗ is non-atomic since otherwise X would have an atom, contradicting
the assumption that FX is continuous. Since P ∗ is non-atomic, we may
find nonincreasing functions gi such that Yi := gi(P

∗) has the same law as
X∗i = fi(P

∗). If X∗i 6= Yi ae, then (X∗i + Yi)/2 � X∗i implying from (5.1)
that E(P ∗Yi) > E(P ∗X∗i ) which contradicts Hardy-Littlewood’s inequality
E(P ∗Yi) ≤ E(P ∗X∗i ). Hence it must be the case that X∗i = gi(P

∗) a.s.:
the X∗i ’s are nonincreasing functions of P ∗. We may therefore find concave
functions ui such that P ∗ ∈ ∂ui(X∗i ) for every i; furthermore, since P ∗ ≥ 0,
ui can also be taken nondecreasing. It remains to prove that the ui’s are
strictly concave on the closed convex hull of the range of X∗i . To prove this
fact, given Y ∈ L∞, let F−1

Y be the generalized inverse (or quantile function)
of the cumulative distribution function FY . Since X =

∑
i∈I gi(P

∗) =: g(P ∗)
with all the gi’s nonincreasing, for Lebesgue almost-every t ∈ [0, 1], we have

F−1
X (t) = g(F−1

P ∗ (1− t)) =
∑
i∈I

gi(F
−1
P ∗ (1− t)) =

∑
i∈I

F−1
X∗i

(t)

Since we have assumed that FX is increasing, F−1
X is continuous. It thus fol-

lows from that previous identity that F−1
X∗i

is continuous or, equivalentlyF ∗Xi
is increasing for every i. If ui was affine one some nondegenerate inter-
val [a, b] ⊂ [essinfX∗i , esssupX∗i ], then P ∗ would be constant on the set
(X∗i )−1((a, b)). Since FX∗i is increasing, this set would have positive prob-
ability and P ∗ would have an atom and we already know that this cannot
happen. All the ui’s can therefore be chosen strictly concave (and thus in-
creasing) implying assertion 2.

5.3 Relation to the literature

Our paper belongs to the literature that deals with the following abstract
problem: given a space with a preorder defined by a family of utility func-
tions, under which conditions is it true that an undominated element maxi-
mizes a utility function in the family that is strictly increasing in the preorder.
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The definition of undominated element and that of a utility function increas-
ing in the preorder (X � Y implies u(X) > u(Y )) depends on how the strict
preference is defined in terms of the family of utility functions. Most authors
consider the strict preference defined in paragraph 5.1.

To our knowledge, there are no general results on the abstract problem
although, it has been addressed in specific cases. A seminal example is the
article of Arrow, Barankin and Blackwell [2], which provides a negative an-
swer for a subset of an Euclidean space endowed with the componentwise
order. The articles of Peleg [25] and and Peleg and Yaari [26] also provide a
negative answer for a subset of L∞ and second order stochastic dominance.
These papers nontheless show that the undominated elements that maximize
a utility function increasing in the preorder are dense in the set of undomi-
nated elements. Recently a positive answer has been provided by Evren [16]
for convex subsets of probabilities on a compact metric space for a strict
order defined by convex families of vNM utilities defined by norm-compact
sets of continuous utility indices.

Versions of the abstract problem have been addressed in different fields
where they have received a positive answer. A first field is that of social
planning with incomplete preferences. Let E be a set of social alternatives for
a society with d agents. Agent’s i incomplete preferences are represented by
the family of utilities Ui, i = 1, . . . , d. One defines a social preorder by : for
(X, Y ) ∈ E2, X � Y (X is prefered to Y by the society) if and only if ui(X) ≥
ui(Y ) for any ui ∈ Ui and any i. The social incomplete preorder on E is thus
represented by the family of utilities ∪iUi which is not convex in general. Its
convexification is the set of weighted utilities

∑
i βiui,

∑
i βi = 1, ui ∈ Ui, ∀i.

Let F ⊂ E. One can ask under which conditions an undominated element
of F maximizes a weighted sum of utilities with strictly positive weights.
Carroll [9] considers the case of lotteries on a finite set and convex families
Ui of vNM utilities which coincide with their relative interior. His strict
order is that of paragraph 5.1. Evren [16] applies his general result to this
specific setting. His model thus generalizes Carroll’s model, but his concept
of efficiency is weaker. One can note that both models use linear utilities.

Another example is that of our paper: an exchange economy with given
aggregate endowments. Let E be the consumption space of an economy with
d agents. Agent’s i preferences are defined by a family of utilities Ui, i =
1, . . . , d. Aggregate endowment W ∈ E is fixed. A feasible allocation is an
element X ∈ Ed, X = (X1, . . . , Xd) such that

∑d
i=1Xi = W . Preferences

are defined on the set of allocations and given by the set of weighted sums
of utilities with strictly positive weights, each agent’s utility being picked
up from her utility set. One can ask whether it is true and under which
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conditions that a PO maximizes a weighted sum of utilities, each agent’s
utility being picked up from her utility set. Our paper provides sufficient
conditions to obtain a positive answer that generalize Rigotti and Shannon
[28] and Dana and Riedel [12] who assume that utilities are strictly concave.
In the univariate case, a positive answer for the concave order is obtained for
finite states spaces by Dana [10] and for non atomic spaces by Carlier et al
[7]. A density result is proven in the multivariate case in Carlier et al [7].

A last example, in the field of non cooperative games, is that of the
characterization of Nash equilibria when agents have incomplete preferences.
Bade [4] shows that if each player’s strategy space is a convex subset of a
finite dimensional space and preferences are represented by the convex hull
of a finite number of utilities and if the strict order is that of paragraph 5.1,
then the set of Nash equilibria in pure strategy for incomplete preferences
is the union of the sets of Nash equilibria that results when each agent’s
utility is picked up from her utility set. Evren [16] defines a refinement of
the concept of pure-strategy Nash equilibrium. He introduces the concept of
randomization-proof equilibrium in which each agent’s equilibrium strategy
is undominated in her set of mixed strategies. Under the assumptions on
utilities of his general theorem, he shows that the set of randomization-proof
equilibria is the union of the set of pure strategy equilibria that results when
each agent’s utility is picked up from her utility set.
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